
International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

DOI: 10.5121/ijsea.2023.14503                                                                                                                     29 

 
REDUSHARPTOR: A TOOL TO SIMPLIFY 

DEVELOPER-WRITTEN C# UNIT TESTS 
 

David Weber and Arpit Christi 

 

School of Computing, Weber State University, Ogden, UT, USA 

 

ABSTRACT 
 
Modern software systems are complex and locating, isolating and fixing a fault even with a failing test is 

tedious and time-consuming. Simplifying failing test(s) can significantly reduce the developer effort by 

reducing the irrelevant program entities that developers need to observe. Delta Debugging (DD) algorithm 

automatically reduces the failing tests. Hierarchical Delta Debugging (HDD) algorithm improves DD for 

hierarchical tests like source code and HTML files. Many modern implementations of these algorithms 

work on a generic tree-like structure and fail to consider complex structures, intricacies, and 

interdependence of program elements of a particular programming language. We propose a tool 

ReduSharptor to simplify C# tests that uses language-specific features and interdependence of C# program 

elements using Roslyn compiler APIs. We evaluate ReduSharptor on a set of 30 failing C# tests to 
demonstrate its applicability and accuracy. 

 

KEYWORDS 
 
program debugging, software testing, software maintenance. 

 

1. INTRODUCTION 
 

The complexity of modern software makes debugging difficult and time consuming even with an 
availability of failing test(s). To debug and fix a failing program, the developer needs to locate 
and isolate the fault first, a slow and tedious process known as Fault Localization (FL). If the 
failing tests only execute faulty program elements, FL is trivial. The complexity arises from the 
fact that failing tests often execute a large set of non-faulty program elements. Hence, 
simplification of failing tests while keeping the bug reduces the complexity of fault localization 
by reducing the number of non-faulty program elements the developers need to observe. It 

focuses developers’ attention on faulty aspect of the program faster. Simplified failing tests are 
not only helpful aid to developers, but it can also significantly improve the accuracy of automatic 
fault localization techniques [1], [2].  
 
The most widely known and utilized automatic test simplification technique is the Delta 
Debugging (DD) algorithm by Zeller and HildeBrandt that works well on test inputs that can be 
considered array or list like structures [3]. The DD algorithm is not most efficient on tests that are 
tree-like structures like HTML files, c or java programs, XML, etc. Mishreghi and Su proposed 

Hierarchical Delta Debugging (HDD) algorithm that works efficiently on tree like test inputs by 
utilizing the underlying Abstract Syntax Tree (AST) structure [4].  
 
Recently a few researchers proposed modern implementations of HDD algorithm and their 
variants [5], [6], [7], [8]. Most of the implementations are language-agnostic and hence can 
reduce a variety of tests like HTML, source code in different programming languages, xml, and 
etc. Stepanov et al. noted the language-agnosticness of the HDD tools a major limiting factor in 

https://airccse.org/journal/ijsea/vol14.html
https://doi.org/10.5121/ijsea.2023.14503


International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

30 
 

employing the tools efficiently for real-world, large-scale usage as the tools fail to consider and 
utilize the language-specific features, complexities and inter-dependence [8]. These tools rely on 
a generic AST or grammar in simplification process and produces many non-compilable 
intermediate variants before the convergence. Sun et al. noted the need of producing syntactically 

correct intermediate test variants while proposing Perses algorithm [6]. Also, most of the tools 
rely on many libraries, components and external tools that need to be up to date all the time to 
utilize the tools. Binkley et al. argue that the cost of development and maintenance is prohibitive 
for program slicing tools (DD/HDD produces a slice) due to the need of a large set of libraries 
and components [9]. Many of these tools require a certain preprocessing steps before the tool can 
be utilized to simplify tests [6], [5].  
 
Instead of focusing on varying set of test inputs and test cases, we focus on developer-written C# 

unit tests. As we focus our attention, observe and study unit tests implemented in C# by 
developers, we noticed that we can utilize new avenues to implement a test reduction tool that is 
applicable, accurate, and easy to use. To this end, we propose a tool ReduSharptor that provides 
the following novel features.  
 

1. A tool specifically implemented for C# tests that utilizes language-specific features 
of C#       programs and tests. In the process, it avoids many non-compilable variants. 

2. A tool that utilizes multiple approaches to prune the search space. 
3. A tool that exists as a stand-alone entity and does not require any further libraries and 

tool set. The tool can be invoked using an EXE. 
4. A tool that requires absolutely no preprocessing steps.  

 
We evaluate ReduSharptor on a set of 30 failing tests on 5 open-source C# projects to 
demonstrate that ReduSharptor is applicable and accurate. The tool can produce correct test 

simplifications with high precision (96.58%) and high re call (96.45%). ReduSharptor is publicly 
available on GitHub (https://github.com/TheWebRage/ReduSharptor). The dataset that we use for 
evaluation is also available on GitHub (https://github.com/TheWebRage/CSharp-SyntheticBugs). 
 

2. RELATED WORK 
 
Delta Debugging (DD) is an algorithm that simplifies failing tests while still keeping the bug by 
utilizing a variant of binary search to remove individual components that are unnecessary for 
triggering the bug [3]. To retrofit DD for hierarchical test inputs like xml files, html, programs, 
etc. Misherghi and Su proposed HDD that works efficiently on tree like inputs by exploiting the 
underlying AST [4]. Both DD and HDD are theoretically sound algorithms that guarantee 

convergence and minimality. 
 
Regehr et al. utilized test reduction to propose CReduce to minimize C programs for compiler 
testing [10]. Hodovan and Kiss observed that Extended Context Free Grammar produces better 
balanced tree than Context Free Grammar and utilized it in implementing modernized HDD tool 
called picireny [5]. Herfert et al. proposed Generalized Tree Reduction (GTR) algorithm that 
relies on (1) operations other than removal or deletion (2) replacing a tree node with similar tree 

node [11]. Sun et al. observed that during the simplification process, many previous algorithms 
produce syntactically invalid variants. A futile compilation step needs to be performed before 
pruning the invalid variant. They proposed Perses algorithm specifically to avoid generation of 
invalid variants [6]. Gopinath et al. utilized Perses algorithm to propose DDSET algorithm to 
abstract failure inducing minimal input from a larger input using input grammar [7]. Picireny, 
Perses and DDSET use language specific grammar of Antlr to produce the AST for specific 
programming languages. Binkley et al. proposed Observational-based Slicing (ORBS) technique 

https://github.com/TheWebRage/ReduSharptor
https://github.com/TheWebRage/CSharp-SyntheticBugs


International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

31 

that uses program line deletion as a fundamental operation to slice program accurately and 
efficiently [9]. Christi et al. combined inverted HDD with statement deletion mutation to simplify 
programs for the purpose of resource adaptations [12]. They argued that reduction is meaningful 
and useful at statement level and avoided non-statement level reductions [12,13]. 

 

3. MOTIVATION AND NEED FOR REDUSHARPTOR 
 

Consider the test ApplySomeArgs taken from language-ext project, one of the projects in our 
empirical analysis. The test source code is shown in Figure 1.  

 

 
 

Figure 1.  ApplySomeArgs test in language-ext 
 

3.1. PURPOSE OF THE MINIMIZED TEST 

 
If test minimization is used for compiler testing, even a non-compilable piece of source code can 
be a useful artifact in debugging and bug isolation. Our focus is to reduce the failing unit tests to 
aid developers in debugging. Hence, the end product of test simplification must be compilable 

andexecutable tests. Any intermediate test that has compilation error will be pruned and will not 
be used for further processing by the simplification process because the tool cannot produce a 
pass/fail results on such a test. 
 
3.2. THE COST OF COMPILATION 

 
Whenever any changes are made in either the program or test, the source code needs to be 

compiled before executing the test. In test reduction, we always modify or reduce the test. Hence, 
at least the test project, library or jar needs recompilation. For real-world test projects, the 
compilation time can be very high. For example, for the language-ext project, after a change is 
made in any of the tests, the compilation time is approximately 11 seconds on a windows 
machine with Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz processor and 16.0 GB RAM. 
 
3.3. PERFORMANCE OF OTHER TECHNIQUES 

 

If we simulate the behavior of ORBS or Perses on the test, we notice the potential of producing 
many variants that cannot compile. 
ORBS relies on line level reduction and hence, for the test in Figure 1, it may produce variants 
where line 1 is removed from the test or line 3 is removed from the test; both are not compilable. 
Perses attempts to produce syntactically correct variants but syntactic correctness does not always 
result in successful compilation. For example, for the test in Figure 1, in line 2, .Apply(Some()) 
and .Apply() are correct syntactic variants that don’t compile. Perses will produce many such 

variants for the given test. If the minimized test is going to be used by developers, avoiding such 
variants can improve the performance significantly considering the large compilation time for 
most test projects.  
 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

32 
 

3.4. USING STATEMENT AS THE UNIT OF REDUCTION 

 
Instead of using (1) any node in the AST or (2) line in the test as the basis of the reduction, 
ReduSharptor uses program statement as the unit of reduction. The idea of using statement level 

reduction is based on previous work where researchers found statement level reductions to be 
most useful and applicable [12,13]. The statement is defined by StatementSyntax class or other 
derived classes of the StatementSyntax in Roslyn compiler API [16]. With statement as unit of 
reduction; line 2, line 3, and line 4 will be treated as a single statement of type 
LocalDeclarationStatementSyntax by Roslyn Compiler. Hence, it can only produce one variant 
that cannot compile - the variant where the entire first statement is deleted. 
 
3.5. SEARCH SPACE REDUCTION DUE TO LESS INTERMEDIATE VARIANTS 

 
When we use statement as a unit of reduction, we are essentially considering the AST with 
significantly less nodes as we just ignore the existence of nodes below the statement level. As the 
DD/HDD algorithm will have to process less nodes, many variants will be pruned automatically 
resulting in a considerable reduction in the search space. As DD algorithm is O(n2) and HDD 
algorithm is O(n3), any reduction in search space will result in significant performance 
improvement. 

  
3.6. DD IS SUFFICIENT 

 
Consider the fictitious test case shown in figure 2. The corresponding AST representation is 
available in Figure 3. The figure only shows statement nodes as we already argued for not using 
nodes below the statement level. Now consider two nodes that corresponds to line 1 and 2 of 
figure 4. Such statements don’t have a sub tree with our statement deletion assumption. The if 

statement spanned across line 3, 4 and 5 results into a tree. We divide Roslyn compiler statement 
set into two distinct sets - (1) NonTree - statements that cannot form further sub trees (2) Tree- 
statements that can form further sub trees. We conducted a formative study on 100 distinct 
developer-written randomly-chosen unit tests across 10 real-world projects and observed the 
statement usage. The possibility that a Tree statement exists immediately after the method- level 
block statement in AST is low in developer-written C# unit tests - only 3.30%. If a single Tree 
statement cannot immediately exist after the method-level block statement in AST, the test 
method cannot have any more Tree statements. So, we consider the Tree statement as a NonTree 

statement for processing purposes. We will process IfStmt as a single statement instead of 
processing the corresponding sub tree separately. For Figure 2 code, this means treating line 3, 
line 4, and line 5 as a single block. Either the entire block is removed or nothing is removed. We 
don’t have any chance to separately processing Assert in line 4. We have two advantages. (1) We 
need to process less statements (2) All statements below block statements are considered 
NonTree statement. We have a list or set of —NonTree statements below BlockStmt and we can 
process them using DD algorithm (O(n2)) instead of HDD algorithm (O(n3)). This can be done 

because we abolished tree structures and converted  into a flat non-tree structure. At first glance 
we seem to be sacrificing accuracy (in the foo example, probably missing line 4 Assert statement) 
for efficiency but later our results demonstrate that such simplification works well in practice. 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

33 

 
Figure 2. foo test to demonstrate AST 

 
 

 
 

Figure 3. AST of code in Figure 2 

 

4. REDUSHARPTOR: USAGE, ARCHITECTURE, AND IMPLEMENTATION 

DETAILS 
 

4.1. USAGE 

 
To use our tool, the developer will have to only provide the following: test file with full path, 
name of the test (as single file has many tests and we may want to reduce only one failing test), 
the path of the .csproj file associated with the code. Figure 4 shows a usage example of 
ReduSharptor. All this information is already available to the developers. Optionally the 

developer can provide a particular folder path if they want to use it to store intermediate results 
and final output in that folder. In the example provided in Figure 4, the first argument is the test 
file with complete path, the second argument is the name of the test, the third argument is the 
csproj file with complete path and the last argument is the folder where intermediate results and 
the final results will be stored.  
 
The architecture from a perspective of a user is described in Figure 5. If you compare the 
architecture figure with Perses workflow figure and picereny architecture figure in the 

corresponding works, the contrast is clear [5], [6]. Both Perses and picireny need significant 
preprocessing steps that require other libraries, toolset, and components. ReduSharptor does not 
require any preprocessing steps, the developer has all the necessary information and they provide 
this information as it is. Both Perses and require a test script to be available, normally a .sh file or 
a batch file or similar. ReduSharptor does not require any of these as explained in the architecture 
in the next sections. 
 

 
 

Figure 4. command line execution of ReduSharptor 

 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

34 
 

 
 

Figure 5. ReduSharptor architecture from a user’s perspective 

 

 
4.2. ARCHITECTURE 

 

As ReduSharptor is implemented for C# it takes into consideration how C# programs are 
organized using .sln and .csproj files. In order to compile or run the test, ReduSharptor uses the 
.csproj file, the test, and the built- in build and run utility available as part of .NET framework 
and Roslyn compiler to generate necessary build and run script. The process is described in the 
right side of Figure 6. On the left side, we describe how a test is processed first using Roslyn 

compiler to generate the parse tree. The parse tree will go through a pruning and transformation 
process to produce a tree where Tree statements will be processed as NonTree statements. The 
test, the processing statement list, and the build+run script will then be passed to DD algorithm to 
produce minimized test. Perses and Picireny require the user of their tool to provide the test script 
- test script may get complex sometimes. Also, both require a new test script for each test 
minimization. 

 

4.3. IMPLEMENTATION 

 
We sincerely attempted not to have any external dependencies, libraries or tool set. The 
implementation completely use .NET framework and Roslyn compiler API available as part of 
Microsoft.CodeAnalysis library. Because of this, a user can easily invoke ReduSharptor as a 
command line utility without worrying about downloading or maintaining any external 
components or libraries. The synergy between using a C# based tool and C# unit tests helps to 

have no preprocessing steps. 
 

Table 1.  Subject projects, LOC (Line of Code), # of tests, and total commits.. 
 

Project LOC # of Tests # of Commits 

language-ext [17] 318157 2610 3032 

Umbraco-CMS [18] 156992 2637 42491 

Fleck [19] 3576 92 237 

BizHawk [20] 1686865 98 19860 

Skclusive.Mobx.Observable  
[21] 

7970 41 26 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

35 

 
 

Figure 6. ReduSharptor internal architecture with implementation details 

 

5. EVALUATION 
 
To evaluate ReduSharptor we ask the following questions. 
 
1. RQ1: How applicable is ReduSharptor? 
2. RQ2: How accurate is ReduSharptor when performing failing test minimization? 
 
5.1. EXPERIMENTS 

  
5.1.1 SUBJECTS 

 
We want to use any existing C# bug repositories like Defects4J for java for our evaluation [14]. 
We are unaware of any such repository. Even the benchmark list on the program repair website, 
does not mention any C# benchmarks [15]. We use 5 open-source C# projects listed in Table I. 
Among the five, except Skclusive.Mobx.Observable, others are under active development. After 

selecting the subjects, we looked for existing bugs in those projects. We went through commits 
and see if any of the commits or any snapshot of the software has a failing test. It seems that 
conscious developers normally run unit tests before committing to the repository and hence, we 
cannot find failing tests with any snapshot of the repository. We then searched for commits 
whose description seems to be associated with some bug. We grab the current version of source 
code and apply the commit in reverse as best as we can manually until it produces at least one 
failing test. Sometimes we need to utilize more than one related commits to recreate a bug. When 

a particular reversal of source code produced a failing test case, we preserve those changes as a 
bug and note down the failing test. The bugs (failing tests) that we have are based on commits but 
we resist to call them real bugs. We call them synthetic bugs and hope that they are close 
resemblance to real bugs. The synthetic bugs is good intermediate solution between real bugs and 
mutants. 
 
Table 2.  Subject tests, Stmts - number of statements , TreeStmt – number of Tree Statements and 

NonTreeStmt – number of non tree statements. 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

36 
 

 

Tests Stmts NonTreeStmts TreeStmts 

ListCombineTest 10 10 0 

EqualsTest 7 7 0 

ReverseListTest3 5 5 0 

WriterTest 17 15 2 

Existential 14 14 0 

TestMore 55 55 0 

CreatedBranchIsOk 54 54 0 

CanCheckIfUserHasAccessToLanguage 19 17 2 

Can_Unpublish_ContentVariation 28 28 0 

EnumMap 11 11 0 

InheritedMap 17 17 0 

Get_All_BluePrints 25 23 2 

ShouldStart 7 5 2 

ShouldSupportDualStackListenWhenServerV4All 4 3 1 

ShouldRespondToCompleteRequestCorrectly 15 15 0 

ConcurrentBeginWrites 21 21 0 

ConcurrentBeginWritesFirstEndWriteFails 27 26 1 

HeadersShouldBeCaseInsensitive 7 7 0 

TestNullability 15 15 0 

TestCheatcodeParsing 8 7 1 

SaveCreateBufferRoundTrip 31 29 2 

TestCRC32Stability 27 25 2 

TestSHA1LessSimple 14 14 0 

TestRemovePrefix 14 14 0 

TestActionModificationPickup1 23 21 2 

TestObservableAutoRun 26 25 1 

TestMapCrud 39 38 1 

TestObserver 104 101 3 

TestObserveValue 62 59 3 

TestTypeDefProxy 53 51 2 

Total 759 732 27 

 
Once we have a failing test the story doesn’t end there. We need to ensure that the failing test 
should at least have some removable component(s) - a statement, a block of code or a part of an 
expression statement such that after it is removed the test continue to fail the exact same way. We 
prune the failing test if we don’t find any such component. Applying ReduSharptor is 
meaningless as it won’t reduce anything. The same is true if a developer attempts to reduce the 
test manually. 

 
Using the process, we created 30 synthetic bugs that has 30 failing tests that are reducible. Table 
2 describes each individual failing test we consider, the corresponding statements (as defined by 
StatementSyntax in Roslyn compiler), the number of NonTree statements and the number of Tree 
statements. .  
 
5.1.2 PROCESS 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

37 

 
For each failing test, we manually find a minimal test that still continues to fail the same way. As 
developer-written unit tests are simple enough to work with, it was not difficult to manually find 
minimal tests. For all 30 failing tests we create minimal tests and build a gold standard for 

comparison. Then we use ReduSharptor to reduce the failing tests. 
 
5.1.3 MEASUREMENTS 

 
We compare the results generated by the tool with the gold standard, matching each failing test in 
the gold standard with the corresponding failing test generated by ReduSharptor. We collect the 
following information. 
 

1. True-Positive - Statements that are removed correctly and matches with the gold 
standard. 
2. False-Positive - Statements that are incorrectly removed. 
3. False-Negative - Statements that are missed. 
 
5.2. RESULTS 

 

Now we present our findings. 
 
5.2.1 APPLICABILITY 

 
We applied ReduSharptor on 30 failing tests for 30 synthetic bugs of 5 open-source C# projects. 
We process 759 statements. During the application ReduSharptor did not have any exceptions or 
unexpected behaviour. We ran into a few issues but were quickly able to fix them. It was 

successfully able to finish and produce the minimal failing test. So, ReduSharptor is highly 
applicable. 
 
In addition to this, most of the unit tests that were simplified have mostly non-tree structures and 
allow for ReduSharptor to work effectively on them. Out of all the statements across all of the 
unit tests we simplified, only 27 statements had tree-like structures as seen in figure 6. Therefore, 
even though ReduSharptor did not simplify these statements to the granularity of an HDD 
algorithm, it was still very effective for these tests. 

 
5.2.2 ACCURACY 

 
We report accuracy using the standard measure of precision and recall as given below. Precision 
measures how many statements we removed that were not supposed to be removed. Recall 
measures how many statements we missed that we were supposed to remove. 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

           

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +𝐹𝑁
 

 
We found ReduSharptor has 96.58% precision and 96.45% recall. That means we missed 
approximately only 3.5% of statements that were supposed to be removed and approximately 
3.5% statements were inaccurately removed that were not supposed to be removed. Hence, we 
can claim that ReduSharptor is highly accurate in performing failing test minimization. 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

38 
 

5.2.3 A DISCUSSION ON INACCURACY 

 
Though we don’t have a large data set, we evaluate our inaccuracies to further understand the 
results. We note that most of the false negatives are due to Tree statements. This makes sense: 

We only process NonTree statements that are just below the BlockStatmentSyntax and if a Tree 
statement is present,we treat it as a single NonTree statement. The present of a Tree statement 
will cause missed opportunities in processing that may turn into missed removal of statements. 
The high precision and recall numbers suggest that our observation was correct. Even we treat 
Tree statement as a single NonTree statement, test minimization is very accurate in practice. 
Most of the false positives are due to tool limitations and other issues. 
 
5.2.4 Why don’t we compare with other tools? 

 

None of the test minimization tools that we discussed before has a C# implementation to the best 
of our knowledge. To implement those techniques and algorithms in C# for comparison purpose 
is beyond the scope of this work. 
 

6. THREATS TO VALIDITY 
 

6.1. CONSTRUCT VALIDITY 

 
Do our results indeed reflect the advantage of ReduSharptor? 

Our results fail to reflect the advantage if (1) Tool is inaccurate or (2) If the gold standard we 
created is inaccurate. We extensively tested our tool on different statement types, tests and 
programs. We carefully and accurately constructed the gold standard. As the developer-written 
unit tests were simple and small, it was easy to create the gold standard.   
 
6.2. INTERNAL VALIDITY 

 

Did we mitigate bias during our experiments using ReduSharptor? 
All 5 projects that we used were open-source projects and none of the authors work on these 
projects. We randomly sampled 6 bugs from each project such that (1) the bug has one failing test 
(2) the test was reducible.  
 
6.3. EXTERNAL VALIDITY 

 
Do our results generalize? 

The five projects that we use are from different domains. They have different development team, 
different timeline, and different purpose. We expect our results to generalize with most C# 
projects and unit tests. If a tool like ReduSharptor is developed for other programming languages 
like Java, Python; we expect our results to generalize as most programming languages and unit 
tests have similar structure and similar compiler API.  
 
6.3. RELIABILITY 

 

Is our evaluation reliable? 

All the projects used for this evaluation is available online. Our tool ReduSharptor is also 

available online. The tool is published at https://github.com/TheWebRage/ReduSharptor.  

 
 
 

https://github.com/TheWebRage/ReduSharptor


International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

39 

CONCLUSIONS 
 
Research tools are mostly focused on a very limited set of programming languages - mainly C 

and Java. As more C# projects are available in open source, availability of the tools in C# will let 
us compare and validate concepts and tools. If we want to see widespread adoption of research 
tools in the industry, we need to factor in the ecosystem that a particular programming language 
developers use. Ease of use should be given the utmost priority. Developers time is very costly. If 
they need to perform time-consuming preprocessing steps and produce test script that can be used 
by a particular tool for test case reduction, they won’t likely use it until they see a significant 
benefit. While developing ReduSharptor, we considered the C# ecosystem that uses visual studio, 

.NET cs projects (.csproj), solutions (.sln), and unit test frameworks. Because of this, 
ReduSharptor is easy to use, applicable, and accurate. 

 

ACKNOWLEDGEMENTS 
 

The authors would like to thank Dr. Nicole Anderson and Dr. Yong Zhang for their important 
feedback.  
 

REFERENCES 
 
[1] D. Vince, R. Hodova´n, and A .́ Kiss, “Reduction-assisted fault localiza- tion: Don’t throw away the 

by-products!” in ICSOFT, 2021, pp. 196– 206. 

[2] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, “Reduce before you localize: Delta-

debugging and spectrum-based fault localization,” in 2018 IEEE International Symposium on 

Software Reliability Engineering Workshops, ISSRE Workshops, Memphis, TN, USA, October 15-

18, 2018, 2018, pp. 184–191. 

[3] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE Trans. Softw. 

Eng., vol. 28, no. 2, pp. 183–200, Feb. 2002. 

[4] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Pro- ceedings of the 28th 

International Conference on Software Engineering, ser. ICSE ’06, 2006, pp. 142–151. 

[5] R. Hodova´n and A. Kiss, “Modernizing hierarchical delta debugging,” in Proceedings of the 7th 

International Workshop on Automating Test Case Design, Selection, and Evaluation, ser. A-TEST 

2016. ACM, 2016, pp. 31–37. 

[6] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided program reduction,” in 

Proceedings of the 40th International Conference on Software Engineering. Association for 

Computing Machinery, 2018,p. 361–371. 

[7] R. Gopinath, A. Kampmann, N. Havrikov, E. O. Soremekun, and A. Zeller, “Abstracting failure-
inducing inputs,” in Proceedings of the 29th ACM SIGSOFT international symposium on software 

testing and analysis, 2020, pp. 237–248. 

[8] D. Stepanov, M. Akhin, and M. Belyaev, “Reduktor: How we stopped worrying about bugs in kotlin 

compiler,” in 2019 34th IEEE/ACM International Conference on Automated Software Engineering 

(ASE). IEEE, 2019, pp. 317–326. 

[9] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo, “Orbs: Language-independent 

program slicing,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on 

Foundations of Software Engineering, 2014, pp. 109–120. 

[10] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case reduction for c compiler 

bugs,” in Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design 

and Implementation, ser. PLDI ’12. ACM, 2012, pp. 335–346. 

[11]  S. Herfert, J. Patra, and M. Pradel, “Automatically reducing tree- structured test inputs,” in 

Proceedings of the 32Nd IEEE/ACM Interna- tional Conference on Automated Software 

Engineering, ser. ASE 2017, 2017, pp. 861–871. 

[12] A. Christi, A. Groce, and R. Gopinath, “Resource adaptation via test-based software minimization,” 

in 2017 IEEE 11th International Conference on Self-Adaptive and Self-Organizing Systems 

(SASO), Sept 2017, pp. 61–70. 
[13] A. Christi and A. Groce, “Target selection for test-based resource adaptation,” in 2018 IEEE 



International Journal of Software Engineering & Applications (IJSEA), Vol.14, No.5, September 2023 

40 
 

InternationalConference on Software Quality, Reliability and Security (QRS), July 2018, pp. 458–

469. 

[14] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to enable controlled 

testing studies for java programs,” in Pro- ceedings of the 2014 International Symposium on 

Software Testing and Analysis, 2014, pp. 437–440. 

[15] “Program repair benchmark bugs list,” https://program-repair.org/ benchmarks.html, accessed: 

2022-11-17. 

[16]  B. Wagner, “The .net compiler platform sdk (roslyn apis),” Sep 2021. [Online]. 
Available:https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/ 

[17] “Louthy/language-ext: C# functional language extensions - a base class library for 

functionalprogramming.” [Online]. Available: https://github.com/louthy/language-ext 

[18] “Umbraco/umbraco-cms: The simple, flexible and friendly asp.net cms used by more than 730.000 

websites.” [Online]. Available: https://github.com/umbraco/Umbraco-CMS [24] J. Staten, 

“Statianzo/fleck: C# websocket implementation.” [Online].  

[19] Available: https://github.com/statianzo/Fleck 

“Statianzo/fleck: C# websocket implementation.” [Online]. Available: https://github.com/statianzo/Fleck 

[20] “Tasemulators/bizhawk: Bizhawk is a multi-system emulator written in c#. bizhawk provides nice 

features for casual gamers such as full screen, and joypad support in addition to full rerecording and 

debugging tools for all system cores.” [Online]. Available: 

https://github.com/TASEmulators/BizHawk 

[21] “Skclusive/skclusive.mobx.observable: Mobx port of c# language for blazor.” [Online]. Available: 

https://github.com/skclusive/Skclusive.Mobx.Observable 

 

AUTHORS 

David Weber is an embedded software engineer at Northrop Grumman at Roy UT, USA. 

He completed his Masters Graduate studies at Weber State University in Ogden UT, USA 

focusing his research in adaptive programming, high performance computing, and 

embedded systems. He has experience in working in domains like defense applications 

and embedded software. 
 

Dr. Arpit Christi is an assistant professor at School of computing, Weber State University, 

Ogen, UT, USA. He did his Ph.D. in Computer science from Oregon State University, 

Corvallis, OR, USA. His Research interests are program debugging, software testing, and 

self-adaptive software. He has many years of industry experience working in domains like 

law and justice, oil and natural gas industry, and financial planning. 

 

 

 

https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/
https://github.com/louthy/language-ext
https://github.com/statianzo/Fleck
https://github.com/statianzo/Fleck
https://github.com/TASEmulators/BizHawk
https://github.com/skclusive/Skclusive.Mobx.Observable

	Abstract
	Keywords
	program debugging, software testing, software maintenance.


