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ABSTRACT 
 
Executable test cases originate at the onset of testing as abstract requirements that represent system 

behavior. Their manual development is time-consuming, susceptible to errors, and expensive. Translating 

system requirements into behavioral models and then transforming them into a scripting language has the 

potential to automate their conversion into executable tests. Ideally, an effective testing process should 

start as early as possible, refine the use cases with ample details, and facilitate the creation of test cases. 
We propose a methodology that enables automation in converting functional requirements into executable 

test cases via model transformation. The proposed testing process starts with capturing system behavior in 

the form of visual use cases, using a domain-specific language, defining transformation rules, and 

ultimately transforming the use cases into executable tests. 
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1. INTRODUCTION 
 

The complexity of software development is on the rise in the modern era, leading to a surge in the 

need for software verification. Implementing an inappropriate testing methodology could 
undermine system safety. This is especially true in the avionics industry, where there has been a 

significant increase in safety-critical software, whether for military or civilian use. One of the key 

challenges faced by testing engineers is time constraints, which often limit the opportunity for 

detailed calculations. During the software development phase, the manual generation of test 
artifacts continues to be a significant cost driver, accounting for over 50% of the total 

development effort [1]. Automating the testing process can enhance software quality and ensure 

the reliability of the test results, thereby reducing liability costs and human effort. In the realm of 
software engineering, there's a growing trend of using scenarios to gather, document, and validate 

requirements [2]. Scenarios, which depict a series of behavior-related actions, can simplify an 

application's complexity, thereby facilitating better comprehension and prioritization of the 
required scenario. System requirements, including functional and operational ones, are 

encapsulated in these scenarios and leveraged to define test cases (TCs). 

 

A scenario offers insights into the practical implementation of a system's behavior. Since the 
collective scenarios of a system embody its behavior and functional domain, they ensure 

statement and decision coverage when the system is segmented into test scenarios. When use 

cases are employed to model requirements, a scenario can follow a specific route through the 
model to instantiate a use case [3], [4]. As a result, when a use case is chosen for testing, all of its 
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potential test scenarios can be utilized to meet a branch coverage criterion. The execution of these 
test scenarios on the system under test (SUT) can evaluate the comprehensiveness of the path 

coverage criterion. Hence, these path coverage metrics cater to the safety requirements and assist 

test engineers in identifying redundant or missing test scenarios.  

 
Our aim is to investigate an alternative testing methodology that facilitates test automation, 

commences with the representation of requirements, formalizes test descriptions irrespective of 

the test scripting language, and targets a testing language. Automation in the testing process has 
the potential to decrease testing effort, minimize human errors, initiate testing earlier, and support 

the auto-generation of testing artifacts. We were inspired to develop a testing methodology that 

can employ scenario-based notations to assist in the derivation of the TCs and utilize standard 
notations to capture and test functional requirements. 

 

The structure of this paper is as follows: Section 2 reviews relevant literature; Section 3 provides 

necessary background information. Section 4 introduces the proposed approach, which is then 
evaluated in Section 5. Finally, Section 6 concludes the paper and outlines directions for future 

work. 

 

2. RELATED WORK 
 

Numerous techniques have been suggested in academic literature for generating test cases from 

use cases expressed in Natural Language (NL) and UML diagrams. A few of these methods, 

relevant to this research, are highlighted in the following papers. 
 

Nogueira et al. [5] suggested a method that standardizes the capture of requirements using 

document templates. This automatic test generation approach extends the templates to allow 
inclusion and extension relations between use cases. Moreover, the technique allows the 

inclusion of data elements as parameters, user-defined types, and variables. However, this 

approach does not generate executable test cases, as the templates that capture control flow, state, 
input, and output are solely used for creating formal models. 

 

Sarmiento et al. [6] devised a tool that models NL requirements using UML activity diagrams. 

Their method generates test cases from the activity diagrams to facilitate automated testing. 
However, the technique has a drawback: it necessitates the use of lexicon symbols to reference 

pertinent words. 

 
Somé et al. [7] put forward an approach that specifies use cases with restricted NL, which are 

later mapped to Finite State Machine (FSM) models. A traversal algorithm navigates through the 

FSM models and generates test scenarios based on a coverage criterion. However, this approach 

requires modifying the use cases to the restricted NL and creating FSM diagrams, which are 
considered overhead. 

 

Heckel et al. [8] suggested a Model-Driven Testing (MDT) approach that decouples the 
generation of test cases from their execution on various target platforms. This strategy for testing 

applications is crafted within a model-driven development context. However, its application is 

confined to generating test cases in a model-driven context. 
 

Ryser et al. [9] introduced the SCENT method for developing scenarios based on NL 

requirements. These scenarios are formalized into state charts, supplemented with additional 

information, and then flattened by a traversal algorithm to determine the test cases. Further tests 
are modeled in dependency charts and generated from the interdependencies between scenarios, 

which increases the testing effort. 
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Kesserwan et al. [10] outlines a method to reverse engineer legacy software tests to align with a 

model-driven testing methodology. The traditional test procedures are initially converted into the 

TTCN-3 language. Following this conversion, these procedures are abstracted into test cases 

presented in the TDL format. 
 

describe an approach to reverse engineer legacy software tests to a model-driven testing 

methodology. The legacy test procedures are translated to the TTCN-3 (Testing and Test Control 
Notation) language and then abstracted to test cases in TDL (Test Description Language) format. 

The latter is a formal language for expressing test cases. 

 
Numerous methodologies, such as those in Maurer et al. [11], Leonhardt et al. [12], and Larisa et 

al. [13], leverage implicit relationships to facilitate test generation, execution, and evaluation, 

while others, like in Labiche et al. [14], utilize implicit relationships for regression testing. 

Additional methods use explicit relationships to aid in test generation as in Bertolino et al. [15], 
test execution and evaluation as in Nachmanson et al. [16], or coverage analysis. 

 

Like most of the methods mentioned above, our work also derives test cases from use cases. 
However, it distinguishes itself by formalizing the requirements as abstract test scenarios and 

converting them into executable test cases. This segregation of test specification from test 

implementation provides greater flexibility for test deployment and allows test engineers to 
concentrate on the test objectives. 

 

Our approach offers scenario coverage criteria and enables prioritizing desired requirements to be 

tested early in the process. 
 

3. BACKGROUND 
 

In the realm of software development, numerous strategies have been devised to modernize 
testing procedures. One such technique is model-driven testing, which automates the creation and 

transformation of models based on transformation rules defined via mappings between 

metamodel elements. In this model transformation engineering, models at various levels of 

abstraction facilitate generalization and automated development. 
 

Another method employed to update testing processes is specification-based testing (SBT). This 

approach has been utilized in the testing of intricate software systems. SBT verifies that the 
software or system meets the requirements and delivers value. Consequently, test engineers 

benefit from the accuracy and the detailed depiction of system requirements provided by the SBT 

approach. The tests are developed from the requirements' context and designed from the user's 

perspective rather than the designer's. 
 

There are several modeling languages available to articulate functional requirements and 

numerous languages that can be used to specify or describe test cases (TCs). These TCs can be 
manually developed or automatically derived from behavior models. Some of the modeling 

notations used to capture and test functional requirements include: 

 
Use Case Maps (UCM): a visual notation used to describe, at a high level, how a complex 

system's organizational structure and emergent behavior are interconnected [17]. 

 

Unified Modelling Language (UML): a general-purpose graphical modeling language that covers 
structural and behavioral aspects of a system. The use case diagram (UC) is used to depict the 

high-level requirements of a system [18]. 
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Test Description Language (TDL): a constructed language used to describe and therefore specify 

requirements as tests [19]. 

 

Testing and Test Control Notation V. 3 (TTCN-3): a standard language for test specification that 
is widespread and well-established [20]. A TTCN-3 module may contain a single case or several 

test cases that can be executed. A TTCN-3 test case can be executed against a system under test 

(SUT) to express its behavior. The execution's outcome is a verdict that determines if the SUT 
has passed the test. 

 

4. THE MODEL-DRIVEN APPROACH 
 

The following defines a model-driven testing approach that generates tests based on the 
requirements of the SUT. In many organizations, workflows are established in an ad-hoc style, 

with models being implicit and TCs being manually constructed. In conventional practices, 

software requirements are articulated in NL and then transformed into High-Level Requirement 
(HLR) and Low-Level Requirement (LLR) artifacts. These requirements, coupled with the 

implicit knowledge of the test engineer (implicit models), form the basis for the manual 

development of executable TCs in a proprietary testing language. The left side of Figure 1 
portrays the manual workflow, while the right side represents the model-driven workflow that our 

proposed methodology employs. 

 

Manual Workflow Model-Driven Workflow

Requirement 

HLR & LLR

Executable TCsTest Execution 

Abstract Test 

Scenarios

Models

Test Design 

Describe Requirements as 

Visual Use Case

Transform to Test Scenarios

Transform to Executable 

TCs

NL

Describe Requirements

Develop Requirements

Develop Executable 

TCs manually

Software requirement

 
 

Figure 1 Manual vs Model-driven development 

 
The new testing approach axes on three main aspects: (1) functional requirements are illustrated 

in visual scenario models; (2) these scenario models are subsequently transformed into test 

scenario descriptions; and (3) these test descriptions, further refined with test data, are ultimately 
converted into test cases in TTCN-3. 
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This approach can be viewed as a process of progressive specification refinements that involves 
model transformation and the integration of additional information. The primary incentive for 

encapsulating requirements into models is to facilitate the derivation of executable TCs. 

 

In the subsequent subsections, we will elaborate on how model transformation and the integration 
of additional information are executed throughout the process to demonstrate the feasibility of 

this approach. 

 

4.1. Formalizing Requirements as Scenario Models 
 

In order to ease the transformation of NL requirements into UCM elements, the requirements are 
documented in Cockburn use case notation [21] and manually mapped to UCM scenario models 

using the jUCMNav tool [22]. Given a use case like "Withdraw Transaction", which encapsulates 

system behavior, the UCM scenario models can be constructed by mapping the use case elements 
to their corresponding UCM components and responsibility elements (this will be discussed in 

the next subsection). 

Following is an illustration of how the behavior of "Withdraw Transaction" is formalized into a 
use case notation. 

 

Primary Actor: Customer 

Secondary Actor: Database (DB) 
Precondition: The Customer has successfully logged into the ATM. 

Postcondition: The Customer has successfully withdrawn money and received a receipt. 

Trigger: The Customer opts to Withdraw Transaction. 

 

Main Scenario: 

 
1. DB presents the types of accounts. 

2. Customer selects the type of account. 

3. DB requests the withdrawal amount. 

4. Customer inputs the amount. 
5. Customer collects the withdrawn money. 

6. DB generates and dispenses a receipt. 

7. Customer collects the receipt. 
8. DB shows a closing message and ejects the Customer’s ATM card. 

9. Customer collects the card. 

10. DB shows a welcome message. 

 
Extensions: (Failure mode) 

 

5a. DB informs the Customer of insufficient funds. 
5b. DB provides the current account balance. 

5c. DB exits the option. 

 

4.2. Translating Use Cases into UCM Scenario Models 
 

UCM scenario models can be constructed by mapping the Actors and Actions elements defined 
in the "Withdraw Transaction" use case. The mapping process is quite direct. For instance, the 

Primary Actor (Customer) and the Secondary Actor (DB) are manually mapped to two UCM 

components: Customer and DB. The actions to be carried out by each component, such as 
Display_Account and Choose_Account, are assigned to UCM responsibility elements. As a 
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general rule, the Actor elements are mapped to UCM components and the Action elements to 
UCM responsibility elements. 

 

With a basic understanding of the jUCMNav tool, the Actors' actions and Actions in the use case 

are modeled into UCM scenarios. Figure 2 displays a UCM map comprising two components 
with defined responsibilities. 

 
DB Customer

X

X

X

X

XX

WithdrawMoney
Display_Account

EndNormal

Choose_Account

AmountEntered

Remove_Money

Remove_Receipt

Remove_Card
Display_Welcome

EndFailure

Insufficient_Amount

X
EnterAmount

X
Print_Receipt

X
Display_Closing

Exit

 
 

Figure 2 UCM Scenario models built from the “Withdraw Transaction” use case 

 

4.3. Transforming Behavioral Models into Test Descriptions 
 
Upon validating the UCM scenario model, we utilized the traversal mechanism bundled with the 

jUCMNav tool to flatten the scenario model into multiple scenario definitions, each of which 

maps scenario elements to TDL elements. The flattened scenario includes traversed UCM 
elements such as Component Instance, Gate Instance, Action Reference, Interaction, and so forth. 

The output of this traversal is several independent instances of the TDL metamodel serialized in 

the XMI interchange format, but without support for alternative behavior or generating concrete 

TDL syntax or semantics. As a result, we developed a process to transform the flattened UCM 
scenario model and data model (additional information) into an abstract test specification 

expressed as a valid TDL test specification. 

 
The transformation process, depicted in Figure 3, employs a developed tool to parse the flattened 

scenario, which provides complete coverage of the UCM model, and automatically transforms it 

into TDL Test Configuration and Test Description elements that can be compiled into a TDL 
concrete syntax. 
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Developing Test Specification in TDL

Scenario model

TDL Specification

— Test Objective (manually)

— Data Set (manually)

— Test Configuration (automatic)

— Test Description (automatic)

 

Data model

Flattened Scenario 

definitions

Abstract Test 

Specification

 
 

Figure 3 The TDL Test Specification Process 

 
The tool processes the flattened scenario using an XMLStreamReader interface and automatically 

generates two TDL elements: Test Description and Test Configuration. The XMLStreamReader 

interface is utilized to iterate over the various events in the flattened scenario in order to extract 

information and translate it into TDL syntax. Once we finish with the current event, we proceed 
to the next one and continue until we reach the end of the scenario. The process transforms the 

flattened UCM scenario into four TDL elements. The development of each element is detailed in 

the following sections: 
 

TDL Data Set: In UCM, a responsibility definition signifies an action to be performed. 

Leveraging this information, the responsibilities involved in a stimulus/response action can be 
identified as interaction messages and mapped into Data Instances in TDL. Procedure 1 displays 

compiled TDL Data Instances, grouped into two Data Sets, which are developed from test data. 

 

4.3.1. TDL Data Set 
 

A responsibility definition in UCM signifies an action that needs to be executed. Utilizing this 

information, the responsibilities associated with a stimulus/response action can be identified as 

interaction messages and mapped onto Data Instances in TDL. Procedure 1 displays compiled 

TDL Data Instances, which are organized into two Data Sets, derived from test data. 

 

 
 

Procedure 1 TDL Data Sets 

 

1. Data Set RequestInput { 

2.    instance Prompt; 

3.    instance DisplayInfo;  } 

4. Data Set Preference{ 
5.    instance AccountType;  

6.    instance Amount;  

7.    instance Signal;   } 
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4.3.2. TDL Test Objective 
 

Through the analysis of the scenario model and the integration of additional information from the 

system requirements, multiple Test Objectives can be formulated and enriched, as depicted in 

Procedure 2. These objectives serve as a guide for designing the Test Description or for designing 
a specific behavior. 

 

 
 

Procedure  2 TDL Test Objective 

 

4.3.3. TDL Test Configuration 

 

The information exchange between the Tester and the SUT components is conducted through a 
communication point (Gate). Therefore, the Test Configuration in TDL encompasses all the 

elements required for this communication, such as Component Instances which could be a part of 

either a Tester or a SUT, and Connections. Procedure 3 demonstrates the TDL Test 

Configuration, which is automatically generated from the exported "WithdrawTransaction" 
scenario. 

 

 
 

Procedure 1 TDL Test Configurated generated from the “Withdraw Transaction” Scenario 

 

4.3.4. TDL Test Description 

 

The Test Description in TDL outlines the anticipated behavior,  actions, and interactions between 
DB components. The TDL Action element to be executed corresponds to its equivalent, the UCM 

responsibility object. On the other hand, the TDL Interaction element represents a message that is 

sent from a source and received by a target. Procedure 4 illustrates the TDL Test Description, 

which is composed of actions, timers, and interactions. 

 

 

1. Gate Type defaultGT accepts RequestInput, Preference; 

2. Component Type defaultComp { gate types :defaultGT ; }  
3. Test Configuration TestConfiguration { 

4.    //Customer component 

5.   instantiate Customer as Tester of type  
defaultComp having { gate gCustomer of type defaultGT ; } 

6.    //DB component 

7.   instantiate DB as SUT of type defaultComp 

8.   having { gate gDB of type defaultGT ;  } 
9.    //connect the two components through their gates 

10.   connect gCustomer to gDB;  } 

 

1. Test Objective TestObj1 {  

2. description: "Ensure that Customer selects an 
account type within 15 seconds";} 

3. Test Objective TestObj2 {  

4. description: "Ensure that Customer removes the 

card within 15 seconds"; }   
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Procedure 2 TDL Test Description 

 
As previously stated, the lack of an alternative element in the scenario metamodel necessitated 

manual modification of the generated Test Description to merge the scenarios that represent 

alternate test behavior. Ultimately, the four TDL elements are consolidated into a single TDL 
Test Specification and used as a foundation to generate an executable test in a scripting language. 

 

4.4. Transforming TDL Specification into Test Cases in TTCN-3 
 

The conversion of the TDL Specification model into an executable test in TTCN-3 is carried out 

based on their metamodels and transformation rules that we defined in the form of mappings 
between the elements of the metamodels. The transformation rules, as displayed in Table 1, are 

programmed and implemented using a model-to-text technology tool called Xtend.  
 

 

 

 

1. Test Description TestDescription {  //Test description definition 

2. use configuration: TestConfiguration;  { 

3. perform action Display_Account on component DB ; 

4. perform action Choose_Account on component Customer  }; 

5. gDB sends instance Prompt to gCustomer with { test objectives: TestObj1;};  

6. gCustomer sends instance AccountType to gDB with { test objectives: TestObj1;   };  

7. gDB sends instance Prompt to gCustomer  };  

8. gCustomer sends instance Amount to gDB }; 

9. perform action CheckAmount on component DB ; 

10. gDB sends instance DisplayInfo to gCustomer  with { test objectives :TestObj2;  }; }; 

11. perform action Remove_Money on component Customer ;  

12. perform action Remove_Card on component Customer ;  

13. repeat 2 times {  //Iterate over receiving responses,  

14. alternatively  {  

15.   gDB sends instance Prompt to gCustomer with  { test objectives: TestObj1; };    

16.      set verdict to PASS ; } 

17.      or { gate gCustomer is quiet for (15.0 SECOND);   

18.      set verdict to FAIL;  }     

19.  alternatively  {  // Customer sends Amount  

20.    gCustomer sends instance Amount to gDB;  

21.     set verdict to PASS ;    }           

22.     or { Amount < Balance; } 

23.     set verdict to FAIL;  }  }  } 
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Table 1 Displays the Transformation Rules between TDL and TTCN-3. 

 

Rule 

# 

TDL Meta-

model elements 

(syntax) 

Our TDL  concrete 

syntax 

Equivalent TTCN-3 

statements 
Descriptiom 

1 TestConfiguration 
Test Configuration 

<tc_name> 

module <tc_name> { 

} 

Map to a module statement 

with the name < td_name > 

2 GateType 

Gate Type 

<gt_name> accepts 

dataOut, dataIn;  

type port <gt_name> 

message { 

 inout dataOut; 

 inout dataIn; } 

Map to a port-type statement 

(message-based) that declares 

concrete data to be exchanged 

over the port.  

 

 

3 

 

ComponentType 

Component Type 

<ct_name> { gate 

types : <gt_name> 

instantiate 

<comp_name1> as 

Tester of type 

<ct_name> having { 
gate <g_name1> of 

type <gt_name> ; } 

 

type component 

comp_name1{ 

 port <gt_name> 

<g_name1>; } 

Map to a component-type 

statement and associate a port 

to it. The port is not a system 

port. 

 

 

4 

ComponentType 

Component Type 

<ct_name> { gate 

types : <gt_name> 

instantiate 

<comp_name2> as 

SUT of type 

<ct_name> having { 

gate <g_name2> of 

type <gt_name> ; } 

 

type component 

comp_name2{ 

 port <gt_name> 

<g_name2>; 

} 

Map to a component-type 

statement and associate a port 

of the test system interface to 

it. 

5 Connection 
connect <g_name1> 
to <g_name 2> 

map (mtc: 

<g_name1>, system: 
<g_name2>) 

Map to a map statement 

where a test component port is 
mapped to a test-system 

interface port 

6 TestDescription 

Test 

Description(<datapr

oxy) <td_name> {  

 use configuration: 

<tc_name>; { } 

} 

module <td_name> { 

import from 

<dataproxy> all; 

import from 

<tc_name> all; 

 

testcase _TC() runs 
on comp_name1 {} 

} 

Map to a module statement 

with the name <td_name >. 

The TDL <DataProxy> 

element passed as a formal 

parameter (optional) is 

mapped to an import 

statement of the <DataProxy> 

to be used in the module. The 

TDL property test 

configuration associated with 

the 'TestDescription' is 
mapped to an import 

statement of the Test 

Configuration module.  

A test case definition is 

added. 

7 
AlternativeBehavi

our 
alternatively { } alt {} Map to an alt statement  

 
 

8 

 
Interaction 

<comp_name1> 

sends instance 

<instance_outX> to 

<comp_name2> 

<comp_name1> 

.send(<instance_outX

>) 

Map to a send statement that 

sends a stimulus message  

<comp_name2> <comp_name1> Map to a receive statement 
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sends instance 

<instance_Inx> to 

<comp_name2> 

.receive(<instance_In

X>) 

that receives a response when 

the sending source is a SUT 

component. 

9 VerdictType 
Verdict 

<verdict_value> 
verdicttype 

<verdict_value> contains the 

following values: 

{inconclusive, pass, fail}. No 

mapping is necessary since 
these values exist in TTCN-3 

10 TimeUnit 
Time Unit 

<time_unit> 
N/A 

<time_unit> contains the 

following values: {tick, 

nanosecond, microsecond, 

millisecond, second, minute, 

hour}. No mapping is 

necessary; a float value is 

used to represent the time in 

seconds 

11 
VerdictAssignme

nt 

set verdict to 

<verdict_value> 

setverdict 

(<verdict_value>) 
Map to a setverdict statement.  

12 Action 
perform action 

<action_name> 

function 

<action_name>() runs 

on <g_name1>{ } 
<action_name (); > 

Map to a function signature 

and to a function call. The 

function body is refined later 
if applicable. 

13 Stop stop stop 
Map to a stop statement 

within an alt statement. 

14 Break break break 
Map to a break statement 

within an alt statement. 

15 Timer 
timer <timer_name> 

 

timer<timer_name> 

 

Map to a timer definition 

statement. 

16 TimerStart 
start <timer_name> 

for (time_unit) 

<timer_name>.start(ti

me_unit); 
Map to a start statement. 

17 TimerStop stop <timer_name> <timer_name>.stop; Map to a stop statemen.t 

18 TimeOut 
<timer_name> times 

out 

<timer_name>.timeou

t; 
Map to a timeout statement. 

19 
Quiescence/ 

Wait 

is quite for 

(time_unit) 

waits for (time_unit) 

timer <timer_name> 

<timer_name>.start(ti

me_unit); 

<timer_name>.timeou

t 

Map to a timer definition 

statement, a start statement 

and to a timeout statement. 

20 
InterruptBehaviou

r 
interrupt stop Map to stop statement 

21 
BoundedLoopBeh

aviour 

repeat <number> 

times 
repeat 

Map to a repeat statement. 

The repeat is used as the last 

statement in the alt behaviour. 

It should be used once for 
each possible alternative.  

22 DataSet 
Data Set 

<DataSet_name> { } 

type record 

<DataSet_nameType

> { }  

Map Data Set to record type 

using DataSet_name and 

prefixed with “Type” 

23 DataInstance 
instance 

<instance_name>; 

 

[<instance_name_S>;

] 

[<instance_name_R>;

] 

 

Map instance to a variable, 

using instance_name and 

prefixed either with “_S” for 

stimulus or with “_R” for 

response  

  
The TTCN-3 Test Description module transformed from the TDL Specification is shown in  
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Procedure 3. 

 

 
 

Procedure 3 Test case in TTCN-3 

 

5. ASSESSMENT AND OUTCOME OF THE APPROACH 
 

We assessed the approach using a private case study that served as our SUT. We employed three 

legacy use cases expressed in NL that describe the behavior of an avionics product. The 
experiment began by encapsulating the requirements into UCM scenario models. Once the 

1. module TestDescription { 

2.    import from TestConfiguration all;   

3.    import from WithdrawData all;  

4.    testcase _TC () runs on Customer { 

5.    map (mtc:gCustomer, system:gDB); 

6.    timer SelectionTime; timer RemoveTime;       

7.    Display_Account ();  // function call  

8.    gDB.send(PromptTemplate); 

9.    SelectionTime.start(15.0); 

10.    alt {                            

11.       [ ] gDB.receive(ChoiceTemplate) { 

12.           SelectionTime.stop; 

13.          Set verdict(pass);   

14.          CheckAmount ();  // function call       

15.          gDB.send(DisplyInfoTemplate); 

16.         RemoveTime.start(15.0);   

17.         repeat } // restart the alt              

18.           RemoveTime.timeout { 

19.           setverdict(fail) }  

20.       [ ] gDB.receive(SignalTemplate) { 

21.           RemoveTime.stop; 

22.           setverdict(pass); } 

23.       } 

24.    unmap (mtc:gCustomer, system:gDB);  }   } 

25.    function Display_Account () runs on DB {   } 

26.    function CheckAmount () runs on DB {   }  

27.  } 
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scenario models were validated, they were used as input and transformed into test descriptions, 
which were subsequently converted into executable test cases in TTCN-3. The details of the 

experiment are presented in the following paragraph. 

 

The execution of the three use cases using the new testing process resulted in the generation of 26 
test scenarios and test cases. The new testing process covered all paths in the scenario models, 

generating one test case for each scenario path, as outlined in Table 2. 

 
Table 2 Coverage Rate Achieved by the New Testing Process 

 

 

5.1. Proficiency Regarding the Fulfillment of Specifications and Production of 

Accurate Test Scenarios 
 

We conducted an evaluation of the produced TCs to ensure they adequately encompass the 

requirements. As demonstrated in Table 2, the method effectively covered all routes within the 

scenario models. Indeed, the method yielded one TC per every pathway in the scenario model. 
The total count of the produced TCs successfully encompasses all potential routes in the UCM 

model, thereby achieving comprehensive scenario and requirement coverage. 

 
The correctness of the generated test cases was evaluated by comparing their test outcomes with 

those of the legacy tests. The goal is to align the behavior of the test cases with that of the legacy 

tests. As stated, the legacy tests serve as a benchmark for evaluating the accuracy of the 
generated test cases. Table 3 exhibits the results of the verdict comparison for each test case pair. 

The scenario models that articulate the requirements are displayed in the first column, followed 

by a description of the test case in the second column. The third column presents the rate of 

verdict alignment with the corresponding legacy test. 
 

Table 3. The Correspondence Percentage of the Implemented Test Cases. 

 

use case modelled as scenario Executed TP 

 

Verdict matching rate 

with legacy 

Automatic Leg Transmission 

Fly-by procedure 100 % 

Fly-over procedure 100 % 

Fly-over procedure via 

DES+SAR 
98 % 

Provide Guidance for a Manual 

Direct-to Intercept 
Manual Direct-to Intercept 

 

97 % 

Expected Time Arrival Computation ETAComputation 98 % 

 

use case modelled as 

scenario  

# of Scenario Path 
# of TCs 

 

Requirement Coverage Rate 

Main Secondary 

Automatic leg 

transitions 
3 9 12 100 % 

Provide Guidance for a 

Manual Direct-to 

Intercept 

1 7 8 100 % 

Expected Time Arrival 

Computation 
1 5 6 100  
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All the outcomes in the Fly-by-procedure and Fly-over-procedure test cases corresponded with 
the respective outcomes of the legacy tests. In the remaining test cases, which include Fly-over-

procedure via DES+SAR, Manual Direct to-Intercept and ETA computation, only a minimal 

number of outcomes did not align with the corresponding legacy tests. The results in the third 

column confirmed a high success rate in determining the SUT behavior—producing a pass 
verdict when expected and a fail verdict when errors are present. 

 

5.2. Discussion 
 

The validation was achieved by comparing the behavior of the legacy and the generated tests. If 

they exhibit equivalent behavior, meaning they have the same sequence of test events and 
verdicts, they can be considered comparable. Almost all verdicts of oracle steps in the generated 

test cases matched their corresponding ones in the legacy tests. Essentially, the generated test 

cases passed and failed at the same steps as the legacy test cases, with a few exceptions of 
failures in the generated tests, predominantly due to timing issues. 

 

The tests generated for TTCN-3 execution demonstrated significantly better performance 
compared to the legacy system, as the SUT is relatively slow. These cases could be easily 

identified by examining the state of the SUT. If the state remained the same as the preceding test 

event, it indicated that the SUT had not yet updated its state. In this context, the responses are not 

immediate; instead, the test system must query the SUT to receive the response. Moreover, some 
of the failures could suggest the existence of alternative behavior in the SUT, something the 

legacy test system couldn't manage due to its reliance on linear sequences of test events. 

 
In conclusion, this study demonstrates that our approach generated test cases that fully covered 

all the requirements described in the scenario models. When compared to the legacy testing 

system, the new approach enhances practical testing and offers several benefits to test engineers.  
 

The advantages of our new testing practice include: 

 

 Enhanced understanding of the test system: Utilizing a model provides an overview of the 

system's behavior as opposed to scattered pieces of information. 

 Early Testing: Test engineers don't need to wait; they describe the requirements in a model 
and generate the tests at the press of a button. 

 Reduced testing effort: In our model-driven testing, the number of iterations needed to 

produce correct test cases is reduced. The test development phase is eliminated. Test cases 

are no longer manually written or corrected, but generated. 

 Traceability: Documentation can be produced from the model, ensuring consistency with the 
tests. Since test cases are derived from the UCM models where requirements are described, 

any defect found during test case execution can be traced back to its requirement. 

 Systematic and automated: With the aid of the developed tools, repeated tests are possible, 

ensuring robustness of the test results. 

 Reduced human errors: As tests are generated from the model and thus consistent with 
requirements, the likelihood of errors in the test suite is inherently reduced. 

 

6. GENERALIZATION OF THE APPROACH 
 

Our approach primarily targets the functional aspects of software and has been applied to two 
realistic case studies in the avionics domain. Furthermore, the methodology is potentially 

applicable to safety-critical software, as it addresses timing requirements and provides 
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traceability from requirements to tests. The approach leverages two key elements to enhance the 
testing process: 

 

Modeling: The system's functional requirements and design are represented through high-level 

visual models and DSL, abstracting away from technological implementation details. 
Model transformation: Automated model transformations are employed to generate tests, 

reducing manual labor and enabling the simulation of high-level models to validate the 

appropriateness of the modeled system behavior at an early stage of development. 
 

In the present day, the practical implementation of model-driven testing benefits from a range of 

tools and technologies. Certain requirements, such as robustness requirements, may not be 
expressible with UCM notation and would need to be specified using other notations or 

languages. The model transformations are largely automated and require minimal human 

intervention. The process transforms informal requirements into a formal UCM model. We 

utilized the tool described in [23] that generates individual test traces, referred to as test scenarios 
in TDL. However, it's important to note that test traces aren't always test cases. A quality test case 

includes alternative behavior in both TDL and TTCN-3. This portion had to be manually 

generated as no tools currently exist to perform this task. The tips found in [23] were tested and 
proved successful, indicating that the implementation of this part of the translator is a future task. 

Nevertheless, the translation from TDL to TTCN-3 is fairly straightforward, as there is mostly a 

one-to-one mapping from TDL to TTCN-3. Only aspects like describing test purposes aren't 
covered and therefore have to be manually translated, typically as TTCN-3 comments. 

 

In summary, our accomplishment was to demonstrate the benefits of constructing a formal UCM 

model, as everything downstream can be automatically generated and is either entirely correct or 
entirely incorrect. Test automation has the advantage of being systematic in handling errors, in 

contrast to manual processes where errors are introduced randomly and are challenging to trace. 

This automation reduces the amount of manual work required for test development, making the 
testing process less prone to errors and more efficient. 

 

7. LESSONS LEARNED 
 

We've gathered some significant insights from the development and implementation of the testing 
methodology. Users of the methodology shouldn't need to have functional requirements 

expressed in use case notation to model them as scenarios. However, having requirements 

presented as use cases did facilitate the mapping to UCM models. 
 

The model transformation to the TDL domain isn't completely automatic and requires human 

intervention to obtain data elements and construct alternatives. The TDL models were a crucial 

part of model-driven testing as they were used as both inputs and outputs in the model 
transformation process. The decision to use TDL notation in the development of tests proved to 

be successful. TDL effectively bridged the gap between the described requirements and tests, 

serving as a means of communication with non-technical individuals and as a foundation for 
generating concrete tests. 

 

8. CONCLUSIONS 
 

Manually translating software requirements, expressed in natural language, into executable tests 
while ensuring adequate test coverage can be a laborious and error-prone process. Improvements 

in the testing process can be achieved by generating tests based on behavioral models and model 
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transformation. Model-driven testing leverages transformation techniques to produce test artifacts 
by interrelating models at different abstraction levels. 

 

This study proposes a model-driven testing strategy to create executable test cases from visual 

use cases. The approach begins by outlining the SUT requirements in use case models, which are 
then transformed and mapped to abstract test scenarios. These scenarios are further refined and 

transformed into executable tests in a scripting language. The approach was implemented and 

evaluated in an industrial case study. Our ongoing work in this field aims to achieve complete 
automation of the proposed method where possible, with a special focus on automating the 

merging of linear scenarios (identifying common paths up to a UCM branch). 
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