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ABSTRACT 
 
Software project management includes a substantial area for estimating software maintenance effort. 

Estimation of software maintenance effort improves the overall performance and efficiency of software. 

The Constructive Cost Model (COCOMO) and other effort estimation models are mentioned in literature 

but are inappropriate for Python programming language. This research aimed to modify the Constructive 
Cost Model (COCOMO II) by considering a range of Python maintenance effort influencing factors to get 

estimations and incorporated size and complexity metrics to estimate maintenance effort. A within-subjects 

experimental design was adopted and an experiment questionnaire was administered to forty subjects 

aiming to rate the maintainability of twenty Python programs. Data collected from the experiment 

questionnaire was analyzed using descriptive statistics. Metric values were collected using a developed 

metric tool. The subject ratings on software maintainability were correlated with the developed model’s 

maintenance effort, a strong correlation of 0.610 was reported meaning that the model is valid. 
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1. INTRODUCTION 
 

Software maintenance effort estimation still remains a challenge for most software development 
teams since the current   methodologies are still unable to deal with the current software 

estimation challenges that exist today. Traditional software maintenance effort can be estimated 

using a variety of models such as the Constructive Cost Model (COCOMO), the Software Life 
Cycle Management model (SLIM), Function Point, and others but more work needs to be done 

on developing models that can accommodate programs from new programming languages. The 

most well-known software cost estimation model is the COCOMO, or generalized Constructive 

Cost Model, established by [1].The COCOMO II model is the latest update. [2] remark that the 
COCOMO II model is a regression based software cost estimation model which is the most 

popular among the traditional models. Several effort estimation models are reported in the 

literature but are not suitable for Python software. A study by [3] advise on the need to revise the 
COCOMO model due to inaccuracies, in addition, the COCOMO II model considers the same 

software development cost drivers to estimate maintenance effort which does not reflect the true 

picture of the software maintenance phase. 
 

A software metric refers to a measurement of a software’s attributes or specifications [4]. 

Software metrics can be used to measure product output, project estimation, process progress, 

and process improvements as explained by [5]. Software complexity is described by [6] to be the 
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challenges and difficulties in software reuse, software comprehension, and software maintenance. 
Software Complexity metrics have been defined by [6], [7], [8], [9], [10], [11], and [12]. [13] 

concluded that increasing complexity drives up adaptive maintenance costs. Software size has an 

impact on its complexity according to research conducted by [14].  [26] state that size metrics are 

a major factor in the determination of successiful software projects. Additionally, the study by 
[15] suggests size metrics have a significant impact on project effort, duration, and productivity. 

One of the widely adopted size metrics is lines of code (LOC) which according to [13] is not 

effective since a statement may be spread over several lines.  [27] did not consider lines of code 
(LOC) metric in the development of a generic effort estimation model explaining that the metric 

is language dependent. 

 
Research by [16] presents Python to be a fast-growing programing language. [16] mentioned that 

Python had become popular due to its simplicity, learnability, and supportability. The most 

popular programming language overall, out of 100, is Python, according to the Importance of 

Being Earnest index (TIOBE) of April 2023. The TIOBE index helps in making decisions about 
what programming language to adopt in building a new software system. 

 

This paper is structured as follows; section two is a discussion of software maintenance effort 
estimation models; section three discusses the proposed software maintenance effort estimation 

model; section four discusses how the proposed model was validated; section five is a discussion 

of the validation results, and section six is a discussion of the conclusion and future work. 
 

2. LITERATURE REVIEW 
 

2.1. Software Maintenance Effort Estimation Models 
 

The maintenance cost estimation model proposed by [17] is considers the Annual Change Traffic 

(ACT) metric and operates on a fourth generation language environment. In addition, the model 
has incorporated several factors grouped into technical and non-technical factors such as internal 

complexity, quality of source code, Computer Aided Software Engineering tools and others. 
[18] developed a model for estimating maintenance effort. The effort was expressed in person 
hours. The first step of developing the model involved identification of metrics that affect 

maintenance effort.  A correlation coefficient analysis between the metrics and maintenance 

effort was done to determine the most effective metrics to predict adaptive maintenance effort. 

  
The equation E = 63 + .1 DLOC was used to compute the maintenance effort.  (1) 

 

A maintenance cost estimation model on the basis of regression was developed by [19] for a large 
application.The work is approached in three phases; creation of data transparency, examining 

maintenance expenditure, and cost optimization. Effort and product factors are considered such 

as programming languages and software deviations from the actual result. 

 
 [20]Computed maintenance cost by implementing the intermediate COCOMO model. The 

researcher introduced new cost driver multipliers and concluded that additional multipliers and 

number of code lines increases the maintenance effort. To estimate the maintenance cost, the 
annual change of traffic (ACT) metric was introduced which consists the annual changes in the 

software source code. To compute ACT, NNL which stands for a count of new lines was added to 

a count of the modified lines and the result divided by a count of original lines. 
 

 [14] created the Software Maintenance Effort Model (SMPEEM), which calculates the volume 

of the maintenance function using function points. The Function point’s measurement was used 
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in estimating the sizes of maintenance tasks. The model considers value adjustment factors to 
adjust the counted function points. The effort is expressed as  

 

Effort = A * (Size) B.            (2) 

 
A and B are coefficients introduced from the regression results. The model was validated using a 

survey method. The results confirmed that adjusted function points are a good measure to 

estimate the maintenance effort of a project. 
 

According to [2], COCOMO II comprises of; the Application Composition Model which 

estimates effort at the first phase, the Early Design Model which implements the unadjusted 
function points to determine size, the Reuse model for computing the effort of reusable 

components and the post-architecture model. COCOMO II defines 17 cost drivers that are used 

with the Post Architecture model and are rated on a scale of very low to extra high. 

Precedentness, Development Flexibility, Architecture/Risk Resolution, Team Cohesion, and 
Process Maturity are the five scale drivers that affect how long a project takes to complete and 

which exponent is utilized in the Effort Equation. 

 

COCOMO II post architecture model is given as (3) 

  

B = 1.01+ 0.01×∑SFi 
 

Where A = 2.45 [16] 

 
The investigations of [15] resulted in the development of the SMEEM (software maintenance 

effort model). The volume of maintenance and value adjustment parameters that have an impact 

on story points for effort estimation are calculated by the model. The model’s maintenance 

process is broken down into the computation of factor counts, story point assignments, story 
point adjustments, calculation of maintenance sizes, and finally calculation of maintenance 

durations. [15] assert that the paradigm is only applicable in contexts focused on extreme 

programming and agile development. 
 

[21] sought to improve the COCOMO II model for estimating maintenance size and effort by 

incorporating characteristics not considered in the COCOMO model. Steps followed in coming 

up with the model included; analyzing existing literature to identify size metrics, validating the 
size metrics on the maintenance cost, performing a behavioural analysis to identify the relative 

significance of the factors, determining a maintenance sizing method, determining the effort 

model, performing expert judgement on the effort, collection of project data for model validation, 
testing hypothesis, calibrating the model and evaluating model performance. An experiment with 

students as subjects and C++ programs as experiment objects confirmed that deleted source lines 

of code (SLOC) was a determinant of maintenance task effort. This model is limited to real- time 
software and implements the cost drivers for the COCOMO II model to compute maintenance 

effort which could lead to unrealistic estimates. 

 

[22] developed a Component-Based Software (CBS) model to estimate the maintenance cost. The 
model considered the development cost, the annual changes on the source code, and factors that 

influence the maintenance effort of component based software. Maintenance Cost Estimation is 

expressed as:  
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       (4) 

 
Where 

AMECBS is the Actual maintenance cost  

CDT is the Component Development Cost  
ACT are the annual source code changes 

Wi is the ith weighting maintenance load 

 Fi is the Factors value 
This model is only used for component- based software. 

 

From the maintenance effort estimation models mentioned in the literature, none of the models is 

suitable for the Python language. The syntax of Python programs is unique from other Object 
Oriented based programs [16] and this disqualifies the existing models from precisely predicting 

the maintenance effort of Python programs. As a result of this realization, a maintenance effort 

estimation model for Python software would highly be desirable. 
 

3. PROPOSED SOFTWARE MAINTENANCE EFFORT ESTIMATION MODEL 

 
In this work, a metrics based model for estimating the software maintenance effort of Python 

programs was developed. The model consists of three inputs namely; size, complexity, cost 
drivers, and maintenance effort as the output which is presented using the equation 

 

                      (5) 
 

3.1. Size metrics 

 
The proposed model considers the System Size metric (SSpy) which is computed by considering 

the sizes of individual classes in a Python program. 
The SSpy metric is a consideration of the number of code blocks in several classes of  a Python 

program. A code block is a collection of Python statements that belong to the same block or 

indent. The equation below was implemented to  arrive at SSpy. 

 

(6) 

 

3.2. Complexity metric 
 

In addition to Size, the proposed model also considered the complexity of the software. The 
proposed model considered the Weighted System Complexity (WSCpy) metric which is 

computed by considering the complexities of individual python classes. 

The metric Weighted System Complexity (WSCpy) was arrived at by considering the metric 
Weighted Class Complexity (WCCpy). Weighted Class Complexity (WCCpy) is a consideration 

of the complexities of variables and methods in a class. 

 
 The equation below was implemented to arrive at WSCpy. 

 

and expressed as   

 

         (7) 
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3.3.  Cost Drivers 
 

In our previous work [23], an expert opinion survey was conducted to identify and rank the 
relevant Python maintenance influencing factors. In the expert opinion survey, Python 

programmers and project managers were required to rate the factors influencing the maintenance 

cost of python software. Based on their responses, a mean value for each factor was computed by 
dividing the sum of actual responses per factor by sum of expected responses per attribute and 

multiplying the value by 100 i.e. Sum of actual responses / sum of expected responses *100. The 

factors were then ranked on the basis of the mean values. The 24 ranked factors are presented in 

Table 1. 
Table 1.  Ranked software maintenance effort influencing factors. 

 
Ranking Factor Mean in % Normalised mean 

1 Code quality 85.8 0.858 

2 Understandability 85.71 0.8571 

3 Document Quality 82.8 0.828 

4 

Configuration 
Management 

Technology 

82.3 

0.823 

5 

Modern 

Programming 

Specifications 

80.95 

0.8095 

6 Database Size 80.95 0.8095 

7 

Software 

Complexity 
80 

0.8 

8 

Staff ability and 

skills 80 0.8 

9 Testing Quality 79.52 0.7952 

10 

Component 

Reusability 
78.57 

0.7857 

11 

Organization 

Maturity 
77.61 

0.7761 

12 

Maintenance Staff 

Ability 
77.14 

0.7714 

13 

Availability of 

maintainers 75.2 0.752 

14 

Technology 

Newness 
73.8 

0.738 

15 Programming Style 69.52 0.6952 

16 

Number of 

maintainers 69.4 0.694 

17 

Hiring model of 

maintainers 68.2 0.682 

18 Hardware Stability 67.61 0.6761 

19 

Location diversity of 

maintainers 67 0.67 

20 

Dependence on 

External 

Environment 

63.8 

0.638 

21 
Component 
Performance 

63.33 
0.6333 

22 CASE Tools 59.04 0.5904 

23 Application Type 55.71 0.5571 

24 System Lifespan 55.23 0.5523 
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3.4. Maintenance Effort 
 

The proposed model computes maintenance effort. The proposed model’s maintenance effort is 

expressed in Person-hours. 

 

4. MODEL VALIDATION 
 

4.1. Data Collection 
 

4.1.1. Base Metrics 

 

The base metrics are computed once the Python source file is uploaded to the tool. The base 
metrics were the number of instance variables, the number of class variables, the number of 

instance methods, the number of static methods, the number of class methods, and the number of 

code blocks in a class. The tool user clicks the base metric tab to view base metrics for a Python 

file. 
 

4.1.2. Derived metrics 

 
These were the metrics derived from the base metric. The derived metrics included; Weighted 

variable complexity (WVCpy), weighted method complexity (WMCpy), weighted class 

complexity (WCCpy), weighted system complexity (WSCpy), class size CSpy) and system size 

(SSpy). 

 

The tool user clicks on the derived metrics tab to view the derived metrics of a Python file. 

Metric values for the size and complexity of program one were collected using the PMMET tool 
as presented in figure 1. The program had a weighted system complexity of 12 and a system size 

of 16. The tool user clicks on the open button to upload a Python file for analysis. This is 

followed by clicking the run button to begin metrics computation. The tool user can now view 
base metrics. Derived metrics can be viewed upon clicking the derived metrics tab. 

 

 
 

Figure 1.  Metric values for a Python program generated by the PMMET tool.  
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4.1.3. Effort Adjustment Factor (EAF) 
 

An Effort Adjustment Factor (EAF) value was computed by finding a product value of the factors 

influencing the maintenance effort of a Python program and the value recorded by the PMMET 

tool. The formula to compute the Effort Adjustment Factor value (EAF) is explained by [1]. 
There are 24 factors that influence the maintenance effort from Table 1. A software maintainer 

can select multiple factors and each factor has an effort multiplier value (weight). Order of 

occurrence of various cost drivers has a significant impact on overall efforts in project 

estimation. According to [25]variations to cost drivers in the COCOMO model contribute 

to an improved effort estimate. A highly ranked factor will contribute to a higher maintenance 

effort influencing power which will result in a higher maintenance effort value. A lowly ranked 

factor will contribute to a lower maintenance effort influencing power which will result in a 
lower maintenance effort value. The effort adjustment factor value (EAF) for Python program 

one is computed by the PMMET tool and presented in Figure 2. 

 

 
 

Figure 2   EAF value for a Python program generated by the PMMET tool. 

 

Figure 2 presents the Effort Adjustment Factor (EAF) value computed from three factors 

influencing the maintenance effort of program one. The factors are selected by the software 
maintainer and in this example, document quality, software complexity, and programming style 

were selected. The weights of the factors were multiplied to get an EAF value of 0.4605. 

 

4.1.4. Model Maintenance Effort 

 

Once the tool generates the size and complexity metrics values and computes the effort 
adjustment factor, the last step is to compute the maintenance effort using the equation defined in 

section 3.4 of this work. The tool computes maintenance effort by finding a product of size, 

complexity, and EAF values and displays the output. The computed maintenance effort for 

program one is presented in Figure 3. 
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Figure 3.  Software maintenance effort value for Python program one computed by the PMMET tool.  

 

From the maintenance effort tab, the software maintainer can confirm the selected factors, the 

generated metric values of size and complexity, and EAF value before computing maintenance 

effort. 

 
A total of twenty Python programs were considered in maintenance effort computation by the 

PMMET tool.  

 
The following steps were followed towards computing software maintenance effort using 

PMMET tool. 

 
Step1: Upload the Python file to the tool 

Step2: click on run button  

Step 3: The tool displays the base and derived metrics of uploaded Python file. 

Step 4: The maintainer clicks on multiplier tab to select the factors affecting maintenance effort 
of the Python file. 

Step 5: The tool computes an Effort Adjustment Factor (EAF)  

Step 6: Maintainer clicks on the maintenance effort tab then the run button. The values for size, 
complexity, and EAF are presented to the maintainer for confirmation before computing effort. 

Step 7: The maintainer clicks on compute effort button and views the computed maintenance 

effort of the Python file. 

 
The maintenance effort computed for the twenty Python programs using the PMMET tool is 

presented in Table 2. 

 
Table 2.  Maintenance Effort for twenty Python programs computed by PMMET tool. 

 
Program ID Size Complexity Ranking of factors 

influencing effort 

EAF Model Effort 

program 1 16 12 3,7,15 0.4605 88.41 

program 2 13 10 1,3,5 0.575 74.76 

program 3 11 8 1,3,5,7,9,10 0.2874 25.29 

program 4 30 29 2,4,6,9 0.454 395.04 

program 5 18 18 1,2,3,4,5,12 0.3129 101.37 
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program 6 20 8 2,3,5,8,12 0.3545 56.72 

program 7 5 4 3,5,7,9 0.426 8.52 

program 8 8 4 2,4,8,11,16 0.3039 9.72 

program 9 6 6 1,2,3,4,5,14 0.2993 10.79 

program 10 9 7 3,5,8,13 0.403 25.40 

program 11 6 17 1,2,4,7,9 0.385 39.27 

program 12 18 16 1,2,3,,5,7,8,,10 0.247 71.38 

program 13 23 15 1,2,3,6,8,21,22,23 0.082 28.33 

program 14 14 37 1,2,3,5,6,7,12,21 0.155 80.77 

program 15 30 29 1,2,3,4,5,12 0.312 272.24 

program 16 23 41 1,2,4,6 0.489 462.0 

program 17 7 9 2,3,4,7 0.467 29.43 

program 18 4 8 1,2,3,5,6,7,12,21 0.155 4.99 

program 19 7 7 1,2,5,10,14 0.345 16.90 

program 20 20 8 2,3,4,7 0.467 74.76 

 

4.2. Context definition 

 
Second, third, and fourth year students belonging to Python programmers club of Kirinyaga 

University School of Pure and Applied Sciences department of Computing Studies were 

presented with twenty Python files. The twenty python files can be accessed from 
https://github.com/huckbyte/python-tool/tree/main/source%20codes. 

 

The subjects were asked about the features of Python programming language to assess their 
understanding of the language. All the forty participants had knowledge of classes, objects, 

methods, control structures, and Python indentation. 95% of the subjects had knowledge on 

inheritance and nesting. 80 % had knowledge on abstraction. From the responses received under 

subject assessment section, it was concluded that all the subjects were qualified to take part in the 
study. All the subjects were taken through a refresher course on Python object oriented 

programming intensively for two hours. 

 

4.3. Experiment Strategy 
 

A within- subject experiment design was adopted where every participant was assigned the same 
Python files for analysis. The subjects analyzed the Python files individually for two hours. The 

experiment objects consisted of twenty Python files which were already checked for syntax 

errors. Each participant was provided with twenty Python files containing different size and 
complexity metric values generated by the PMMET metric tool. The metrics tool was only used 

by the researcher to calculate metric values for the Python files and was not used by the 

participants. 

 

4.4. Pilot study  
 
This study was conducted using within- subjects experimental design in which all the subjects 

received all treatments. The study aimed to find out whether the metric values generated by the 

PMMET metric tool correlated with the subjects’ rating of software maintainability of Python 

programs. The study also helped demystify whether the proposed metrics were contributors to 

increased levels of maintenance effort. A convenience random sample of ten subjects 

https://github.com/huckbyte/python-tool/tree/main/source%20codes
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participated in the pilot study. Results of the pilot study suggested that the questionnaire was 

suitable for use in the study. 

 

4.5.  Experimental Planning 
 

Twenty Python files were shared with the students and the questionnaire. The instructions on how 

to carry out the exercise were explained for clarity purposes. 
 

To establish whether there is any relationship between Python metrics and subject ratings on 

maintainability of Python programs was achieved by testing the following hypothesis.  
 

i. Null Hypothesis (H0): There is no correlation between the Python size metric and the 

subject rating of maintainability of Python files. 
ii. Alternative Hypothesis (H1): There is a correlation between the Python size metric and the 

subjects rating of maintainability on Python files. 

iii. Null Hypothesis (H0): There is no correlation between the Python complexity metric and 

the subject rating of maintainability of Python files. 
iv. Alternative Hypothesis (H1): There is a correlation between the Python complexity metric 

and the subjects rating of maintainability on Python files. 

v. To establish whether there is any relationship between the proposed model’s maintenance 
effort and subject ratings on maintainability of Python programs was achieved by testing 

the following hypothesis.  

vi. Null Hypothesis (H0): The proposed model’s maintenance effort has no effect on the 
subject ratings on maintainability.  

vii. Alternative Hypothesis (H1): The proposed model’s maintenance effort has a significant 

effect on the subject ratings on maintainability.  

 

4.6. Experiment results 
 

4.6.1. Python programs maintainability descriptive analysis 

 

An experiment questionnaire was issued to forty students of Kirinyaga University, Kenya 

studying computer science related courses. The subjects were presented with twenty Python 

programs and were required to rate the extent to which the programs were maintainable. The 
SPSS statistical software was used to examine the acquired data. The descriptive statistics results 

of the twenty programs are presented in Table 3. 
 

Table 3: Python programs maintainability descriptive analysis results 

 
Program no. N Minimum Maximum Mean Std. Deviation 

program1 37 2.00 4.00 2.6216 .54525 

program2 37 2.00 4.00 3.2432 .59654 

program3 37 2.00 4.00 3.4054 .55073 

program4 37 3.00 5.00 3.9459 .62120 

program5 37 2.00 5.00 2.9459 .77981 

program6 37 3.00 4.00 3.4865 .50671 

program7 37 1.00 5.00 2.9730 1.14228 

program8 37 1.00 3.00 1.6216 .59401 

program9 37 1.00 5.00 2.4595 1.14491 

program10 37 1.00 5.00 2.4054 .89627 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.3, May 2023 

25 

program11 37 1.00 5.00 3.1892 1.15079 

program12 37 2.00 4.00 2.5946 .59905 

program13 37 2.00 5.00 3.0811 .79507 

program14 37 2.00 5.00 4.0811 .68225 

program15 37 2.00 5.00 3.7297 .87078 

program16 37 3.00 5.00 4.3243 .70923 

program17 37 1.00 4.00 1.6757 .78365 

program18 37 1.00 3.00 1.6216 .72078 

program19 37 1.00 4.00 2.2432 .76031 

program20 37 1.00 5.00 3.0811 .92431 

Valid N (listwise) 37     

 

4.6.2. Size, Complexity, Subjective data mean, and PMMET model effort values 

 

Table three presents the values for size, complexity metrics, the mean value for subject ratings on 

maintainability (subjective data), and the proposed model’s maintenance effort. 
 

Table 4: Size, Complexity, Subjective data mean, and PMMET model effort values 

 

Program no Size Complexity Subjective data 

Model Maintenance 

effort 

1 16 12 2.62 88.41 

2 13 10 3.24 74.76 

3 11 8 3.41 25.29 

4 30 29 3.95 395.04 

5 18 18 2.95 101.37 

6 20 8 3.49 56.72 

7 5 4 2.97 8.52 

8 8 4 1.62 9.72 

9 6 6 2.46 10.79 

10 9 7 2.41 25.40 

11 6 17 3.19 39.27 

12 18 16 2.59 71.38 

13 23 15 3.08 28.33 

14 14 37 4.08 80.77 

15 30 29 3.73 272.24 

16 23 41 4.32 462.0 

17 7 9 1.68 29.43 

18 4 8 1.62 4.99 

19 7 7 2.24 16.90 

20 20 8 3.08 74.76 

 

4.6.3 Relationship between Python size metric and subject ratings on maintainability 
 

A spearman’s rank-order correlation was run to determine the relationship between Python 

metrics and subject ratings on maintainability. The results are presented in Table 4. Size metric is 
significantly correlated to the subjects rating of Python maintainability by a correlation 

coefficient of 0.646 and a p value of 0.002.  

Table 5 Correlation results between Python size metric and subject ratings on maintainability 
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Python metric Correlation 

Coefficient 

Sig.(2-tailed) 

size 0.646 0.002 

 
**. Correlation is significant at the 0.01 level (2-tailed) 

 

4.6.4. Relationship between Python complexity metric and subject ratings on 

maintainability 

 

A spearman’s rank-order correlation was run to determine the relationship between 

Python complexity metrics and subject ratings on maintainability. The results are presented in 

Table 5. The complexity metric is significantly correlated to the subjects rating of Python 

maintainability by a correlation coefficient of 0.667 and a p value of 0.001.  
 

Table 6 Correlation results between Python complexity metric and subject ratings on maintainability 

 
Python metric Correlation 

Coefficient 

Sig.(2-tailed) 

complexity 0.667 0.001 

 
**. Correlation is significant at the 0.01 level (2-tailed) 

 

4.6.5 Relationship between the model’s maintenance effort and subject ratings on 

maintainability  

 

The association between model effort and subject assessments on maintainability was 

investigated using a spearman's rank-order correlation. The results are presented in Table 6. 
Maintenance effort is significantly correlated to the subject’s ratings on maintainability by a 

correlation coefficient of 0.610 and a p value of 0.004 

 
Table 7 Correlation results between model effort and subject ratings on maintainability 

 
 Correlation 

Coefficient 

Sig.(2-tailed) 

Model’s effort 0.610 0.004 

 

**. Correlation is significant at the 0.01 level (2-tailed) 

 

5. DISCUSSION 
 

The proposed model for software maintenance effort estimation accepts three inputs namely; size, 

complexity, and an Effort Adjustment Factor value (EAF). Twenty Python projects were 
considered. Size and complexity metric values were computed using the PMMET tool. Effort 

multiplier values were determined through expert opinion and used in computing an Effort 

Adjustment Factor (EAF). 
 

An analysis was performed to determine whether there is a correlation between the size metric 

and the ratings given by the subjects for maintainability. The results indicated a significant 

correlation between size metric and maintainability. As a result, the null hypothesis that there is 
no significant correlation between the size metric and subject ratings on maintainability was 

rejected and the alternative hypothesis was supported.  
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A second investigation was carried out to establish whether there is a relationship between 

Python complexity metrics and subject ratings on maintainability. The results indicated a 

significant correlation between complexity subject ratings on maintainability. As a result, the null 

hypothesis that there is no significant correlation between the complexity metric and subject 
ratings on maintainability was rejected and the alternative hypothesis was supported. 

 

The correlation analysis results on python size and complexity metrics confirm that large size 
programs that have high levels of complexity will definitely require higher effort compared to 

small sized programs with low complexity. 

 
The model's maintenance effort and the subjects' maintainability evaluations were the focus of a 

third experiment to determine whether there is a correlation. 

 

The results indicated a correlation of 0.610 between the model’s effort and subject ratings on 
maintainability. As a result, the null hypothesis that there is no significant correlation between the 

model effort and subject ratings on maintainability was rejected and the alternative hypothesis 

was supported. The experiment results confirms that the proposed model is valid. 
 

6.  CONCLUSION AND FUTURE WORK 
 

This research aimed to develop a metrics based maintenance effort estimation model for Python 

programs. The model accepts three inputs namely; size, complexity, and an effort adjustment 
factor value (EAF). The EAF is obtained by calculating the product value of the factors 

influencing maintenance effort in a project or program. Results of the metrics tool, model’s 

maintenance effort, and subject ratings were compared, and the findings indicated that metrics 
and subject ratings are strongly related and that the metrics are important factors in the 

maintainability of a Python program. 

 
A limitation of the developed model was that the dataset used comprised of small sized python 

programs. Future tasks would be to implement the estimation model on large sized Python 

projects and employing a machine learning strategy then evaluating the outcomes. The 

researchers hope that this study will be of great benefit to Python developers and maintainers to 
aid in estimating the maintenance effort of small sized Python programs. 
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