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ABSTRACT  
 
Object-Oriented Programming (OOP) has been promoted as a way to produce high-quality software while 

increasing developer productivity through code reuse. Software systems and underlying designs get more 

extensive and more complicated while maintaining a high degree of quality. One of the widely 

accepted standards for describing software architectures is the UML Sequence Diagram. A sequence 

diagram depicts the interaction of two-dimensional chart players by showing messages delivered and 
received between them. This research aims to develop and validate a metric for complexity evaluation in 

software design architectures through UML Sequence diagrams. The study included design science, which 

included metric specification, the creation of a measurement tool, and conceptual and factual verification 

of the metrics. The metrics use diagram-centric complexity measurements shown to be meaningful when 

used to determine the difficulty of two example sequence diagrams. Furthermore, conceptual affirmation of 

the stated metrics was achieved through Weyuker's nine characteristics, which demonstrated that they are 

computationally efficient. The metric was empirically authenticated, and the findings show that measuring 

the complexity of sequence diagrams is expedient. 
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1. INTRODUCTION  
 

Evaluation of software architecture is a strategy or process for determining the qualities, 
capabilities, and limitations of software architecture, styles, or design patterns [1, 30, 31]. The 

quality of the software is a big issue today, and a well-known software architecture evaluation is 

a way which predicts the quality of a software product from a higher-level design description [1, 
4,]. 

 

Software complexity is measured using metrics that reflect how simple or challenging it is for a 

programmer to do routine programming tasks such as comprehension, testing, and program 
maintenance [31]. Furthermore, these metrics measure many elements of program complexity 

and hence contribute to the advancement of software quality. 

 
Over the years, Software Engineering scholars recommended several metrics like Halstead 

metric, cyclomatic complexity, and line of code metrics to deal with the complexity. With the 

complexity increasing as time goes by, there is a need for better metrics that can evaluate 
software more effectively.  

 

Metrics used in designing diagrams can be utilized in identifying huge diagrams that should be 

divided, or they can also be used in picking design reviews for specific charts. Extraordinary 
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convolution is objectionable because it affects the overall feature of the software. Scholars have 
recommended measures that can be used to ensure the superiority of sequence diagrams. 

Nevertheless, these metrics do not evaluate the intricacy of UML sequence diagrams [3]. This 

paper therefore offers measures for assessing the complexity of sequence diagrams. 

 
The Unified Modeling Language (UML) is a multipurpose modelling language that comprises 

texts and graphics [2, 3, 29]. Generally, it is employed in modelling systems that utilize object-

oriented technologies [3]. UML diagrams contain hieroglyphics that provide different contexts of 
the system under analysis [2]. In addition, they dispatch both the dynamic and static assessments 

of a software configuration. The sequence diagram, also known as an event diagram, illustrates 

how messages flow in a system. It aids in visualizing a variety of dynamic cases. It depicts 
the interaction between any two lifelines as a time-ordered series of events in which these 

lifelines participated during the run time [3]. The sequence diagram is one of UML's fundamental 

diagrams for modeling a system's dynamic characteristics. A sequence diagram, in more detail, 

depicts the interaction between participants in a two-dimensional chart by showing 
information delivered and received between them. 

 

The issue with sequence diagrams is that their intrinsic complexity grows with age anytime the 
charts are improved. The UML evolves and keeps the diagrams up to date with the current 

version of the UML. Research has been done to show that the meagerness of UML diagrams and 

a large number of UML paradigms significantly affect the UML diagrams' complexity 
measurement [2, 3].  

 

The following are the structures of this research paper; Section 2 discusses related work; Section 

3 discusses the quantifiable attributes; Section 4 discusses the newly specified metrics; Section 5 
displays the computation of values from two real-life scenarios; Section 6 discusses the findings, 

and the final part of the report comprises of some recommendations and future research. 

 

2. RELATED WORKS  
 

There are numerous proposed complexity metrics for Object Oriented design. Nonetheless, these 

metrics are unsuitable for measuring the sequence diagrams' complexity [4, 28]. 

 
Weighted Methods per Class (MMC) and Depth of Inheritance Tree (DIP) are utilized in 

estimating the most significant stretch from the root to the node of the tree, where deeper trees 

provide increased design complexity [5]. The amount of adjacent sub-classes that are inferior to a 
class in the class pyramid is represented by the Number of Children (NOC). Several scholars 

have empirically validated the metrics [5,6,7]. Despite this, studies have shown them to be 

conceptually defective [6,7]. 

 
In 1994, Lorenz and Kidd developed three metrics, including NMI (Number of Methods), NNA 

(Number of New Methods), and NMO (Number of Methods Overridden) [8]. NMI represents the 

overall number of methods inherited by a subclass. On the other hand, NMI is overridden by a 
subclass, and a class quantifies the number of new stratagems in a subclass [5, 8]. As a result of 

the metrics measuring class attributes and being very basic, they have been criticized. Therefore, 

this is a clear suggestion that they can't be relied on to assess the software's quality [8]. 
 

The following are the six measures to address the shortcomings of C&K metrics; the Number of 

Ancestor Classes (NAC), Number of Descendent Classes (NDC), Number of Local Methods 

(NLM), Couple Through Abstract Data Type (CTA), Class Method Complexity (CMC), and 
Coupled Through Message Passing (CTM) [9, 10, 11]. NAC gives the sum of ancestor classes 

inherited by a class. CMC measure sums the internal structural complexity of all local 
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procedures. NDC measure provides the total of a class's sub-classes. CTA computes the total 
number of classes used as abstract types of data [12, 13]. Finally, the CTM metric reports the 

number of distinct communications delivered from one class to the others without considering the 

inheritance attribute [12]. Because they needed adjustments to approximate maintainability 

successfully, HoI measures filled the gaps in C&K metrics. 
 

There are two inheritance metrics; program-level ACI (Average Complexity Inheritance) and 

class-level CCI (Class Complexity due to Inheritance) [14]. The metrics are arithmetically valid 
using Weyuker's properties; this illustrates their potential as complexity metrics. However, 

these metrics must be empirically validated before they can be used as measurements of software 

quality [15, 16]. 
 

3. DETERMINATION OF MEASURABLE ATTRIBUTES  
 

Lifelines and messages represent a UML Interaction model element, the two most significant 

parts of a sequence diagram. The UML interaction owns all the lifelines and messages [3, 17]. 
These will be separated into the properties "objects or lifelines" and "messages." Counting the 

complexity of a UML Interaction then becomes straightforward with that information. 

 

3.1. Lifeline 
 

A lifeline symbolizes the existence of each participant in a sequence diagram. A lifeline is 
portrayed as a box, or in the context of an actor, a stick figure with a name and a dashed vertical 

line linked beneath it [18]. 

 
Participants are usually present throughout the engagement and are positioned at the top of the 

diagram. When participants are formed during an arrangement, their lifelines begin with the 

reception of a created message [18, 19]. This constructor call is implemented by this create a 

message. Participants can also be removed during an interaction if a destruct message is received. 
A destructor call is represented by this destroy message. A cross at the endpoint of a lifeline 

represents its ending. 

 

3.2. Message 
 

Lifelines interact through messages, and the whole exchange is characterized by messages. 
Messages are classified into three types: 

 

• Asynchronous messages are represented as an empty arrowhead on an arrow. 
• An arrow with a filled arrowhead represents synchronous communications. 

• Return messages are shown as a dashed arrow with an unfilled arrowhead. 

 

An asynchronous message has a distinct send-and-receive element, meaning additional events 
may occur during sending and receiving [19, 20]. Contrary to an asynchronous message, a 

synchronous message consists of a single event. Because the send and receive parts of a 

synchronous message conflict, no additional events can occur between them. A return message is 
simply an asynchronous message indicating the result of a procedure call. Messages are arranged 

along the diagram's vertical axis in order of time transmitted or received about other messages 

within similar lifelines [20]. In the chart, time descends.  A diagonal line can signify that 
communications take a long time to arrive. Participants can send messages to themselves. 

Because sending signals back in time is impossible, the arrow's tail must be higher in the picture 

than the inbound arrowhead. Messages must be labeled for easy identification. 
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4. METRICS DEFINITION  
 

4.1. Base Metrics  
 

UML sequence diagrams' base measures include message into life (MIL), which is the 
summation of the total message into a lifeline in a sequence diagram [21]. On the other hand, 

message out of lifeline (MOL) refers to the total tally of the message out of lifeline in a sequence 

diagram. In addition, the Weighted Number of Lifelines (NOL) is a straight scale of the number 
of lifelines [22].  

 

The Complexity Ci of the sequence diagram is determined when the message into lifeline (MIL) 

is increased by multiplying it with the message out of lifeline (MOL) to provide the number of 
different information paths across a component, after which a square of the result is obtained by 

Belady & Evangelisti's technique of systems partitioning. The Number of Lifelines (NOL) is then 

multiplied by to Compute System Complexity; 
 

𝑪𝒊 = ∑ 𝑵𝒏
𝟏 𝑶𝑳∗(𝑴𝑰𝑳∗𝑴𝑶𝑳)𝟐 

 

4.2. Derived Metrics  
 

This section presents the newly defined metrics to assess the complexity metrics for Sequence 
diagrams. Deriving the new metrics and model requires the complexity information flow theory 

utilized by Henry and Kafura. 

 

4.2.1. Weighted Messages into Lifeline (MIL)  

 

Message into lifeline (MIL) is defined as the Number of Messages flows that end at the 

object/lifeline. A weighted sum of message into lifelines is obtained from each lifeline to 
calculate MIL. Therefore, Weighted Message into lifeline (MIL) is calculated as follows:   

 

MIL = ∑(𝑴𝑰𝑳)

𝑛

1

 

 
Where ∑MIL represents the summation of the Number of Message into a lifeline.  

A Message into a lifeline in a sequence diagram is represented by an arrow ending in a lifeline. 

 

4.2.2. Weighted Messages out of Lifeline (MOL)  
 

Messages out of lifeline (MOL) is the number of messages that flow out of the object/lifeline. To 

calculate MOL, each lifeline obtains a weighted sum of message out of lifeline. Therefore, the 
Weighted Message out of lifeline (MOL) is calculated as follows:   

 

MOL = ∑(𝑴𝑶𝑳)

𝑛

1

 

 

Where ∑MOL represents the total Number of Message out of lifeline.  
 

A Message out of a lifeline in a sequence diagram is represented by an arrow emanating from a 

lifeline.  
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4.2.3. Weighted Number of Lifelines (NOL)  
 

The weighted Number of Lifelines (NOL) refers to a direct measure of the number of lifelines. 

To calculate NOL, a weighted sum of the number of lifelines is obtained from the sequence 

diagram. Therefore, the Weighted Number of lifelines (NOL) is calculated as follows:   
 

NOL = ∑(𝑵𝑶𝑳)

𝑛

1

 

 

Where ∑NOL represents the summation of  lifelines.  
 

In a sequence diagram, the amount of lifelines is indicated by a box labeling and a dashed 

vertical line connected beneath it. 

 

5. REAL-LIFE SCENARIOS   
 

Case 1: Hotel order sequence diagram:  

 
In this case, the new metrics are utilized to determine the complexity of the movie ticketing 

sequence diagram. 

 

 
 

Figure 1. Information flow of interacting order processing system 

 
Substituting the formula as below: 

Ci = (MIL X MOL) 2 

 (2 * 2)2 =16 
(2 * 2) 2=16 

(1 * 1) 2=1 

CX = ∑(𝑪𝒊) ∗ 𝑵𝑶𝑳

𝑛

1

 

Total complexity, 33 * 3 = 99 
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Case 2: Sequence diagram for Bank login system:  
 

In this case, the new metrics are utilized to compute the complexity of bank login activities. In 

Fig. 2 

 

 
 

Figure 1. Sequence diagram for Bank login system 

 

Substituting the formula as below: 

 

Ci = (MIL X MOL) 2. 
(2 * 2)2 =16 

(2 * 2)2 =16 

(4 * 4) 2=256 
(2 * 2) 2=16 

CX = ∑(𝑪𝒊) ∗ 𝑵𝑶𝑳

𝑛

1

 

Total complexity, 304 * 4 = 1216 

 

6. RESULTS  
 

6.1. Theoretical Results  
 
We validated our metric using Weyuker's properties [23]. Weyuker's properties constitute one of 

the most extensively used structures for hypothetical verifications of object-oriented metrics. 

Because Weyuker's characteristics are complexity metrics, they can be beneficial for sequence 
diagram metrics validation. Table 9 summarizes Weyuker's measurement characteristics. 

The complexity measure has been examined against the Weyuker criteria in the subsequent 

sentences to prove itself as a sufficient and complete measure. 

 

Property 1: According to this property, a metric should not rate all Sequence Diagrams as 

equally complex. 

 
The metric provides a distinct complexity rating for any two Sequence diagrams that are not 

similar and satisfy this criterion [24]. Case 1: Hotel order and Case 2: Movie ticketing (Appendix 
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1), for example, have complexity levels of 99 and 4518, respectively. The suggested measure 
satisfies this characteristic in the two examples above, where the complexity levels differ. 

 

Property 2: Based on this property, a changing process must likewise induce a shift in its 

complexity. 
 

This change should be detectable by a decent measure. When the Number of Fan-in and Fan-out 

variables are modified, the suggested metric may identify changes in complexity[23]. When the 
Number of Information Flows is limited, the metric's complexity values vary. 

 

Property 3: It asserts that many sequence diagrams of the same complexity exist. 
 

This characteristic claim two distinct sequence diagrams with equivalent information flows but 

non-identical variable names [24]. For example, two sequence diagrams may vary only in their 

labeling but contain the same Number of Fan-in, Fan-out, and NOL. For similar processes, a 
decent measure should yield the same complexity. 

 

Property 4: In line with this property, two sequence diagrams may appear similar on the 

outside but differ on the inside. 

 

The Number of Information should be included in the internal structure. This feature states that 
two components with the same structural design but varying numbers of Fan-in and Fan-out can 

provide different metric values [23]. As a result, the suggested measure fulfills this characteristic. 

 

Property 5: According to this property, two interacting sequence diagrams can have zero or 

more (but not negative) complexity than the two starting processes. 

 

When processes interact, this complexity is created, and an effective metric should be able to 
recognize it. If two modules, P and Q, are connected using the new measurement, the complexity 

value must be more significant than or equal to the individual module complexity [25]. The 

examined metrics produced a numeric value, indicating that the suggested measure meets this 

requirement. 
 

Property 6: This property asserts that two identical sequence diagrams can exist, but their 

resulting complexity is not equivalent when combined with a third. 
 

This indicates that merging two diagrams has the potential to introduce complexity beyond that 

contained in the original design [23]. As a result, combining programs presents the same level of 
complexity. 

 

This signifies that the suggested measure does not satisfy property 6. 

 

Property 7: Under this property, the order in which information flows influences 

complexity, i.e., when the flow of information of two identical diagrams is modified, the 

diagrams can have different complexities. 
 

The goal is to guarantee that metric values vary due to information flow permutation [24, 25]. 

Because the metric assigned relentless weights to each type, permutation does not affect their 
complexity scores. 
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Property 8: This property states that if the sequence diagram's name changes, the 

diagram's complexity does not change. 

 

If two sequence diagrams differ in their names, they have the same complexity[23]. Because the 

metric returns numerical values, the name of a diagram cannot alter the complexity results. As a 
result, property 8 held for all metrics. 

 

Property 9: This property states that a diagram's complexity increases due to the 

interaction between its parts.  

 

When a sequence diagram is modified by introducing new lifelines and information flows, the 
complexity values of the new diagram are higher than the original diagram [23, 25]. This 

property held for the measure.  

 

Table 1 provides an overview of these findings. 
 

Table 1. validation of the theoretical results  

 

Property  1  2  3  4  5  6  7  8  9  

WAC ✓ ✓ ✓ ✓ ✓ x x ✓ ✓ 

 

Key: ✓: the property is satisfied; x: the property is not satisfied.   

 

6.2. Experimental Results 
 
The essence of using an experiment is its formal qualities [26]. Testing theories and approaches 

are not enough when revealing the reliability of a metric [27]. This is because utilizing testing 

theories and practices tends to disclose substantiation of the practicality of suggested metrics.  
The results acquired through observation or experimentation demonstrate that UML sequence 

diagram complexity metrics relate to the subject rating of the UML sequence diagram. The 

independent variables in this research are sequence metrics, and the dependent variables are a 
rating of the subject of the sequence diagram. While researching, a static tool analyzer was 

established to streamline the computation of metrics from sequence diagrams. Thirty-eight 

sequence diagrams were analyzed independently.   

 
Empirical investigations' hypotheses were designed to determine whether there is a relationship 

between sequence metrics and the participants' ranking of sequence diagrams. 

 
The hypotheses include the following:  

 

I. Null Hypothesis (H0-c): The defined metrics have no significant relationship with the 

complexity rating of a UML Sequence diagram. 
II. Alternate Hypothesis (H1-c): The defined metrics have a significant relationship with the 

complexity rating of a UML Sequence diagram. 

 
Table 2 shows the complexity metric values collected via the WAC metrics tool to represent the 

independent variable of each diagram. While Table 3 shows the subject's rating of the sequence 

diagram to represent the dependent variable. The measurements were applied to various 
sequence diagrams. 
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Table 2 Sequence Metric Values 

 

SEQUENCE 

DIAGRAM 

NO 

WAC  COMPLEXITY 

RATING 

1 228 4 

2 12,210 2 

3 2,176 3 

4 3,798 4 

5  4,038 4 

6  144 4 

7 1,356 4 

8 1,356 3 

9 294 4 

10 924 3 

11 4,272 2 

12 4,160 3 

13 17,960 3 

14 1,416 4 

16 2,340 4 

17 250 4 

18 420 4 

19 336 4 

20 336 4 

21 208 5 

23 5,016 2 

24 144 4 

25 324 4 

26 324 4 

27 4 5 

28 42 4 

29 76 4 

30 76 4 

31 76 4 

32 175 4 

33 175 3 

34 175 3 

35 175 4 

36 456 3 

37 1,416 3 

38 123 4 

39 3,592 3 

40 136 4 
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Table 3 Complexity rating of the subjects 

 

SEQUENCE 

DIAGRAM 

NO 

COMPLEXITY 

RATING 

1 4 

2 2 

3 3 

4 4 

5 4 

6 4 

7 4 

8 3 

9 4 

10 3 

11 2 

12 3 

13 3 

14 4 

16 4 

17 4 

18 4 

19 4 

20 4 

21 5 

23 2 

24 4 

25 4 

26 4 

27 5 

28 4 

29 4 

30 4 

31 4 

32 4 

33 3 

34 3 

35 4 

36 3 

37 3 

38 4 

39 3 

40 4 

 
To correlate the defined metrics with the subject's evaluation of UML sequence diagrams, 

Spearman's correlation coefficient was employed. The correlation coefficients are shown in the 

tables below.  
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Table 4. Correlation coefficients for metrics and cognition of sequence diagram  

 

Sequence Metrics  Correlation 

Coefficients  

p-value (2-tailed)  

WAC -0.650902935 0.000713 

**=99% confidence    

 
The correlation coefficients above indicate a negative correlation between sequence metrics and 

the rating of the subjects of the UML sequence diagram. The p-value of 0.000713 shows the 

observed correlation between the WAC and the complexity rating is statistically significant as 
the value is lower than 0.05. 

 

The null hypothesis indicates no meaningful correlation between the metrics and participants' 
ratings of a sequence diagram. Thus, it is rejected due to the findings, and the alternative 

hypothesis is accepted. The results suggest that the suggested metric is a predictor of the 

complexity of a UML Sequence diagram. 

 
Table 5 shows a summary of the correlation between the sequence metrics and WAC, with a 

negative correlation between the variables of -0.5251. Information using the Karl Pearson 

correlation method shows the correlation is statistically significant since the significance level of 
0.0018 is lower than the significance level of 0.05. 

 
Table 5. Correlation for metrics and rating of sequence diagrams 

 
Sequence 

Metrics 

Correlation 

Coefficients 

Sig. (two-tailed test) 

WAC -0.5251** 0.0018 

**=0.05 level of significance 

 
The regression model improves the correlation results. Regression analysis aids in understanding 

the relationship between the response and predictor variables. Table 6 displays the regression 

model's p-values based on metric values and sequence diagram ratings. 
 

Table 6. Regression model based on metric values and rating of sequence diagrams 

 

Metric  R-square  P-Value  

WAC 0.2757 0.000108 

*P< 0.05    

 

As per the table above, the p-values are less than 0.05. This indicates that the linear regression 

model can predict the subject’s ratings of sequence diagrams. 
 

6.3. Limitations 
 

One of the study's main limitations is the limited study time. Although this did not affect the 

study's accuracy, more time could have meant that the researcher conducted thorough research 

and effectively-identified some of the hands to detect flaws in the previous studies. The other 
limitation was resources constraint, where the researcher worked on a budget; thus, the 

researcher worked towards ensuring that the study did not go beyond the estimated budget. 

These two worked hand in hand as working on time and budget confirmed that the research was 
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conducted on time and the resources were used adequately. This could have meant that there was 
no time for trial and error since this could have exhausted the resources available. Also, 

conducting try and error could have suggested that the researcher needed more time to complete 

the project. This could have exceeded the set deadline. The other limitation is that developing 

complex metrics was difficult; thus, the researcher had to analyze developed metrics to 
understand what was expected. 

 

The last limitation is that technological advancements are frequently occurring, so more changes 
are needed to ensure they are up-to-date. Thus, for this project, the researcher had to develop the 

project within the given time to ensure that no significant advancements were needed by the time 

of completion. It was also crucial to complete the research on time to avoid starting the project 
again if the technology used was no longer the most effective. Spending much time inventing or 

innovating a technology can have adverse effects. Other companies can introduce similar or 

more advanced technology than you have, or it can become irrelevant by completion. 

 

7. CONCLUSIONS AND FUTURE WORKS  
 

In conclusion, the following metrics were recommended in a procedural manner; MIL, MOL, 

and NOL. The metrics are used in assessing the complication of the UML sequence diagram. 
The theoretic rationality of the proposed metrics was validated through the use of Weyuker's 

properties. A controlled experiment was conducted to institute the existing correlation between 

the values of the metrics and the subject's complexity rating of a sequence diagram. Using 

Spearman's correlation, the findings indicated that the sequence metrics were openly correlated 
to the complexity rating of a sequence diagram. In the bargain, the linear regression models 

indicate that the suggested metrics can be utilized to predict a sequence diagram's complexity 

rating. 
 

From the literature of this research study, it is evident that metrics used in measuring sequence 

diagrams are very scarce. Therefore, it is suggested that in the future, scholars can further 
investigate all factors that can affect the structural complexity of UML dynamic modes and 

provide new ways of measuring them. Also, scholars can further work on validating the metrics 

using the DISTANCE framework suggested by Poels and Dedene and conduct replication 

studies with business professionals for additional validation of the proven metrics. This research 
demonstrated the usefulness of the metrics in assessing the complexity of sequence diagrams. 

Even so, more trials with software industry experts must be performed. This increased the 

acceptability of the metrics in ensuring the quality of sequence diagrams. 
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