
International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

DOI: 10.5121/ijsea.2023.14401 1

TRANSFORMING SOFTWARE REQUIREMENTS INTO

TEST CASES VIA MODEL TRANSFORMATION

Nader Kesserwan1, Jameela Al-Jaroodi1, Nader Mohamed2 and Imad Jawhar3

1Department of Engineering, Robert Morris University, Pittsburgh, USA

2Department of Computing and Engineering Technology, Pennsylvania Western

University, California, Pennsylvania, USA.
3Faculy of Engineering, AlMaaref University, Beirut, Lebanon

ABSTRACT

Executable test cases originate at the onset of testing as abstract requirements that represent system

behavior. Their manual development is time-consuming, susceptible to errors, and expensive. Translating

system requirements into behavioral models and then transforming them into a scripting language has the

potential to automate their conversion into executable tests. Ideally, an effective testing process should

start as early as possible, refine the use cases with ample details, and facilitate the creation of test cases.
We propose a methodology that enables automation in converting functional requirements into executable

test cases via model transformation. The proposed testing process starts with capturing system behavior in

the form of visual use cases, using a domain-specific language, defining transformation rules, and

ultimately transforming the use cases into executable tests.

KEYWORDS

Model-Driven Testing, Transformation Rules, Model Transformation, TDL, UCM & TTCN-3

1. INTRODUCTION

The complexity of software development is on the rise in the modern era, leading to a surge in the

need for software verification. Implementing an inappropriate testing methodology could
undermine system safety. This is especially true in the avionics industry, where there has been a

significant increase in safety-critical software, whether for military or civilian use. One of the key

challenges faced by testing engineers is time constraints, which often limit the opportunity for

detailed calculations. During the software development phase, the manual generation of test
artifacts continues to be a significant cost driver, accounting for over 50% of the total

development effort [1]. Automating the testing process can enhance software quality and ensure

the reliability of the test results, thereby reducing liability costs and human effort. In the realm of
software engineering, there's a growing trend of using scenarios to gather, document, and validate

requirements [2]. Scenarios, which depict a series of behavior-related actions, can simplify an

application's complexity, thereby facilitating better comprehension and prioritization of the
required scenario. System requirements, including functional and operational ones, are

encapsulated in these scenarios and leveraged to define test cases (TCs).

A scenario offers insights into the practical implementation of a system's behavior. Since the
collective scenarios of a system embody its behavior and functional domain, they ensure

statement and decision coverage when the system is segmented into test scenarios. When use

cases are employed to model requirements, a scenario can follow a specific route through the
model to instantiate a use case [3], [4]. As a result, when a use case is chosen for testing, all of its

https://airccse.org/journal/ijsea/vol14.html
https://doi.org/10.5121/ijsea.2023.14401

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

2

potential test scenarios can be utilized to meet a branch coverage criterion. The execution of these
test scenarios on the system under test (SUT) can evaluate the comprehensiveness of the path

coverage criterion. Hence, these path coverage metrics cater to the safety requirements and assist

test engineers in identifying redundant or missing test scenarios.

Our aim is to investigate an alternative testing methodology that facilitates test automation,

commences with the representation of requirements, formalizes test descriptions irrespective of

the test scripting language, and targets a testing language. Automation in the testing process has
the potential to decrease testing effort, minimize human errors, initiate testing earlier, and support

the auto-generation of testing artifacts. We were inspired to develop a testing methodology that

can employ scenario-based notations to assist in the derivation of the TCs and utilize standard
notations to capture and test functional requirements.

The structure of this paper is as follows: Section 2 reviews relevant literature; Section 3 provides

necessary background information. Section 4 introduces the proposed approach, which is then
evaluated in Section 5. Finally, Section 6 concludes the paper and outlines directions for future

work.

2. RELATED WORK

Numerous techniques have been suggested in academic literature for generating test cases from

use cases expressed in Natural Language (NL) and UML diagrams. A few of these methods,

relevant to this research, are highlighted in the following papers.

Nogueira et al. [5] suggested a method that standardizes the capture of requirements using

document templates. This automatic test generation approach extends the templates to allow
inclusion and extension relations between use cases. Moreover, the technique allows the

inclusion of data elements as parameters, user-defined types, and variables. However, this

approach does not generate executable test cases, as the templates that capture control flow, state,
input, and output are solely used for creating formal models.

Sarmiento et al. [6] devised a tool that models NL requirements using UML activity diagrams.

Their method generates test cases from the activity diagrams to facilitate automated testing.
However, the technique has a drawback: it necessitates the use of lexicon symbols to reference

pertinent words.

Somé et al. [7] put forward an approach that specifies use cases with restricted NL, which are

later mapped to Finite State Machine (FSM) models. A traversal algorithm navigates through the

FSM models and generates test scenarios based on a coverage criterion. However, this approach

requires modifying the use cases to the restricted NL and creating FSM diagrams, which are
considered overhead.

Heckel et al. [8] suggested a Model-Driven Testing (MDT) approach that decouples the
generation of test cases from their execution on various target platforms. This strategy for testing

applications is crafted within a model-driven development context. However, its application is

confined to generating test cases in a model-driven context.

Ryser et al. [9] introduced the SCENT method for developing scenarios based on NL

requirements. These scenarios are formalized into state charts, supplemented with additional

information, and then flattened by a traversal algorithm to determine the test cases. Further tests
are modeled in dependency charts and generated from the interdependencies between scenarios,

which increases the testing effort.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

3

Kesserwan et al. [10] outlines a method to reverse engineer legacy software tests to align with a

model-driven testing methodology. The traditional test procedures are initially converted into the

TTCN-3 language. Following this conversion, these procedures are abstracted into test cases

presented in the TDL format.

describe an approach to reverse engineer legacy software tests to a model-driven testing

methodology. The legacy test procedures are translated to the TTCN-3 (Testing and Test Control
Notation) language and then abstracted to test cases in TDL (Test Description Language) format.

The latter is a formal language for expressing test cases.

Numerous methodologies, such as those in Maurer et al. [11], Leonhardt et al. [12], and Larisa et

al. [13], leverage implicit relationships to facilitate test generation, execution, and evaluation,

while others, like in Labiche et al. [14], utilize implicit relationships for regression testing.

Additional methods use explicit relationships to aid in test generation as in Bertolino et al. [15],
test execution and evaluation as in Nachmanson et al. [16], or coverage analysis.

Like most of the methods mentioned above, our work also derives test cases from use cases.
However, it distinguishes itself by formalizing the requirements as abstract test scenarios and

converting them into executable test cases. This segregation of test specification from test

implementation provides greater flexibility for test deployment and allows test engineers to
concentrate on the test objectives.

Our approach offers scenario coverage criteria and enables prioritizing desired requirements to be

tested early in the process.

3. BACKGROUND

In the realm of software development, numerous strategies have been devised to modernize
testing procedures. One such technique is model-driven testing, which automates the creation and

transformation of models based on transformation rules defined via mappings between

metamodel elements. In this model transformation engineering, models at various levels of

abstraction facilitate generalization and automated development.

Another method employed to update testing processes is specification-based testing (SBT). This

approach has been utilized in the testing of intricate software systems. SBT verifies that the
software or system meets the requirements and delivers value. Consequently, test engineers

benefit from the accuracy and the detailed depiction of system requirements provided by the SBT

approach. The tests are developed from the requirements' context and designed from the user's

perspective rather than the designer's.

There are several modeling languages available to articulate functional requirements and

numerous languages that can be used to specify or describe test cases (TCs). These TCs can be
manually developed or automatically derived from behavior models. Some of the modeling

notations used to capture and test functional requirements include:

Use Case Maps (UCM): a visual notation used to describe, at a high level, how a complex

system's organizational structure and emergent behavior are interconnected [17].

Unified Modelling Language (UML): a general-purpose graphical modeling language that covers
structural and behavioral aspects of a system. The use case diagram (UC) is used to depict the

high-level requirements of a system [18].

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

4

Test Description Language (TDL): a constructed language used to describe and therefore specify

requirements as tests [19].

Testing and Test Control Notation V. 3 (TTCN-3): a standard language for test specification that
is widespread and well-established [20]. A TTCN-3 module may contain a single case or several

test cases that can be executed. A TTCN-3 test case can be executed against a system under test

(SUT) to express its behavior. The execution's outcome is a verdict that determines if the SUT
has passed the test.

4. THE MODEL-DRIVEN APPROACH

The following defines a model-driven testing approach that generates tests based on the
requirements of the SUT. In many organizations, workflows are established in an ad-hoc style,

with models being implicit and TCs being manually constructed. In conventional practices,

software requirements are articulated in NL and then transformed into High-Level Requirement
(HLR) and Low-Level Requirement (LLR) artifacts. These requirements, coupled with the

implicit knowledge of the test engineer (implicit models), form the basis for the manual

development of executable TCs in a proprietary testing language. The left side of Figure 1
portrays the manual workflow, while the right side represents the model-driven workflow that our

proposed methodology employs.

Manual Workflow Model-Driven Workflow

Requirement

HLR & LLR

Executable TCsTest Execution

Abstract Test

Scenarios

Models

Test Design

Describe Requirements as

Visual Use Case

Transform to Test Scenarios

Transform to Executable

TCs

NL

Describe Requirements

Develop Requirements

Develop Executable

TCs manually

Software requirement

Figure 1 Manual vs Model-driven development

The new testing approach axes on three main aspects: (1) functional requirements are illustrated

in visual scenario models; (2) these scenario models are subsequently transformed into test

scenario descriptions; and (3) these test descriptions, further refined with test data, are ultimately
converted into test cases in TTCN-3.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

5

This approach can be viewed as a process of progressive specification refinements that involves
model transformation and the integration of additional information. The primary incentive for

encapsulating requirements into models is to facilitate the derivation of executable TCs.

In the subsequent subsections, we will elaborate on how model transformation and the integration
of additional information are executed throughout the process to demonstrate the feasibility of

this approach.

4.1. Formalizing Requirements as Scenario Models

In order to ease the transformation of NL requirements into UCM elements, the requirements are
documented in Cockburn use case notation [21] and manually mapped to UCM scenario models

using the jUCMNav tool [22]. Given a use case like "Withdraw Transaction", which encapsulates

system behavior, the UCM scenario models can be constructed by mapping the use case elements
to their corresponding UCM components and responsibility elements (this will be discussed in

the next subsection).

Following is an illustration of how the behavior of "Withdraw Transaction" is formalized into a
use case notation.

Primary Actor: Customer

Secondary Actor: Database (DB)
Precondition: The Customer has successfully logged into the ATM.

Postcondition: The Customer has successfully withdrawn money and received a receipt.

Trigger: The Customer opts to Withdraw Transaction.

Main Scenario:

1. DB presents the types of accounts.

2. Customer selects the type of account.

3. DB requests the withdrawal amount.

4. Customer inputs the amount.
5. Customer collects the withdrawn money.

6. DB generates and dispenses a receipt.

7. Customer collects the receipt.
8. DB shows a closing message and ejects the Customer’s ATM card.

9. Customer collects the card.

10. DB shows a welcome message.

Extensions: (Failure mode)

5a. DB informs the Customer of insufficient funds.
5b. DB provides the current account balance.

5c. DB exits the option.

4.2. Translating Use Cases into UCM Scenario Models

UCM scenario models can be constructed by mapping the Actors and Actions elements defined
in the "Withdraw Transaction" use case. The mapping process is quite direct. For instance, the

Primary Actor (Customer) and the Secondary Actor (DB) are manually mapped to two UCM

components: Customer and DB. The actions to be carried out by each component, such as
Display_Account and Choose_Account, are assigned to UCM responsibility elements. As a

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

6

general rule, the Actor elements are mapped to UCM components and the Action elements to
UCM responsibility elements.

With a basic understanding of the jUCMNav tool, the Actors' actions and Actions in the use case

are modeled into UCM scenarios. Figure 2 displays a UCM map comprising two components
with defined responsibilities.

DB Customer

X

X

X

X

XX

WithdrawMoney
Display_Account

EndNormal

Choose_Account

AmountEntered

Remove_Money

Remove_Receipt

Remove_Card
Display_Welcome

EndFailure

Insufficient_Amount

X
EnterAmount

X
Print_Receipt

X
Display_Closing

Exit

Figure 2 UCM Scenario models built from the “Withdraw Transaction” use case

4.3. Transforming Behavioral Models into Test Descriptions

Upon validating the UCM scenario model, we utilized the traversal mechanism bundled with the

jUCMNav tool to flatten the scenario model into multiple scenario definitions, each of which

maps scenario elements to TDL elements. The flattened scenario includes traversed UCM
elements such as Component Instance, Gate Instance, Action Reference, Interaction, and so forth.

The output of this traversal is several independent instances of the TDL metamodel serialized in

the XMI interchange format, but without support for alternative behavior or generating concrete

TDL syntax or semantics. As a result, we developed a process to transform the flattened UCM
scenario model and data model (additional information) into an abstract test specification

expressed as a valid TDL test specification.

The transformation process, depicted in Figure 3, employs a developed tool to parse the flattened

scenario, which provides complete coverage of the UCM model, and automatically transforms it

into TDL Test Configuration and Test Description elements that can be compiled into a TDL
concrete syntax.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

7

Developing Test Specification in TDL

Scenario model

TDL Specification

— Test Objective (manually)

— Data Set (manually)

— Test Configuration (automatic)

— Test Description (automatic)

Data model

Flattened Scenario

definitions

Abstract Test

Specification

Figure 3 The TDL Test Specification Process

The tool processes the flattened scenario using an XMLStreamReader interface and automatically

generates two TDL elements: Test Description and Test Configuration. The XMLStreamReader

interface is utilized to iterate over the various events in the flattened scenario in order to extract

information and translate it into TDL syntax. Once we finish with the current event, we proceed
to the next one and continue until we reach the end of the scenario. The process transforms the

flattened UCM scenario into four TDL elements. The development of each element is detailed in

the following sections:

TDL Data Set: In UCM, a responsibility definition signifies an action to be performed.

Leveraging this information, the responsibilities involved in a stimulus/response action can be
identified as interaction messages and mapped into Data Instances in TDL. Procedure 1 displays

compiled TDL Data Instances, grouped into two Data Sets, which are developed from test data.

4.3.1. TDL Data Set

A responsibility definition in UCM signifies an action that needs to be executed. Utilizing this

information, the responsibilities associated with a stimulus/response action can be identified as

interaction messages and mapped onto Data Instances in TDL. Procedure 1 displays compiled

TDL Data Instances, which are organized into two Data Sets, derived from test data.

Procedure 1 TDL Data Sets

1. Data Set RequestInput {

2. instance Prompt;

3. instance DisplayInfo; }

4. Data Set Preference{
5. instance AccountType;

6. instance Amount;

7. instance Signal; }

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

8

4.3.2. TDL Test Objective

Through the analysis of the scenario model and the integration of additional information from the

system requirements, multiple Test Objectives can be formulated and enriched, as depicted in

Procedure 2. These objectives serve as a guide for designing the Test Description or for designing
a specific behavior.

Procedure 2 TDL Test Objective

4.3.3. TDL Test Configuration

The information exchange between the Tester and the SUT components is conducted through a
communication point (Gate). Therefore, the Test Configuration in TDL encompasses all the

elements required for this communication, such as Component Instances which could be a part of

either a Tester or a SUT, and Connections. Procedure 3 demonstrates the TDL Test

Configuration, which is automatically generated from the exported "WithdrawTransaction"
scenario.

Procedure 1 TDL Test Configurated generated from the “Withdraw Transaction” Scenario

4.3.4. TDL Test Description

The Test Description in TDL outlines the anticipated behavior, actions, and interactions between
DB components. The TDL Action element to be executed corresponds to its equivalent, the UCM

responsibility object. On the other hand, the TDL Interaction element represents a message that is

sent from a source and received by a target. Procedure 4 illustrates the TDL Test Description,

which is composed of actions, timers, and interactions.

1. Gate Type defaultGT accepts RequestInput, Preference;

2. Component Type defaultComp { gate types :defaultGT ; }
3. Test Configuration TestConfiguration {

4. //Customer component

5. instantiate Customer as Tester of type
defaultComp having { gate gCustomer of type defaultGT ; }

6. //DB component

7. instantiate DB as SUT of type defaultComp

8. having { gate gDB of type defaultGT ; }
9. //connect the two components through their gates

10. connect gCustomer to gDB; }

1. Test Objective TestObj1 {

2. description: "Ensure that Customer selects an
account type within 15 seconds";}

3. Test Objective TestObj2 {

4. description: "Ensure that Customer removes the

card within 15 seconds"; }

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

9

Procedure 2 TDL Test Description

As previously stated, the lack of an alternative element in the scenario metamodel necessitated

manual modification of the generated Test Description to merge the scenarios that represent

alternate test behavior. Ultimately, the four TDL elements are consolidated into a single TDL
Test Specification and used as a foundation to generate an executable test in a scripting language.

4.4. Transforming TDL Specification into Test Cases in TTCN-3

The conversion of the TDL Specification model into an executable test in TTCN-3 is carried out

based on their metamodels and transformation rules that we defined in the form of mappings
between the elements of the metamodels. The transformation rules, as displayed in Table 1, are

programmed and implemented using a model-to-text technology tool called Xtend.

1. Test Description TestDescription { //Test description definition

2. use configuration: TestConfiguration; {

3. perform action Display_Account on component DB ;

4. perform action Choose_Account on component Customer };

5. gDB sends instance Prompt to gCustomer with { test objectives: TestObj1;};

6. gCustomer sends instance AccountType to gDB with { test objectives: TestObj1; };

7. gDB sends instance Prompt to gCustomer };

8. gCustomer sends instance Amount to gDB };

9. perform action CheckAmount on component DB ;

10. gDB sends instance DisplayInfo to gCustomer with { test objectives :TestObj2; }; };

11. perform action Remove_Money on component Customer ;

12. perform action Remove_Card on component Customer ;

13. repeat 2 times { //Iterate over receiving responses,

14. alternatively {

15. gDB sends instance Prompt to gCustomer with { test objectives: TestObj1; };

16. set verdict to PASS ; }

17. or { gate gCustomer is quiet for (15.0 SECOND);

18. set verdict to FAIL; }

19. alternatively { // Customer sends Amount

20. gCustomer sends instance Amount to gDB;

21. set verdict to PASS ; }

22. or { Amount < Balance; }

23. set verdict to FAIL; } } }

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

10

Table 1 Displays the Transformation Rules between TDL and TTCN-3.

Rule

TDL Meta-

model elements

(syntax)

Our TDL concrete

syntax

Equivalent TTCN-3

statements
Descriptiom

1 TestConfiguration
Test Configuration

<tc_name>

module <tc_name> {

}

Map to a module statement

with the name < td_name >

2 GateType

Gate Type

<gt_name> accepts

dataOut, dataIn;

type port <gt_name>

message {

 inout dataOut;

 inout dataIn; }

Map to a port-type statement

(message-based) that declares

concrete data to be exchanged

over the port.

3

ComponentType

Component Type

<ct_name> { gate

types : <gt_name>

instantiate

<comp_name1> as

Tester of type

<ct_name> having {
gate <g_name1> of

type <gt_name> ; }

type component

comp_name1{

 port <gt_name>

<g_name1>; }

Map to a component-type

statement and associate a port

to it. The port is not a system

port.

4

ComponentType

Component Type

<ct_name> { gate

types : <gt_name>

instantiate

<comp_name2> as

SUT of type

<ct_name> having {

gate <g_name2> of

type <gt_name> ; }

type component

comp_name2{

 port <gt_name>

<g_name2>;

}

Map to a component-type

statement and associate a port

of the test system interface to

it.

5 Connection
connect <g_name1>
to <g_name 2>

map (mtc:

<g_name1>, system:
<g_name2>)

Map to a map statement

where a test component port is
mapped to a test-system

interface port

6 TestDescription

Test

Description(<datapr

oxy) <td_name> {

 use configuration:

<tc_name>; { }

}

module <td_name> {

import from

<dataproxy> all;

import from

<tc_name> all;

testcase _TC() runs
on comp_name1 {}

}

Map to a module statement

with the name <td_name >.

The TDL <DataProxy>

element passed as a formal

parameter (optional) is

mapped to an import

statement of the <DataProxy>

to be used in the module. The

TDL property test

configuration associated with

the 'TestDescription' is
mapped to an import

statement of the Test

Configuration module.

A test case definition is

added.

7
AlternativeBehavi

our
alternatively { } alt {} Map to an alt statement

8

Interaction

<comp_name1>

sends instance

<instance_outX> to

<comp_name2>

<comp_name1>

.send(<instance_outX

>)

Map to a send statement that

sends a stimulus message

<comp_name2> <comp_name1> Map to a receive statement

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

11

sends instance

<instance_Inx> to

<comp_name2>

.receive(<instance_In

X>)

that receives a response when

the sending source is a SUT

component.

9 VerdictType
Verdict

<verdict_value>
verdicttype

<verdict_value> contains the

following values:

{inconclusive, pass, fail}. No

mapping is necessary since
these values exist in TTCN-3

10 TimeUnit
Time Unit

<time_unit>
N/A

<time_unit> contains the

following values: {tick,

nanosecond, microsecond,

millisecond, second, minute,

hour}. No mapping is

necessary; a float value is

used to represent the time in

seconds

11
VerdictAssignme

nt

set verdict to

<verdict_value>

setverdict

(<verdict_value>)
Map to a setverdict statement.

12 Action
perform action

<action_name>

function

<action_name>() runs

on <g_name1>{ }
<action_name (); >

Map to a function signature

and to a function call. The

function body is refined later
if applicable.

13 Stop stop stop
Map to a stop statement

within an alt statement.

14 Break break break
Map to a break statement

within an alt statement.

15 Timer
timer <timer_name>

timer<timer_name>

Map to a timer definition

statement.

16 TimerStart
start <timer_name>

for (time_unit)

<timer_name>.start(ti

me_unit);
Map to a start statement.

17 TimerStop stop <timer_name> <timer_name>.stop; Map to a stop statemen.t

18 TimeOut
<timer_name> times

out

<timer_name>.timeou

t;
Map to a timeout statement.

19
Quiescence/

Wait

is quite for

(time_unit)

waits for (time_unit)

timer <timer_name>

<timer_name>.start(ti

me_unit);

<timer_name>.timeou

t

Map to a timer definition

statement, a start statement

and to a timeout statement.

20
InterruptBehaviou

r
interrupt stop Map to stop statement

21
BoundedLoopBeh

aviour

repeat <number>

times
repeat

Map to a repeat statement.

The repeat is used as the last

statement in the alt behaviour.

It should be used once for
each possible alternative.

22 DataSet
Data Set

<DataSet_name> { }

type record

<DataSet_nameType

> { }

Map Data Set to record type

using DataSet_name and

prefixed with “Type”

23 DataInstance
instance

<instance_name>;

[<instance_name_S>;

]

[<instance_name_R>;

]

Map instance to a variable,

using instance_name and

prefixed either with “_S” for

stimulus or with “_R” for

response

The TTCN-3 Test Description module transformed from the TDL Specification is shown in

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

12

Procedure 3.

Procedure 3 Test case in TTCN-3

5. ASSESSMENT AND OUTCOME OF THE APPROACH

We assessed the approach using a private case study that served as our SUT. We employed three

legacy use cases expressed in NL that describe the behavior of an avionics product. The
experiment began by encapsulating the requirements into UCM scenario models. Once the

1. module TestDescription {

2. import from TestConfiguration all;

3. import from WithdrawData all;

4. testcase _TC () runs on Customer {

5. map (mtc:gCustomer, system:gDB);

6. timer SelectionTime; timer RemoveTime;

7. Display_Account (); // function call

8. gDB.send(PromptTemplate);

9. SelectionTime.start(15.0);

10. alt {

11. [] gDB.receive(ChoiceTemplate) {

12. SelectionTime.stop;

13. Set verdict(pass);

14. CheckAmount (); // function call

15. gDB.send(DisplyInfoTemplate);

16. RemoveTime.start(15.0);

17. repeat } // restart the alt

18. RemoveTime.timeout {

19. setverdict(fail) }

20. [] gDB.receive(SignalTemplate) {

21. RemoveTime.stop;

22. setverdict(pass); }

23. }

24. unmap (mtc:gCustomer, system:gDB); } }

25. function Display_Account () runs on DB { }

26. function CheckAmount () runs on DB { }

27. }

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

13

scenario models were validated, they were used as input and transformed into test descriptions,
which were subsequently converted into executable test cases in TTCN-3. The details of the

experiment are presented in the following paragraph.

The execution of the three use cases using the new testing process resulted in the generation of 26
test scenarios and test cases. The new testing process covered all paths in the scenario models,

generating one test case for each scenario path, as outlined in Table 2.

Table 2 Coverage Rate Achieved by the New Testing Process

5.1. Proficiency Regarding the Fulfillment of Specifications and Production of

Accurate Test Scenarios

We conducted an evaluation of the produced TCs to ensure they adequately encompass the

requirements. As demonstrated in Table 2, the method effectively covered all routes within the

scenario models. Indeed, the method yielded one TC per every pathway in the scenario model.
The total count of the produced TCs successfully encompasses all potential routes in the UCM

model, thereby achieving comprehensive scenario and requirement coverage.

The correctness of the generated test cases was evaluated by comparing their test outcomes with

those of the legacy tests. The goal is to align the behavior of the test cases with that of the legacy

tests. As stated, the legacy tests serve as a benchmark for evaluating the accuracy of the
generated test cases. Table 3 exhibits the results of the verdict comparison for each test case pair.

The scenario models that articulate the requirements are displayed in the first column, followed

by a description of the test case in the second column. The third column presents the rate of

verdict alignment with the corresponding legacy test.

Table 3. The Correspondence Percentage of the Implemented Test Cases.

use case modelled as scenario Executed TP

Verdict matching rate

with legacy

Automatic Leg Transmission

Fly-by procedure 100 %

Fly-over procedure 100 %

Fly-over procedure via

DES+SAR
98 %

Provide Guidance for a Manual

Direct-to Intercept
Manual Direct-to Intercept

97 %

Expected Time Arrival Computation ETAComputation 98 %

use case modelled as

scenario

of Scenario Path
of TCs

Requirement Coverage Rate

Main Secondary

Automatic leg

transitions
3 9 12 100 %

Provide Guidance for a

Manual Direct-to

Intercept

1 7 8 100 %

Expected Time Arrival

Computation
1 5 6 100

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

14

All the outcomes in the Fly-by-procedure and Fly-over-procedure test cases corresponded with
the respective outcomes of the legacy tests. In the remaining test cases, which include Fly-over-

procedure via DES+SAR, Manual Direct to-Intercept and ETA computation, only a minimal

number of outcomes did not align with the corresponding legacy tests. The results in the third

column confirmed a high success rate in determining the SUT behavior—producing a pass
verdict when expected and a fail verdict when errors are present.

5.2. Discussion

The validation was achieved by comparing the behavior of the legacy and the generated tests. If

they exhibit equivalent behavior, meaning they have the same sequence of test events and
verdicts, they can be considered comparable. Almost all verdicts of oracle steps in the generated

test cases matched their corresponding ones in the legacy tests. Essentially, the generated test

cases passed and failed at the same steps as the legacy test cases, with a few exceptions of
failures in the generated tests, predominantly due to timing issues.

The tests generated for TTCN-3 execution demonstrated significantly better performance
compared to the legacy system, as the SUT is relatively slow. These cases could be easily

identified by examining the state of the SUT. If the state remained the same as the preceding test

event, it indicated that the SUT had not yet updated its state. In this context, the responses are not

immediate; instead, the test system must query the SUT to receive the response. Moreover, some
of the failures could suggest the existence of alternative behavior in the SUT, something the

legacy test system couldn't manage due to its reliance on linear sequences of test events.

In conclusion, this study demonstrates that our approach generated test cases that fully covered

all the requirements described in the scenario models. When compared to the legacy testing

system, the new approach enhances practical testing and offers several benefits to test engineers.

The advantages of our new testing practice include:

 Enhanced understanding of the test system: Utilizing a model provides an overview of the

system's behavior as opposed to scattered pieces of information.

 Early Testing: Test engineers don't need to wait; they describe the requirements in a model
and generate the tests at the press of a button.

 Reduced testing effort: In our model-driven testing, the number of iterations needed to

produce correct test cases is reduced. The test development phase is eliminated. Test cases

are no longer manually written or corrected, but generated.

 Traceability: Documentation can be produced from the model, ensuring consistency with the
tests. Since test cases are derived from the UCM models where requirements are described,

any defect found during test case execution can be traced back to its requirement.

 Systematic and automated: With the aid of the developed tools, repeated tests are possible,

ensuring robustness of the test results.

 Reduced human errors: As tests are generated from the model and thus consistent with
requirements, the likelihood of errors in the test suite is inherently reduced.

6. GENERALIZATION OF THE APPROACH

Our approach primarily targets the functional aspects of software and has been applied to two
realistic case studies in the avionics domain. Furthermore, the methodology is potentially

applicable to safety-critical software, as it addresses timing requirements and provides

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

15

traceability from requirements to tests. The approach leverages two key elements to enhance the
testing process:

Modeling: The system's functional requirements and design are represented through high-level

visual models and DSL, abstracting away from technological implementation details.
Model transformation: Automated model transformations are employed to generate tests,

reducing manual labor and enabling the simulation of high-level models to validate the

appropriateness of the modeled system behavior at an early stage of development.

In the present day, the practical implementation of model-driven testing benefits from a range of

tools and technologies. Certain requirements, such as robustness requirements, may not be
expressible with UCM notation and would need to be specified using other notations or

languages. The model transformations are largely automated and require minimal human

intervention. The process transforms informal requirements into a formal UCM model. We

utilized the tool described in [23] that generates individual test traces, referred to as test scenarios
in TDL. However, it's important to note that test traces aren't always test cases. A quality test case

includes alternative behavior in both TDL and TTCN-3. This portion had to be manually

generated as no tools currently exist to perform this task. The tips found in [23] were tested and
proved successful, indicating that the implementation of this part of the translator is a future task.

Nevertheless, the translation from TDL to TTCN-3 is fairly straightforward, as there is mostly a

one-to-one mapping from TDL to TTCN-3. Only aspects like describing test purposes aren't
covered and therefore have to be manually translated, typically as TTCN-3 comments.

In summary, our accomplishment was to demonstrate the benefits of constructing a formal UCM

model, as everything downstream can be automatically generated and is either entirely correct or
entirely incorrect. Test automation has the advantage of being systematic in handling errors, in

contrast to manual processes where errors are introduced randomly and are challenging to trace.

This automation reduces the amount of manual work required for test development, making the
testing process less prone to errors and more efficient.

7. LESSONS LEARNED

We've gathered some significant insights from the development and implementation of the testing
methodology. Users of the methodology shouldn't need to have functional requirements

expressed in use case notation to model them as scenarios. However, having requirements

presented as use cases did facilitate the mapping to UCM models.

The model transformation to the TDL domain isn't completely automatic and requires human

intervention to obtain data elements and construct alternatives. The TDL models were a crucial

part of model-driven testing as they were used as both inputs and outputs in the model
transformation process. The decision to use TDL notation in the development of tests proved to

be successful. TDL effectively bridged the gap between the described requirements and tests,

serving as a means of communication with non-technical individuals and as a foundation for
generating concrete tests.

8. CONCLUSIONS

Manually translating software requirements, expressed in natural language, into executable tests
while ensuring adequate test coverage can be a laborious and error-prone process. Improvements

in the testing process can be achieved by generating tests based on behavioral models and model

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

16

transformation. Model-driven testing leverages transformation techniques to produce test artifacts
by interrelating models at different abstraction levels.

This study proposes a model-driven testing strategy to create executable test cases from visual

use cases. The approach begins by outlining the SUT requirements in use case models, which are
then transformed and mapped to abstract test scenarios. These scenarios are further refined and

transformed into executable tests in a scripting language. The approach was implemented and

evaluated in an industrial case study. Our ongoing work in this field aims to achieve complete
automation of the proposed method where possible, with a special focus on automating the

merging of linear scenarios (identifying common paths up to a UCM branch).

REFERENCES

[1] Zhang, M., Yue, T., Ali, S., Zhang, H., Wu, J.: A systematic approach to automatically derive test

cases from use cases specified in restricted natural languages. In: Proceedings of the 8th

International Conference on System Analysis and Modeling: Models and Reusability (SAM’14)

(2014).

[2] Bertolino, A., Fantechi, A., Gnesi, S., Lami, G.: Product line use cases: Scenario-based specification
and testing of requirements. In:Software Product Lines, pp. 425–445. Springer, Berlin

Heidelberg(2006).

[3] Kesserwan, Nader, et al. "From use case maps to executable test procedures: a scenario-based

approach." Software & Systems Modeling 18.2 (2019): 1543-1570.

[4] Kesserwan, N. (2020). Automated Testing: Requirements Propagation via Model Transformation in

Embedded Software (Doctoral dissertation, Concordia University).

[5] Nogueira, S., Sampaio, A., & Mota, A. (2014). Test generation from state-based use case models.

Formal Aspects of Computing, 26(3), 441-490.

[6] Sarmiento, E., Sampaio do Prado Leite, J. C., & Almentero, E. (2014, August). C&L: Generating

model-based test cases from natural language requirements descriptions. In Requirements

Engineering and Testing (RET), 2014 IEEE 1st International Workshop on (pp. 32-38). IEEE
[7] Somé, S. S., & Cheng, X. (2008, March). An approach for supporting system-level test scenarios

generation from textual use cases. In Proceedings of the 2008 ACM symposium on Applied

computing (pp. 724-729). ACM.

[8] Heckel, R., & Lohmann, M. (2003). Towards model-driven testing. Electronic Notes in Theoretical

Computer Science, 82(6), 33-43. ISBN 1571-0661.

[9] J. Ryser and M. Glinz "A Scenario-Based Approach to Validating and Testing Software Systems

Using Statecharts" Proc. 12th Int'l Conf. Software and Systems Eng. and Their Applications, Dec.

1999.

[10] Kesserwan, N., Dssouli, R., & Bentahar, J. (2018). Modernization of Legacy Software Tests to

Model-Driven Testing. In Emerging Technologies for Developing Countries: First International EAI

Conference, AFRICATEK 2017, Marrakech, Morocco, March 27-28, 2017 Proceedings 1st (pp.
140-156). Springer International Publishing.

[11] J. Wittevrongel, Maurer, F., SCENTOR: Scenario-Based Testing of EBusiness Applications, Tenth

IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2001, pp. 41 - 46.

[12] F. Fraikin, Leonhardt, T., SeDiTeC — Testing Based on Sequence Diagrams, 17th IEEE

International Conference on Automated Software Engineering, 2002, pp. 261 - 266.

[13] Gagarina, Larisa G., Anton V. Garashchenko, Alexey P. Shiryaev, Alexey R. Fedorov, and

Ekaterina G. Dorogova. "An approach to automatic test generation for verification of

microprocessor cores." In 2018 IEEE Conference of Russian Young Researchers in Electrical and

Electronic Engineering (EIConRus), pp. 1490-1491. IEEE, 2018.

[14] L. C. Briand, Labiche, Y., A UML-Based Approach to System Testing, 4th International

Conference on the Unified Modeling Language (UML), Toronto, Canada, 2001, pp. 194-208.
[15] F. Basanieri, Bertolino, A., Marchetti, E., The Cow_Suite Approach to Planning and Deriving Test

Suites in UML Projects, Proceedings of the 5th International Conference on The Unified Modeling

Language, Springer-Verlag, 2002, pp. 383-397.

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

17

[16] W. Grieskamp, Nachmanson, L., Tillmann, N., Veanes, M., Test Case Generation from AsmL

Specifications - Tool Overview, 10th International Workshop on Abstract State Machines,

Taormina, Italy, 2003

[17] Buhr, Raymond JA. "Use case maps as architectural entities for complex systems."Software

Engineering, IEEE Transactions on 24.12 (1998): 1131-1155.
[18] Fowler, Martin. UML distilled: a brief guide to the standard object modeling language. Addison-

Wesley Professional, 2004.

[19] ETSI ES 203 119 (stable draft): Methods for Testing and Specification (MTS); The Test Description

Language (TDL).

[20] http://www.ttcn-3.org/index.php/downloads/standards.

[21] Adolph, S., Cockburn, A., & Bramble, P. (2002). Patterns for effective use cases. Addison-Wesley

Longman Publishing Co., Inc.

[22] http://istar.rwth-aachen.de/tiki-index.php?page=jUCMNav.

[23] Boulet, P., Amyot, D., & Stepien, B. (2015). Towards the Generation of Tests in the Test

Description Language from Use Case Map Models. In SDL 2015: Model-Driven Engineering for

Smart Cities (pp. 193-201). Springer International Publishing.

AUTHORS

Nader Kesserwan joined Robert Morris University in 2020 as an assistant professor of

software engineering after several years of academic and industrial experience. Dr.

Kesserwan finished his Ph.D. in Information Systems and Engineering at Concordia

University, Montreal, Canada. His industrial experience includes R&D activities in

Avionics; testing embedded systems such as flight simulators and flight management

systems. His research interests centre around requirements engineering and model-driven
testing. Dr. Kesserwan published several journal papers in software engineering and

participated in several conferences.

Jameela Al-Jaroodi received her Ph.D. in computer science from the University of

Nebraska–Lincoln, Nebraska, USA and an M.Ed. in higher education management from

the University of Pittsburgh, Pennsylvania, USA. She was a Research Assistant Professor

at Stevens Institute of Technology, Hoboken, NJ, USA, then an Assistant Professor at the

United Arab Emirates University, UAE. Then she was an independent Researcher in the

computer and information technology. She is currently an Associate Professor and

Coordinator of the software engineering concentration at the Department of Engineering,

Robert Morris University, Pittsburgh, Pennsylvania, USA. She is involved in various

research areas, including middleware, software engineering, security, cyber-physical systems, smart
systems, and distributed and cloud computing, in addition to UAVs and wireless sensor networks.

Nader Mohamed is an associate professor in the Department of Computing and

Engineering Technology, Pennsylvania Western University, California, Pennsylvania,

USA. He teaches courses in cybersecurity, computer science, and information systems.

He was a faculty member with Stevens Institute of Technology, Hoboken, NJ, USA and

UAE University, Al Ain, UAE. He received the Ph.D. in computer science from the

University of Nebraska–Lincoln, Lincoln, NE, USA. He also has several years of

industrial experience in information technology. His current research interests include

cybersecurity, middleware, Industry 4.0, cloud and fog computing, networking, and cyber-physical

systems.

Imad Jawhar is a professor at the Faculty of Engineering, Al Maaref University,

Beirut Lebanon. He has a BS and an MS in electrical engineering from the University

of North Carolina at Charlotte, USA, an MS in computer science, and a Ph.D. in

computer engineering from Florida Atlantic University, USA, where he also served as

a faculty member for several years. He has published numerous papers in international

journals, conference proceedings and book chapters. He worked at Motorola as

engineering task leader involved in the design and development of IBM PC based

software used to program the world's leading portable radios, and cutting-edge

International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.4, July 2023

18

communication products and systems, providing maximum flexibility and customization. He was also the

president and owner of Atlantic Computer Training and Consulting, which is a company based on South

Florida (USA) that trained thousands of people and conducted numerous classes in the latest computer

system applications. Its customers included small and large corporations such as GE, Federal Express and

International Paper. His current research focuses on the areas of wireless networks and mobile computing,
sensor networks, routing protocols, distributed and multimedia systems. He served on numerous

international conference committees and reviewed publications for many international journals,

conferences, and other research organizations such as the American National Science Foundation (NSF).

He is a member of IEEE, ACM, and ACS organizations.

	Abstract
	Keywords
	Model-Driven Testing, Transformation Rules, Model Transformation, TDL, UCM & TTCN-3

