
International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

DOI: 10.5121/ijsea.2023.14301 1

AGILE SOFTWARE ARCHITECTURE IN GLOBAL

SOFTWARE DEVELOPMENT

ENVIRONMENT:SYSTEMATIC LITERATURE

MAPPING

Thiago Gomes1, and Marcelo Marinho1

1Master degree Program in Applied Informatics, Federal Rural University of Pernambuco,

Recife, Pernambuco, BR

ABSTRACT

In recent years, software development companies started to adopt Global Software Development (GSD) to

explore the benefits of this approach, mainly cost reduction. However, the GSD environment also brings

more complexity and challenges. Some challenges are related to communication aspects like cultural dif-

ferences, time zone, and language. This paper is the first step in an extensive study to understand if the

software architecture can ease communication in GSD environments. We conducted a Systematic Litera-

ture Mapping (SLM) to catalog relevant studies about software architecture and GSD teams and identify

potential practices for use in the software industry. This paper’s findings contribute to the GSD body of
knowledge by exploring the impact of software architecture strategy on the GSD environment. It presents

hypotheses regarding the relationship between software architecture and GSD challenges, which will guide

future research.

KEYWORDS

Global Software Development, software architecture, software architecture design

1. INTRODUCTION

In recent years, software development companies started to adopt Global Global Software Devel-

opment (GSD) as an increasingly popular approach for reducing software project costs by leverag-

ing talent worldwide. However, this approach introduces significant complexity when managing
individuals from diverse cultural backgrounds, working across different time zones, and com-

municating in multiple languages [1]. These challenges can create issues impacting stakeholder

collaboration throughout the development lifecycle. Poor communication and misunderstandings

can lead to project delays, budget overruns, and diminished software quality [2].

In recent years, we could see many studies about GSD related to software project management, de-

velopment process, and organizational factors [3, 4]. However, small contributions exist when we
look into studies on software architecture related to GSD [3]. So, our paper focuses on identifying a

relationship between communication challenges and software architecture design.

This paper identifies ways to mitigate communication challenges inside the GSD team who specif-
ically adopts Agile practices. A decoupled architecture can help these teams since communication

between teams using these types of architectures is better structured. On the other hand, it is

necessary to understand how to apply these architectures.

https://airccse.org/journal/ijsea/vol14.html
https://doi.org/10.5121/ijsea.2023.14301

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

2

In order to do that, we conducted a Systematic Literature Mapping (SLM) [5] that focused on
finding research approaches from 2003 to 2020 that highlighted the agile software architecture in

GSD environments.

This paper contributes to the GSD body of knowledge by presenting a set of findings: (i) the
relation between software architecture strategy and its impact on the GSD environment; (ii) some

hypotheses related to the impact of software architecture over the GSD challenges, which are

going drive future studies and try to validate it; (iii) mindmaps relating different aspect existing on
the literature with software architecture aspects.

The remainder of this paper is structured as follows: in Section 2, we introduce the background to
the problem; Section 3 brings the explanation of our method, Section 4 presents the findings of

this research, and Section 5 presents a discussion about the results and what we can do with these

results. Finally, in Section 6, we state the threats to the validity of this study, and Section 7

presents the conclusions of this research and the opportunities for future works.

2. BACKGROUND

2.1. Agile Software Development

The “Agile Movement” first came to light with the Agile Manifesto, published by software consul-
tants and practitioners in 2001 [6]. The focus was to bring more importance to the human aspects

over the processes during the software development cycle [6]. The agile methods have much in

common, with the same scaffold, but differ by adopted practices. Extreme Programming (XP)
[6], Scrum [7], and Lean Development [8] are examples of agile methods and frameworks. Some

methods and frameworks also focus on agile at a large scale, like SAFe® [9], Scrum of Scrums

(SoS) [10], and The Spotify Model [11].

2.2. Global software development

Global Software Development (GSD) is a term used to describe the following situations: organiza-

tions that move all or part of their software development team to low-cost regions or regions where

exists a better availability of the necessary skills; organizations that spread on multiple countries

their software development teams [2]. An organization may develop the software worldwide for
use, sale, or incorporation into a company’s product (in-sourcing). A company may outsource the

software development process to a supplier in the same country or a different country, which, as

follow, develop the software for the client (outsourcing) [2].

2.3. Software Architecture Design

The software architecture modeling includes components and interfaces [12], which interconnect

multiple structures [13]. The software architecture enables project coordination [14], for colocated

teams and as a mechanism to allocate tasks and coordinate distributed teams [15].

A well-defined software architecture leverages the process of global software, ensuring every team

member has a common language to define tasks and activities. Having a common language enables a

better understanding of the business domain regarding cultural differences [16].

Software architecture can assume multiple shapes, such as a layered structure or a type of struc-

tured pipeline. It can interact as the message-based architecture [17], or service-based following

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

3

the service-oriented architecture (SOA) [18], the RESTful approach [19], or even one of the recent
tendencies, denominated microservices [20, 21]. The microservice approach evolved based on the

increasing demand for cloud computing [22, 23] and following the *aaS (as a Service) structure.

3. METHOD

We adopted a systematic and focused approach to examine the relevant literature in this study.

Rather than uncovering every recorded practice, our goal was to select a representative collection

of studies to identify recurring themes.

We conducted a SLM, following the guidelines proposed by Petersen et al. [5]. First, we started

defining the research questions that would guide us during this study. After this, we specify the

keywords and their synonyms related to our research topic and use them to build our search string.
Next, we selected the target databases and executed the search string. Finally, we started the

extraction processing that will be described in more detail in section 3.4

3.1. Research questions

We sought to answer the following research questions: [RQ1] How software architecture design
impacts the GSD environment? and [RQ2] Is there any architectural design that can positively

impact the GSD environment?

3.2. Inclusion and exclusion criteria

The following criteria guided the selection of papers that helped us address the research questions.

We included: (i) Studies that approach using software architecture inside of the GSD environment; and
(ii) Papers which the keywords appear on Abstract and/or Author keywords.

We excluded: (i) Papers not related to Global Software Development and Software Architecture
Design at the same time; (ii) Studies related to teaching global software development; (iii) Studies

which focus is not software architecture design; and (iv) Studies not written in English.

3.3. Search string

We used terms related to software architecture, global software development, development prac-
tices, and their synonyms to build our search string. To have a more accurate outcome, we decided

to limit our results to publications from 2003. We selected this year considering the first paper

found related to decoupled-resilient software architectures, written by Perrey and Lycett [24].

To identify a set of relevant papers for our study, we conducted searches using a targeted set of

keywords. Our search strategy began with examining top-ranked hits using simple keywords,

which may have been overlooked by the final complex search string. We started with general
keywords such as Software Architecture, Microservices, GSD, Agile Methods, Hybrid Methods,

and their possible synonyms to cast a wide net.

We used the following boolean search string to ensure that we captured a wide variety of papers:

((“Resilient software architecture” OR “Decoupled software architecture” OR “Resilient software

architectures” OR “Decoupled software architectures” OR “Decoupled-resilient software archi-

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

4

tecture” OR “Decoupled-resilient system architecture” OR “Decoupled-resilient systems archi-
tecture” OR “modern software architecture” OR microservices OR “micro services” OR “soft-

ware architecture”) AND (Devops OR agile OR scrum OR “extreme programming” OR “pair

programming” OR hybrid OR “lean development” OR “lean software development” OR SAFe

OR “Scaled Agile Framework”) AND (“global software engineering OR “global software devel-
opment OR “distributed software engineering OR “distributed software development” OR GSE

OR GSD OR “distributed team” OR “global team” OR “dispersed team” OR “spread team” OR

“virtual team” OR offshore OR outsource OR nearshore))

3.4. Document selection

The first step in our selection process involved identifying the relevant databases for our study. We

chose to use IEEE, ACM, Scopus, and Springer. We then executed a research string built around

the keywords outlined in section 3.3, resulting in 3471 papers. After removing duplicates, we were left
with 3298 articles. Upon reviewing the titles and abstracts, we narrowed the selection down to 47

papers, which we read in full. Ultimately, we selected 13 studies as our final set of papers. The

entire selection process is illustrated in Figure 1.

Figure 1. Selection process

3.5. Data Extraction and Analysis

Once we had our set of selected papers, we used ATLAS.ti [25] to analyze them. Each study was

meticulously examined, and we extracted quotes and codes relevant to our research questions. The

goal was to understand each author’s perspective on software architecture design, communication,
and solutions to mitigate challenges in GSD, as presented in section 4.

Following the analysis, we created three mindmaps to visualize the connections between ideas

and themes. The mindmaps were organized into three categories: communication, software ar-
chitecture design, and solutions to GSD challenges. These mindmaps provide a holistic view of

the relationships between various concepts and ideas, which will help us better to understand the

authors’ perspectives on these topics.

4. RESULTS

In this section, we will present our results, which have been grouped into three main categories:

communication, software architecture, and solutions to mitigate challenges in GSD, and their
interrelationships. We will refer to the selected papers (Table 1) using the SMXX format, where

XX represents the paper ID with two digits.

Table 1. Selected papers (SM-ID)

Id Title Ref

1 Archinotes: A Global Agile Architecture Design Approach [26]

2 Do Architectural Knowledge Product Measures Make a Difference in GSD? [27]

3 Global Software Development: Are Architectural Rules the Answer? [28]

4 Mastering Dual-Shore Development The Tools and Materials Approach Adapted to Agile Offshoring [29]

5 Tackling Offshore Communication Challenges with Agile Architecture-Centric Development [30]

6 On the negative impact of team independence in microservices software development [31]

7 Software Architecture in Distributed Software Development: A Review [32]

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

5

8 Architecting in Global Software Engineering [33]

9 Architecture-centric Development in Globally Distributed Projects [34]

10 Software architecture design in global software development: An empirical study [35]

11 An Agile Enterprise Architecture-Driven Model for Geographically Distributed Agile Development [36]

12 A measurement model to analyze the effect of agile enterprise architecture on geographically distributed agile development [37]

13 An Empirical Investigation of Geographically Distributed Agile Development: The Agile Enterprise Architecture Is a Communication Enabler [38]

4.1. Microservices and Communication

On the first mindmap (see Figure 2), the first important aspect is that applying Conway’s law

combined with decoupled components can help us mitigate communication challenges, which

means that the components should reflect the organizational structure [39].

Figure 2. Communication and Decoupled-components mindmap

Sievi-Korte et al. [SM10] bring that using Conway’s law, which states that software architec- ture

will, at some point, reflect the organization structure, with modular architectures could help
mitigate many GSD challenges, including communication.

Alzoubi and Gill [SM13] highlight that using AEA as a typical model between the GSD teams
could enable communication and decrease misunderstandings and unnecessary contact because

software definition and structure are needed. This type of model helps to generate decoupled

components and provides a possibility to coordinate through the component’s interfaces. Using
this approach allows the teams abroad to build each part separately. Furthermore, Sievi-Korte et

al. [SM09] present some references recommending using Conway’s law when designing software

architecture. These references claim that the more separated the components are, the more likely

the organization will be able to develop them successfully on multiple sites.

This improvement is possible by using components interfaces and reducing the need for inter-

team communication between distributed teams. Each team should follow the interface definition
to build their components and communicate with other teams when any interface modification

occurs. Therefore, in these situations, the communication challenges are mitigated by having

limited communication.

Regarding inter-site coordination, Alzuobi and Gill [SM13] present that architecture-based de-

velopment can help us identify highly independent components and use them to divide the de-

velopment tasks among the distributed teams, decreasing the necessity for inter-site coordination.
Mishra and Mishra [SM07] also reinforce that software architecture helps decrease the necessity

for communication in a multi-site development project, reducing inter-team communication.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

6

Lenarduzzi and Sievi-Korte [SM06] highlight that microservices architecture ends up in the same
environment as global software development teams, which are developing different parts of the

same system. They also bring the possibility to overcome communication problems by having a

layer on the communication structure that will become a coordinator among the teams. Moreover,

microservices carry many complexities, so the development must rely on software architects who
can also be the coordinator role. However, having the coordinator has pros and cons, like: (i) One-

level hierarchy: one person will manage the problems, and they will be the only ones responsible

for that. This approach reduces the decision time, although it could result in a non-democratic
team. This person also needs to have a good level of expertise; (ii) Two-level hierarchy: the global

coordinator and the leader of each microservice team are two layers of the decision-making chain.

It possibility each group to have a representative on each decision, although it could generate
problems in synchronizing the communication between the coordinators; and Full democracy: the

decisions are taken after discussion between all team members or by the most representative from

each team. It decreases the possibility of exclusion of the team members, but the discussion will

take longer.

Still, on the first mindmap, Agile Enterprise Architecture (AEA) [40, 41] may enable Microser-

vices architecture [42], which can help the teams achieve the benefits generated by using decou-
pled components when Conway’s law is applied. [SM13]

4.2. Architectural-centric development and performance on distributed teams

On the second mindmap (see Figure 3), the main focus is the performance in distributed teams.

The main factors impacting the performance focus on architectural aspects, such as centralized
architectural modifications, architecture-centric development, agile enterprise architecture, and

architectural knowledge management.

Alzoubi and Gill [SM13] present that integrated AEA views could serve as a base or common lan-

guage that will improve the understanding of the technology point of view and business perspec-

tive. They also provide empirical evidence that implementing AEA will enhance the performance

of GSD teams by implementing AEA and also bring contrast with using EA for not delivering
value.

Regarding knowledge management and communication challenges, Clerc et al. [SM03] present

Figure 3. Agile principles and Communication

a study of cases where they analyze two organizations and discuss possible solutions to mitigate

some GSD challenges. They found that organizations use a wiki, highly communicative meetings,

and subsystem websites to reduce difficulty exchanging information. Furthermore, both organi-

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

7

zations use this strategy when discussing centralized modifications by onshore teams. The first
organization has an architecture team that supports various projects and defines general archi-

tectural rules for all subsystem teams. If there are some system-specific issues, the subsystem

architect should handle them. The second organization has a software engineering process guide-

line but often deviates from it. They also had an integration team responsible for integrating all the
systems at the end, but they needed an architectural compliance verification; due to this, multiple

processes co-exist in real-world routine.

The onshore team is responsible for architectural modifications when applying an architectural-

centric development approach. The findings show that it helps avoid communication challenges, a

concept shown on the mindmap as centralized modifications. Architecture-centric development
also improves knowledge management because knowledge transfer practices help reduce commu-

nication challenges.

In the relation between knowledge transfer practices and their impact on communication chal-
lenges, Urrego et al. [SM01] say that large distances between team members indicate issues

related to issuing the resolution, effective communication, the first contact between distributed

members, and lack of trust. Kornstädt and Sauer [SM04] highlight that significant communication
gaps will sooner or later lead to miscommunications, which brings even more concern, mainly to

projects with complex applications. To avoid the source of miscommunication, Kornstädt and

Sauer [SM04] also present a set of development processes applied to the organization studied,
which could mitigate the communication challenges using feedback loops. Some of these prac-

tices are: (i) Releases aim to develop new features for the application and make them available as

soon as possible. It helps to reduce frequent problems related to outdated specifications; (ii) Daily

stand-ups, a quick meeting to discuss the tasks developed since the last stand-up, a little bit about
what everyone plans to do until the next one, and use evenly to spread knowledge about what is

going on in the project; and (iii) Pair programming occurs twice a day. Two developers share the

same computer, aiming to have common knowledge about nearly every piece of code. During this
process, the developers are exposed to each other criticism every time, and software concepts are

constantly a subject of debate.

Regarding the impact of architectural-based development on communication, Kornstädt and Sauer
[SM04] show that implementing architectural-based development eases communication by sup-

plying an understanding via one general object of work that all team members use to comprehend. It

also helps to establish a basis for verifiable architectural rules and automatically check them, re-
ducing errors and improving implementation reliability. Kornstädt and Sauer [SM05] highlighted

that the stakeholders could use this object of work point using general terms and concepts as a

common language, facilitating the discussions and arrangements. Furthermore, architecture-based
development brings other advantages to the communication aspects in additional areas like task

allocation, construction, and record of experience.

Concerning the impact of knowledge transfer practices when applying architectural-based devel-
opment, Kornstädt and Sauer [SM04] developed a case study where the organization used to exe-

cute all the architectural modifications only on an onshore team. The learning curve for offshore

developers was remarkably abrupt, whereas supplying good examples like equivalent components
implemented by other developers with more experience could significantly enhance the knowledge

of the offshore team members.

The findings also show that agile enterprise architecture enables performance in distributed teams

and enhances communication, which helps mitigate communication challenges.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

8

Regarding the impact of architectural knowledge on the performance of distributed teams, Clerc
[SM02] brings to our attention that architectural knowledge concentrates on architecting as a pro-

cess to make decisions and is not yet accepted abroad by distributed teams developing software.

He also tells us that architectural knowledge needs to address performance as a vital quality cri-

terion. Clerc also points out that the architectural knowledge topic only applies to projects on a
multi-site.

4.3. Agile principles and GSD communication

On the third mindmap (see Figure 4), the main focus is the impact of agile principles on distributed

teams’ communication. Alzoubi and Gill [SM11] show that face-to-face communication and daily
work projects are practical in small co-located teams. However, the opportunity for these practices is

limited in distributed teams. Meanwhile, Alzoubi and Gill also bring that AEA can be used as a

communication enabler beyond that by using it as an integrated shared view.

Figure 4. Architectural-centric development and communication

Regarding applying agile principles with agile practices over the communication aspects in dis-
tributed teams, Kornstädt and Sauer [SM04] highlight techniques, like pair programming and daily

stand-ups, used by companies to help avoid communication problems by having frequent commu-

nication.

When discussing agile practices’ challenges over communication teams, Gill and Alzoubi [SM11]

tell us that the best result regarding architecture, requirements, and design comes from self-
organized teams, and the communication between business people and developers needs to happen

daily. However, many barriers challenge the communication between developers’ teams and busi-

ness people, even more when these teams need to develop features inter-dependant features and

work simultaneously. Otherwise, using AEA as an integrated shared view may provide a com-
prehensive view that can help enhance team communication and overcome the problems related

to cultural differences and spoken language. Consequently, it may increase communication effec-

tiveness, indicating that AEA can be used as a communication enabler mechanism. Nevertheless,
Alzoubi et al. [SM12] conclude that it is not clear how AEA affects geographically distributed

teams.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

9

4.4. Losely coupled components and communication challenges on GSD

Figure 5. Losely coupled components and GSD

Sauer [SM09] recommends following some SOLID principles [43], like the open-closed princi-
ple. He also proposes the adoption of the other tenets, like avoidance of type interdependencies,

loose coupling, design by contract, and strong cohesion, which are the scaffold behind the under-

standable software to achieve understandable software on distributed projects regarding the finite
opportunities to communicate and the source code becomes the primary basis of knowledge.

Tekinerdogan et al. [SM08] bring to our attention that the most acceptable practices of software ar-

chitecture strategy constitute loosely coupled components with well-defined contracts. Microser-
vices [42] architectures allow this design strategy and therefore enforce minor type interdepen-

dency.

As a possible solution to mitigate communication challenges in a GSD environment, Sievi-Korte

et al. [SM10] indicates the use of APIs as a crucial architecting practice. In this context, projects

can use APIs to handle interfaces and modules’ boundaries and define product boundaries.

5. DISCUSSION

In the following, we will discuss our study’s results, highlight the main findings, and relate them

to our research questions. The outcomes of this section will be hypotheses extracted based on the
results, which will drive our subsequent studies.

5.1. How software architecture design impacts the GSD environment?

Alzoubi and Gill [SM13] bring to our attention that the AEA [40] uses a standard information

model that can enable clear communication in distributed teams. This model can generate a com-
mon language between the development groups and improve communication because system and

software structure definitions are needed. Adopting a component-based strategy to build an appli-

cation using component interfaces or contracts can enhance communication by reducing commu-
nication overhead.

Although adopting modular architecture may reduce communication overhead and lessen mis-

understanding during the development process, some authors point out that this approach can
generate other challenges related to poor communication and sometimes provokes team isolation

[44]. Moreover, a mature architecture is essential to simplify transparent task distribution [2].

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

10

Sievi-Korte [SM10] highlights that API is a crucial architecting practice to define product bound-
aries and handle modules’ limits. Component-based and APIs [45] strategies are examples of

interface-driven design. They also follow less type interdependencies and loosely coupled prin-

ciples, which, according to Sauer [SM09], is a communication enabler on distributed projects.

Tekinerdogan et al. [SM08] also point out that the loosely coupled principle is the most accept-
able practice when architecting software.

Still, about the impact of software architecture and communication in GSD teams, Mishra and
Mishra [SM07] and van Vliet [46] affirms that software architecture can be used to reduce the

need for communication in a multi-site development project. Moreover, it is possible to use the

architectural structure of the system to split work between sites, which indicates a variation of
Conway’s law [39].

Microservices is an example of an architectural style that applies both type interdependency and

loosely coupled tenets. It has become widely adopted [47], and some authors consider it reason-
able to follow Conway’s law [48]. Lenarduzzi and Sievi-Korte [SM06] bring to our attention that

adopting microservices has some pitfalls, even more related to communication, making the teams

rely on software architects to coordinate. However, having this coordinator role in an environment
has pros, like a single point of contact to manage problems, and cons, like decreasing visibility or

making the team non-democratic.

Crnkovic [49] define software component as: “[...] a unit of composition with contractually spec-

ified interface and explicit context dependencies only. A software component can be deployed

independently and is subject to composition by third parts.”

But what is the relationship between software component independency level (or coupling level)

and software design quality? Page-jones [50] affirms that: “The first way of measuring design

quality [...] is coupling, the degree of interdependence between two modules. Our objective is to
minimize coupling; that is, to make modules as independent as possible.” This affirmation drives

us to believe that the software architecture quality is a consequence of how the software modules

communicate between them. Meanwhile, Sauer [SM09] and Bosch and Bosch-Sijtsema [51] ob-

serve that adopting loosely-coupled components design is a critical factor in GSD environments
to mitigate communication problems.

These findings suggest that adopting a loosely coupled software design strategy can mitigate com-
munication challenges in GSD environments. Based on this, we built our first hypothesis: HP1:

Decoupled software architectures are communication enablers and can help to mitigate commu-

nication challenges on GSD environments.

5.2. Is there any architectural design that can positively impact the GSD

environment?

According to Alzoubi and Gill [SM13], the Agile Enterprise Architecture (AEA) can be used as

an integrated shared view to help achieve the best design and architecture. Ovaska et al. [41] also
support using AEA as an integrated shared view. When talking about performance on GSD teams,

Alzoubi and Gill [SM13] show the contrast between adopting AEA and using EA, where no value

is delivered, which the AEA definition supports [52]. However, Alzoubi et al. [SM12] indicate
how AEA affects GSD teams still needs clarification. Although AEA’s impact is unclear, Korn-

städt and Sauer [SM05] and some authors [53] highlight adopting architecture-based development

brings advantages to the GSD environment, including the coordination and task allocation.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

11

Urrego et al.[SM01] and Kornstädt and Sauer[SM04] bring concerns about the distances between
teams and significant communication gaps, which sooner or later will lead to miscommunication,

causing a lack of trust and issues related to issuing the resolution. These problems bring even

more apprehension, mainly to projects with complex applications. To mitigate these communica-

tion challenges, Kornstädt and Sauer [SM04] and Gill and Alzoubi [SM11] recommend adopting
practices that enable daily communication between team members and feedback loops. These rec-

ommendations indicate that following some agile rules, for instance, from Extreme Programming

[6], Scrum [7], and DevOps [54], may help to mitigate communication challenges which some
authors also support [2, 55].

We found two perspectives when discussing architectural knowledge and knowledge management
in global software development. The first one is the impact of architectural expertise on the per-

formance of distributed teams. Clerc [SM02] indicates that the teams use the obtained knowledge

regarding architecture knowledge to make decisions, but distributed teams do not accept it, which

is supported by some authors [13, 56].The second one is knowledge management in general and
its impact on communication challenges. Clerc et al. [SM03] indicate different practical strategies

to spread knowledge through an organization and present two use cases where these practices had a

real impact.

These findings suggest adopting agile practices combined with an architectural design focused on

architecture as a decision-making process in GSD environments can help to mitigate communica-
tion challenges. Based on this, we built our first hypothesis: HP2: An Architectural Design which

enables agile practices and follows architectural-centric principles can help to coordinate GSD

teams and mitigate communication challenges.

6. THREATS TO VALIDITY

This section presents the measures taken to address validity threats associated with the MSL in

this study. Three types of validity threats, as described by Ampatzoglu et al. [57], were identified
and addressed through various analyses and actions. The following subsections detail the validity

threats associated with the different activities of this study and the steps taken to mitigate them.

Internal validity: To identify the most considerable amount of papers and ensure good coverage
of papers related to software architecture and GSD in hybrid environments, the search string uses

multiple synonyms of software architecture, distributed teams, and hybrid and agile methodolo-

gies. Although we only searched four online digital libraries, they are supposed to cover most of
the high-quality publications related to software engineering. In addition, even trying to avoid bias

during the analysis, this study was not peer-reviewed during the extraction process.

Construct Validity: To mitigate this threat, we conducted a peer review process. The first and
second authors thoroughly examined each paper included in the study and discussed any discrep-

ancies until a consensus was reached. Additionally, a third researcher was engaged to conduct an

independent assessment of the mapping to ensure impartiality.

External Validity: The use of a pre-defined search string in well-known bibliographic databases

that cover references in agile development ensured that the findings have a certain level of gener-
alizability, as most articles in the field are typically published in those databases.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

12

7. CONCLUSION AND FUTURE WORKS

In this work, we provide valuable insights into software architecture design in global software

development, specifically in mitigating communication challenges. Our findings demonstrate the

importance of software architecture in improving team performance, software quality, and com-

munication. Furthermore, we generated two hypotheses through our discussion, which could lead
to further investigations into the impact of software architecture design on real teams. While we

found a limited number of studies in this area, our results suggest a promising avenue for future

research.

In future works, we will build and execute a case study on a company with distributed teams to test

the hypothesis presented in section 5 and compare the results with the finding of this study. This

case study will help us to validate our findings and allow us to propose an adaptative architecture
to enhance the communication aspects of the GSD team.

REFERENCES

[1] R. Camara, I. Monte, A. Alves, and M. Marinho, “Hybrid practices in global software de-

velopment: A systematic literature review,” International Journal of Software Engineering &

Applications (IJSEA), vol. 13, pp. 1–17, 2022.

[2] R. Camara, A. Alves, I. Monte, and M. Marinho, “Agile global software development: A systematic

literature review,” in Proceedings of the 34th Brazilian Symposium on Software Engineering, pp. 31–

40, 2020.

[3] O. Sievi-Korte, S. Beecham, and I. Richardson, “Challenges and recommended practices for software

architecting in global software development,” Information and software technology, vol. 106, pp. 234–

253, 2019.

[4] B. M. Yildiz, B. Tekinerdogan, and S. Cetin, “A tool framework for deriving the application

architecture for global software development projects,” 2012.

[5] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping studies in software

engineering,” in 12th International Conference on Evaluation and Assessment in Software

Engineering (EASE) 12, pp. 1–10, 2008.

[6] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Gren- ning, J.

Highsmith, A. Hunt, R. Jeffries, et al., “The agile manifesto,” 2001.

[7] K. Schwaber and J. Sutherland, “The scrum guide,” Scrum Alliance, vol. 21, no. 1, pp. 1–38, 2011.

[8] J. A. Highsmith and J. Highsmith, Agile software development ecosystems. Addison-Wesley

Professional, 2002.

[9] D. Leffingwell, SAFe 4.5 reference guide: scaled agile framework for lean enterprises. Addison-

Wesley Professional, 2018.

[10] S. A. Qurashi and M. R. J. Qureshi, “Scrum of scrums solution for large size teams using scrum

methodology,” 2014.

[11] A. Salameh and J. M. Bass, “Heterogeneous tailoring approach using the spotify model,” in

 Proceedings of the Evaluation and Assessment in Software Engineering, pp. 293–298, 2020.

[12] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,” ACM SIG- SOFT

Software engineering notes, vol. 17, no. 4, pp. 40–52, 1992.

[13] N. Ali, S. Beecham, and I. Mistrik, “Architectural knowledge management in global software

development: a review,” in 2010 5th IEEE International Conference on Global Software

Engineering, pp. 347–352, IEEE, 2010.

[14] A. Avritzer, D. Paulish, Y. Cai, and K. Sethi, “Coordination implications of software archi- tecture in

a global software development project,” Journal of Systems and Software, vol. 83, no. 10, pp. 1881–
1895, 2010.

[15] V. Clerc, P. Lago, and H. Van Vliet, “Assessing a multi-site development organization for

architectural compliance,” in 2007 Working IEEE/IFIP Conference on Software Architecture

(WICSA’07), pp. 10–10, IEEE, 2007.

[16] M.-A. Vanzin, M. B. Ribeiro, R. Prikladnicki, I. Ceccato, and D. Antunes, “Global software processes

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

13

definition in a distributed environment,” in 29th Annual IEEE/NASA Software En- gineering

Workshop, pp. 57–65, IEEE, 2005.

[17] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, J. E. Robbins, K. A. Nies,

 P. Oreizy, and D. L. Dubrow, “A component-and message-based architectural style for gui software,”
IEEE Transactions on Software Engineering, vol. 22, no. 6, pp. 390–406, 1996.

[18] E. Newcomer and G. Lomow, Understanding SOA with Web services. Addison-Wesley, 2005.

[19] “What is rest ?.” https://www.restapitutorial.com/lessons/whatisrest.html. Accessed: 2019- 10-20.

[20] E. Wolff, Microservices: flexible software architecture. Addison-Wesley Professional, 2016.

[21] I. Malavolta and R. Capilla, “Current research topics and trends in the software architecture

community: Icsa 2017 workshops summary,” in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pp. 1–4, IEEE, 2017.

[22] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An overview,” in IEEE International

Conference on Cloud Computing, pp. 626–631, Springer, 2009.

[23] G. Kulkarni, “Cloud computing-software as service,” International Journal of Cloud Com- puting

And Services Science, vol. 1, no. 1, p. 11, 2012.

[24] R. Perrey and M. Lycett, “Service-oriented architecture,” in 2003 Symposium on Applications and the

Internet Workshops, 2003. Proceedings., pp. 116–119, 2003.

[25] Scientific Software Development GmbH, “Atlas.ti.”

[26] J. Urrego, R. Muñoz, M. Mercado, and D. Correal, “Archinotes: A global agile architecture design

approach,” in International Conference on Agile Software Development, pp. 302–311, Springer, 2014.

[27] V. Clerc, “Do architectural knowledge product measures make a difference in gsd?,” in 2009 Fourth

IEEE International Conference on Global Software Engineering, pp. 382–387, IEEE, 2009.

[28] V. Clerc, P. Lago, and H. Van Vliet, “Global software development: are architectural rules the

answer?,” in International Conference on Global Software Engineering (ICGSE 2007), pp. 225–234,
IEEE, 2007.

[29] A. Kornstädt and J. Sauer, “Mastering dual-shore development–the tools and materials ap- proach

adapted to agile offshoring,” in International Conference on Software Engineering Approaches for

Offshore and Outsourced Development, pp. 83–95, Springer, 2007.

[30] A. Kornstadt and J. Sauer, “Tackling offshore communication challenges with agile architecture-

centric development,” in 2007 Working IEEE/IFIP Conference on Software Ar- chitecture

(WICSA’07), pp. 28–28, IEEE, 2007.

[31] V. Lenarduzzi and O. Sievi-Korte, “On the negative impact of team independence in mi- croservices
software development,” in Proceedings of the 19th International Conference on Agile Software

Development: Companion, pp. 1–4, 2018.

[32] A. Mishra and D. Mishra, “Software architecture in distributed software development: A re- view,” in

OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", pp. 284–

291, Springer, 2013.

[33] B. Tekinerdogan, S. Cetin, M. A. Babar, P. Lago, and J. Mäkiö, “Architecting in global software

engineering,” ACM SIGSOFT Software Engineering Notes, vol. 37, no. 1, pp. 1–7, 2012.

[34] J. Sauer, “Architecture-centric development in globally distributed projects,” in Agility Across Time
and Space: Implementing Agile Methods in Global Software Projects, pp. 321–329, Springer,

2010.

[35] O. Sievi-Korte, I. Richardson, and S. Beecham, “Software architecture design in global software

development: An empirical study,” Journal of Systems and Software, vol. 158, p. 110400, 2019.

[36] Y. I. Alzoubi and A. Q. Gill, “An agile enterprise architecture-driven model for geographi- cally

distributed agile development,” in Transforming Healthcare Through Information Sys- tems, pp. 63–

77, Springer, 2016.

[37] Y. I. Alzoubi, A. Q. Gill, and B. Moulton, “A measurement model to analyze the effect of agile

enterprise architecture on geographically distributed agile development,” Journal of Software

Engineering Research and Development, vol. 6, no. 1, pp. 1–24, 2018.

[38] Y. I. Alzoubi and A. Q. Gill, “An empirical investigation of geographically distributed agile

development: The agile enterprise architecture is a communication enabler,” IEEE Access, vol. 8,

pp. 80269–80289, 2020.

[39] M. E. Conway, “How do committees invent,” Datamation, vol. 14, no. 4, pp. 28–31, 1968.

[40] A. Q. Gill, Adaptive cloud enterprise architecture, vol. 4. World Scientific, 2015.

http://www.restapitutorial.com/lessons/whatisrest.html

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023

14

[41] P. Ovaska, M. Rossi, and P. Marttiin, “Architecture as a coordination tool in multi-site soft- ware

development,” Software Process: Improvement and Practice, vol. 8, no. 4, pp. 233–247, 2003.

[42] S. Newman, Building microservices. " O’Reilly Media, Inc.", 2021.

[43] R. C. Martin, “Clean architecture,” 2017.

[44] M. Bano, D. Zowghi, and N. Sarkissian, “Empirical study of communication structures and barriers in

geographically distributed teams,” IET software, vol. 10, no. 5, pp. 147–153, 2016.

[45] D. Jacobson, G. Brail, and D. Woods, APIs: A strategy guide. O’Reilly Media, Inc., 2012.

[46] H. Van Vliet, “Software architecture knowledge management,” in 19th australian conference on

software engineering (aswec 2008), pp. 24–31, IEEE, 2008.

[47] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microservice architectures: an industrial

survey,” in 2018 IEEE International Conference on Software Architecture (ICSA), pp. 29–2909, IEEE,

2018.

[48] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables devops,”

 London: Sharif University of Technology, 2014.

[49] I. Crnkovic, “Component-based software engineeringnew challenges in software develop- ment,”

Software focus, vol. 2, no. 4, pp. 127–133, 2001.

[50] M. Page-Jones, The Practical Guide to Structured Systems Design: 2nd Edition. USA: Yourdon

Press, 1988.

[51] J. Bosch and P. Bosch-Sijtsema, “Coordination between global agile teams: From process to

architecture,” in Agility Across Time and Space, 2010.

[52] C. Edwards, “Agile enterprise architecture, part 1,” USA: ProcessWave, 2006.

[53] H. R. De Faria and G. Adler, “Architecture-centric global software processes,” in 2006 IEEE

International Conference on Global Software Engineering (ICGSE’06), pp. 241–242, IEEE, 2006.

[54] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee Software, vol. 33, no. 3, pp. 94–

100, 2016.

[55] R. Jain and U. Suman, “Effectiveness of agile practices in global software development,”

 International Journal of Grid and Distributed Computing, vol. 9, no. 10, pp. 231–248, 2016.

[56] V. Clerc, P. Lago, and H. van Vliet, “The usefulness of architectural knowledge manage- ment

practices in gsd,” in 2009 Fourth IEEE International Conference on Global Software Engineering,

pp. 73–82, IEEE, 2009.

[57] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzigeorgiou, “Identifying,

categorizing and mitigating threats to validity in software engineering secondary studies,”

Information and Software Technology, vol. 106, pp. 201–230, 2019.

	1. Introduction
	2.1. Agile Software Development
	2.2. Global software development
	2.3. Software Architecture Design
	3. Method

	3.1. Research questions
	3.2. Inclusion and exclusion criteria
	3.3. Search string
	3.4. Document selection
	3.5. Data Extraction and Analysis
	4. RESULTS

	4.1. Microservices and Communication
	4.2. Architectural-centric development and performance on distributed teams
	4.4. Losely coupled components and communication challenges on GSD
	5. Discussion

	5.1. How software architecture design impacts the GSD environment?
	5.2. Is there any architectural design that can positively impact the GSD environment?
	6. Threats to Validity
	7. Conclusion and Future Works
	References

