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ABSTRACT 
 

Nowadays, software designers have adopted modelling languages that help to communicate the dynamic 

behavior of UML behavioral diagrams. As it is with other software artefacts, these diagrams tend to get 

more complex every-time they are modified.  Although researchers have in the past proposed metrics to 

evaluate their complexity, these cannot be directly applied on UML behavioral diagrams due to their 

unique features. In this paper, we identify three complexity perspectives for UML behavioral diagrams, 

namely, element, control flow and interaction perspectives. We then define metrics under each complexity 

perspective. The metrics are either derived from existing UML metrics or from existing software metrics. 

Metrics values were computed from six behavioral diagrams, and the results reveal that they are 
intuitional. The metrics were also compared with existing metrics and results indicate that the proposed 

metrics are more complete when evaluating the behavior of an entire system in multiple perspectives. 

Finally, we validate the metrics using Weyuker’s nine properties. Results indicate that our metrics satisfy 

the theoretical requirements of soundness implying that they are correctly defined.  
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1. INTRODUCTION 
 

Modeling is critical in many disciplines because it makes the communication and construction of 

complex systems from minor parts easier [1]. The focus of software quality assurance is shifting 

from system implementation towards system modeling (model verification and validation).  
Models are important in communicating the components of a system for productive analysis [1]. 

The Unified Modeling Language, (UML) is widely used by designers to develop analysis and 

design models [2,3,4,5]. It provides models to show the static structure and the dynamic behavior 
of a system.  The dynamic behavior illustrates how the system changes behavior at run time while 

the static UML diagram focuses on the structural components of a system [2, 6]. Software 

designers are increasingly adopting UML behavioral diagrams such as use case diagrams, state 

machine diagrams, and sequence diagrams, among others, as a way of communicating the 
dynamic behavior of software.   

 

As software systems become more complex and a necessity in everyday activities, a lot of 
emphasis has been placed on software quality. To assess software quality, a measurement process 

has been applied. Measurement can be defined as the process of discovering, planning, executing, 

and assessing measurement of a project [7,8]. Software measurement is critical in software 
engineering since it allows system developers to obtain reliable estimates concerning deadlines, 

cost, and quality for the development of their systems.  
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The problem of UML behavioral diagrams in this study is that they have inherent complexity 
which can be viewed from different perspectives such as element perspective, control flow and 

interaction perspective. Over the past years, several researchers have proposed complexity 

metrics intending to assess the complexity of UML behavioral diagrams. However, they do not 

consider all the measurable perspectives of UML behavioral diagrams. Considering the problem, 
complexity metrics have been proposed based on all measurable perspectives of these behavioral 

diagrams.  

 
The remainder of this paper is organized as follows. Section 2 presents the complexity 

perspectives in UML behavioral diagrams, section 3 presents the methodology, section 4 presents 

perspective based complexity attributes, section 5 presents metrics definition, section 6 presents 
case studies, comparison with existing metrics and validation results using Weyuker’s properties, 

section 7 presents discussion, and finally section 8 presents the conclusions and future works. 

 

2. COMPLEXITY PERSPECTIVES IN UML BEHAVIORAL DIAGRAMS 
 
UML behavioral diagrams are used to capture the behavior of a system at runtime. They include 

diagrams such as activity, statechart, collaboration, use case and sequence. A statechart displays 

the behavior of a class due to response to stimuli [9], the sequence diagram displays how 
messages are exchanged between objects [9, 10] while an activity diagram is used to represent 

the workflow and operations of a system [4, 9, 10]. UML behavioral diagrams have inherent 

complexity which can be viewed from different perspectives other than the simplistic single 

view. The perspectives are element, control flow and interaction perspective. 
 

2.1. Element Perspective 
 

The element perspective is based on the building elements of the behavioral diagram. Each 

diagram has unique elements that compose it. Increase in the size of the elements increases, the 

complexity of these diagrams. For example, the building elements of a statechart diagram are a 
state, event and a transition [9]. A state depicts a situation where the object satisfies some 

condition, performs some activity, or waits for some event. A state is represented using a rounded 

rectangle. A transition connects two states and is represented by an arrow. Events cause 
transitions of states in state machines. Events can be illustrated externally by transitions and are 

written as text strings. Figure 1 shows elements a statechart diagram 

 

 
 
 

Figure 1.  Elements of a statechart diagram 

 

A sequence diagram is made up of a group of objects and messages. Objects are represented by 
lifelines while messages are represented by arrows among the objects [9,10]. Messages show an 

association among the objects. Figure 2 shows a sequence diagram. A vertical rectangle 

represents a lifeline and arrows represent types of messages. 
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Figure 2. Elements of a sequence diagram 
 

An activity diagram is a flowchart that illustrates the flow from one activity to another. An 

activity diagram is composed of an action state, edge, initial and final state [4,9,10]. An action 

state represents the behavior of an object while an activity edge is a connection between two 
action states. Figure 3 illustrates the building elements of an activity diagram. 

 

 
 

Figure 3. Elements of an activity diagram 

 

2.2. Control Flow Perspective 
 

Control flow in software is the order in which instructions are executed [11]. The control flow 
perspective is the behavior flow from one object to another. The perspective borrows from the 

traditional aspect of the control flow structure of software. They include: sequential control flow 

(this control flow represents the execution of behavior one after the); decision control flow (It 
analyses the types of alternative paths that a system follows when executing behavior); repetitive 

control flow (It is based on the analysis of how a system repeats a certain behavior several times); 

Parallel control flow (It is based on the analysis of the activities that happen simultaneously 

during execution of behavior). Figure 4 shows the different types of control structures in 
behavioral diagrams. 
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Figure 4. Control flows in behavioral diagrams 

 

2.3. Interaction Perspective 
 

Interaction occurs when an element/ object such as state, an action state or a lifeline of a UML 

behavioral diagram communicates to another. Interaction is illustrated by use of edges, links, 
transitions or messages which are elements of different behavioral diagrams. An object/ element 

with the highest number of links, messages, transitions or edges is said to interact more. High 

interaction of an object is associated with more complexity. This perspective can be further 
subdivided into incoming interaction which is based on the number of incoming edges, links, 

transitions or messages to an element/ object and outgoing interaction and outgoing interaction 

which is based on the number of outgoing edges, links, transitions or messages from an 
element/object. 

 

For instance, In Figure 5, the state named coffee ready has 2 outgoing transitions, the coffee 

machine on, coffee pod in the holder and size selected each has 1 outgoing transition. Therefore, 
the coffee ready state interacts more than other states thus contributing to more complexity. 

 

 
 

Figure 5. Coffee machine statechart diagram 
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3. METHODOLOGY 
 
The study involved defining new suite of metrics for UML behavioural diagrams. Initially, a 

perspective based complexity framework for behavioral diagrams was defined. In the framework, 

three complexity perspectives were identified namely, element, control-flow and interaction 

perspectives.  
 

The study employed the Entity-Attribute-Metric model (EAM) [21, 22]. For step 1 of EAM 

(identification of entity to be measured), the entities to be measured were identified as UML 
behavioral diagrams i.e. statechart, activity and sequence diagrams. For step 2 of the EAM model 

(identification of attributes), the complexity attributes were divided into three perspectives of 

attributes namely, element, control flow and interaction perspective. Thereafter, measurement 

attributes were identified under each perspective. The measurable attributes under the element 
perspective were state, action state, and message for statechart, activity, and sequence diagram 

respectively. The sequence, repetitive, decision, and parallel attributes were identified under the 

control flow perspective. The incoming and outgoing interaction attributes were identified under 
the interaction perspective. Step 3 of the EAM model involved defining new measures to measure 

the attributes under each perspective. The new metrics are either derived from existing UML 

metrics or existing software metrics.  
 

Further, the metrics values are computed from case studies to find out if they are intuitional. The 

metrics are also compared with other existing metrics to find out if there are inclusive when 

assessing the entire system behaviour. Also, the defined metrics are validated using Weyuker’s 
nine properties to check for their theoretical soundness. 

 

4. IDENTIFYING PERSPECTIVE BASED COMPLEXITY ATTRIBUTES 
 
In this section, we use the perspectives of UML behavioral diagrams presented earlier in section 

2 to identify measurement attributes. These include, element (the building blocks of the UML 

diagram), control flow (the control structures in the diagram) and interaction (the number of 

outgoing and incoming links/messages/edges/transitions from an object) attributes as shown in 

Figure 6.  

 

 
 

Figure 6.  A perspective-based complexity framework for UML behavioral diagrams 
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5. METRICS DEFINITION 
 

5.1. Element Complexity Metrics 
 

Elements are the building blocks of UML behavioral diagrams. Each diagram has unique 
elements that constitute it. These elements contribute towards the complexity of these diagrams. 

Whenever the size of this elements increases, the complexity of the diagram increases. The 

element perspective is subdivided into measurable attributes such as action state, state and 
messages as shown in Figure 6. 

 

5.1.1. Weighted Number of States and Activities (WNSA) Metric for Statechart 

 
A statechart is a diagram that depicts all possible life histories of an object [12]. The building 

blocks of a statechart diagram include a state, transition, event, activity and a guard. The base 

metric for statechart diagram includes the Number of States (NS), Number of Entry Actions 
(NEA), Number of Activities (NA), Number of Transitions (NT), Number of Guards (NG), and 

the Number of Events (NE) Genero et al. [13]. 

 

The NS metric computes the total number of different type of states.  The NEA metric calculates 
the sum of all entry actions executed inside a state, while the NA metric is the summation of all 

do activities executed inside the state. The NT metric is the total of all transitions in the statechart 

diagram while the NG metric computes the total number of guard conditions in the statechart 
diagram. The NE metric calculates the total number of events in the statechart diagram [13]. 

 

The Weighted Number of States and Activities (WNSA) is defined to evaluate complexity due to 
presence of states and activities. The WNSA is as a result of the modification of the weighted 

number of state measure [14] and State comp metric [15]. King’ori et al. [14] metric did not 

consider complexity due to activities inside a state while Omar [15] metric did not consider 

complexity as a result of the different types of states. Therefore, WNSA is the function of types 
of states in the statechart diagram, the complexity weights of states (Wi) and the complexity 

weights assigned to states with activities (Aw).  

 
According to [14], the initial and final states are given a complexity weight of 1 while a simple 

state is assigned a complexity weight of 1.5. States such as composite and orthogonal states are 

more complex than simple, initial, and final states. Therefore, they are assigned a weight of 2.5 

and 3 respectively. A submachine state is assigned a complexity weight of 2.5 while a history 
state is given a weight of 2 [14]. 

 

In addition, a state with activities contributes more complexity than a state with no activity. A 
state with no activity is assigned a weight of 1 because it takes time to run and become stable. A 

weight of 1.2 is assigned to a state with one activity, while a weight of 1.4 and 1.6 is given to a 

state with 2 and 3 activities respectively. The weights assigned to states with activities are shown 
in Table 1. 

 
Table 1. Complexity of state activities 

 
Number of Activities inside a state Weight (Aw) 

State with no activity 1.0 

1 1.2 

2 1.4 

3  1.6 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.2, March 2024 

7 

The Weighted Number of States and Activities (WNSA) is calculated as follows: 
 

  
 
Where X is the type of state, i shows the start of the first value of X. W is the complexity weight 

assigned to every type of state, n is the number of states and A is the complexity weight assigned 

to a state with activities. 
 

5.1.2. Element Complexity Metrics for Sequence Diagram  

 

A sequence diagram depicts the association between objects. Objects communicate with each 
other by sending messages. The building blocks of a sequence diagram are objects and messages 

[9,10]. There are four different types of messages which include asynchronous, synchronous, 

return, and delayed messages. Asynchronous message is where by the message sender has to wait 
for the completion of the procedure call of the message receiver. In synchronous message, the 

sender sends the message and immediately continues with the execution. A return message is an 

asynchronous message returned from the procedure call while a delay message is a message that 
takes time to arrive at the receiver object.  

 

The base metric for a sequence diagram includes message into line (MIL), message out of life 

(MOL), and the weighted number of lifelines (NOL) Sudheesh, et al. [17]. The MIL metric 
computes the sum total of messages into a lifeline while the MOL calculates the total number of 

messages out of the lifeline. The NOL is the total number of lifelines in a sequence diagram.  

 
The various types of messages in a sequence diagram have different complexity due to 

occurrence of events during sending and receiving. By taking these into account, a delay message 

is assigned a weight of 1.0 since it takes time to be delivered to the receiving object. A 

synchronous message is assigned a complexity weight of 1.2 because it consists of only one event 
while asynchronous and asynchronous return messages are assigned a weight of 1.4 since 

additional events may occur during sending and receiving thereby increasing their complexity. 

Table 2 shows the complexity of different types of messages. 
 

Table 2. Complexity of Messages 

 
Type of message 

Weight ( ) 

Delay message 1.0 

Synchronous message 1.2 

Asynchronous and return message 1.4 

 
In addition, a message transmitted over a longer distance contributes to more complexity than a 

message that is transmitted over a short distance. The effect of the length of the message is 

considered by assigning weight to the distance of the messages. Therefore, a message transmitted 
over 1 lifeline is assigned a weight of 1, a message transmitted over 2 and 3 lifelines is assigned a 

weight of 1.2 and 1.4 respectively as shown in Table3. 
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Table 3. Complexity of length of message 

 
Number of Lifelines transmitted over Weight (Lw) 

1 1.0 

2 1.2 

3  1.4 

 
Therefore, to evaluate the complexity of a sequence diagram, the following metrics have been 

proposed. The proposed metrics are as a result of modification of MIL and MOL (Maina et al. 

17). Maina et al. [17] metric did not consider complexity due to the different categories and 
length of messages. 

 

Adjusted Weighted Message into Lifeline (AWMIL)  

 
The Adjusted Weighted Message into life (AWMIL) assesses complexity as a result of different 

types of messages in a sequence diagram. AWMIL is the function of category of message into 

Lifeline and the weight assigned to the type and length of message Therefore, AWMIL is defined 
as follows: 

 

 
 
Where I is the type of message, j shows the start of the first value of I. W is the complexity 

weight assigned to every type of message, n is the number of messages and L is the complexity 

weight assigned to the length of message. 
 

Adjusted Weighted Message out of lifeline (AWMOL)     

 
The Adjusted Weighted Message out of life (AWMOL) is defined to evaluate complexity as a 

result of different types of messages in a sequence diagram. The AWMOL is a function of 

category of message out of Lifeline and the weight assigned to the category and length of 

message Therefore, AWMOL is defined as follows: 
 

 
 
Where O is the type of message, k shows the start of the first value of O. W is the complexity 

weight assigned to every type of message, n is the number of messages and L is the complexity 

weight assigned to the length of message. 

 

Total Sequence Complexity (TSC) 

 

The total sequence complexity (TSC) extends the Shepperd’s metrics [23, 24]. TSC is a function 
of AWMIL and AWMOL. It is computed by first multiplying AWMIL with AWMOL to obtain 

the total information paths in a sequence diagram. Next, the square of the results obtained in the 

first step is calculated. Therefore, TSC is denoted as: 
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5.1.3. Adjusted Weighted Number of State Metric (AWNS) for activity diagram 
 

An activity diagram is a flowchart that illustrates the flow from one activity to another [4,9,10] 

An activity diagram is composed of an action state, edge, initial and final state. Action state 

represent the behavior of an object while an activity edge is a connection between two action 
states. Activity edges may have a guard that defines a condition that must be satisfied. The initial 

and final state show the start and finishing points of a system [4].  

 
The base metric for the activity diagram includes the Number of nodes and the Number of 

linearly independent paths [19]. These metrics compute complexities due to the number of 

activities and connections (edges). 
 

 Adjusted Weighted Number of State (AWNS) measures complexity due to different types of 

states in an activity diagram. AWNS is modified from WNS [14]. AWNS is the function of types 

of states in the activity diagram. An action state is assigned a weight of 2 since it executes the 
behavior of an object while no behavior is executed by the initial and final state thus assigning a 

weight of 1. Therefore, AWNS is calculated as follows: 

 

 
 

Where S is the sum of all states by category, u shows the start of the first value of S. W is the 
complexity weight assigned to every state, and n is the number of states in an activity diagram. 

 

5.2. Aggregate Control Flow Complexity Metric (ACFC) 
 

The control flow perspective is represented by the different control structures of a system as it 

executes behavior at runtime. They include the sequential control flow which represents the 
execution of behavior one after the another, decision control flow which depicts the types of 

alternative paths that a system follows when executing behavior, repetitive control flow which 

represents how certain behavior is executed several times and parallel control flow that illustrates 
activities that are executed simultaneously. Figure 6 shows the measurable attributes under the 

control flow perspective. 

 

UML behavioral diagrams such as statecharts, sequence, and activity diagrams are composed of 
control structures. These control structures contribute to the complexity of these diagrams. 

Therefore, different weights are assigned to different control structures. A sequence is assigned a 

weight of 1, a decision weight of 2, the loop is given a weight of 3 and parallel activity is 
assigned a weight of 4 as shown in Table 4. 

 
Table 4. Control flow complexity 

 
Category Activity Wc 

Sequence One path arrow 1 

Decision Choice, if, else 2 

Loop Arrow to and back to component/ object 3 

Parallel Forks, joins, orthogonal regions, par, horizontal lines 4 

 
In addition, a sequence with guards contributes more complexity than a sequence with no guards. 

The effect of guards inside a sequence is considered by assigning weight to the number of guards. 
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Therefore, a sequence with no guard is assigned a weight of 1.0. A sequence with 1,2 and 3 
guards is assigned a weight of 1.2, 1.4, and 1.6 respectively. A sequence with 4, 5, and 6 guards 

is assigned a weight of 1.8, 2.0, and 2.2 respectively. Table 5 shows the weights assigned to the 

number of guards. 

 
Table 5. Complexity of sequence guards 

 
Number of guards inside a sequence Weight (Gw) 

Sequence with no guard 1.0 

1 1.2 

2 1.4 

3  1.6 

4 1.8 

5 2.0 

6 2.2 

 

The ACFC measures complexity due to control flow structures and guards.  ACFC is as a result 

of the extension of the Cognitive Functional Size (CFS) measure [19]. To calculate ACFC, an 
aggregate is obtained from the function of each type of control-flow by its respective complexity 

weight. Therefore, ACFC is denoted as follows: 

 

 
 
Where Wc is the weight assigned to different types of control structures and Gw is the weight 

assigned to the number of guards in a sequence. The total number of sequences is represented by 

n, m is the number of decisions, p the number of loops and r the number of parallel control 
structure in a behavioral diagram. 

 

5.3. Interaction Complexity Metrics 

 

Interaction occurs when an object such as a state, action state and lifeline communicate with each 

other via a message/ link/edge/transition. Object interaction is considered to contribute towards 
the complexity of a UML behavioral diagram. The measurable attributes of interaction 

perspective are incoming and outgoing interaction. 

 

An object with more incoming and outgoing message/ link/edge/transition interacts more than 
other objects. Therefore, the effect of interaction is also considered by assigning complexity 

weights to the number of incoming and outgoing message/ link/edge/transitions. An object with 1 

incoming message/ link/edge/transition is assigned a weight of 1.0 while an object with 2 
incoming messages/ links/edges/transitions is given a weight of 1.2. An object with 3 and 4 

incoming messages/ links/edges/transitions has a complexity weight of 1.4 and 1.6 respectively.  

 
Table 6. Complexity weights based on the number of incoming edges/ links/ messages 

 
Number of incoming links/edges/ 

messages to an object 

Weight (Ai) 

1 1.0 

2 1.2 
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3  1.4 

4 1.6 

 

In addition, an object with outgoing messages/ links/edges/transitions has high-level of 
interaction and thus contributes to more complexity. Therefore, an object with 1 outgoing 

message/ link/edge/transition is assigned a weight of 1.5, while an object with 2 outgoing 

messages/ links/edges/transitions is assigned a weight of 2.0. An object with 3 and 4 outgoing 
messages/ links/edges/transitions has a complexity weight of 2.5 and 3.0 respectively. An object 

with 5, 6 and 7 outgoing messages/ links/edges/transitions has a complexity weight of 3.5, 4.0 

and 4.5 respectively. Table 7 shows the complexity weight of an object based on the outgoing 

message/ link/edge/transitions respectively. 
 

Table 7. Complexity weights based on the number of outgoing edges/ links/ messages 

 
Number of outgoing links/edges/ 

messages from an object 

Weight (Ai) 

1 1.5 

2 2.0 

3  2.5 

4 3.0 

5 3.5 

6 4.0 

7 4.5 

 

Incoming Interaction Complexity (IIC) 
 

The Incoming Interaction Complexity (IIC) evaluates complexity due to incoming interaction. 

IIC is a function of an object and the weight assigned to the number of incoming message/ 
link/edge/transition as shown in Table 6. Therefore, IIC is defined as follows: 

 

 
 

Where I is the sum of the number of incoming message/ link/edge/transition, t shows the start of 

the first value of I. W is the complexity weight assigned to the number of incoming message/ 
link/edge/transition. 

 

Outgoing Interaction Complexity (OIC) 
 

The Outgoing Interaction Complexity (OIC) is defined to measure complexity due to outgoing 

interaction. OIC is a function of an object and the weight assigned to the number of outgoing 

message/ link/edge/transition as shown in Table 7. Therefore, OIC is defined as follows: 

 
 

Where O is the sum of the number of outgoing message/ link/edge/transition, q shows the start of 
the first value of O. W is the complexity weight assigned to the number of outgoing message/ 

link/edge/transition. 
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Total Interaction Complexity (TIC)  
 

Total Interaction Complexity (TIC) is a function of the Incoming Interaction Complexity (IIC) 

and Outgoing Interaction (OIC). Therefore, TIC is denoted as follows: 

 

 
 

Where the first summation computes the complexity of incoming interaction and the second 
summation computes the outgoing interaction complexity. 

 

6. RESULTS 
 

6.1 Calculating Metrics Values for Diagrams 
 

This section presents results obtained from calculating metrics values from UML behavioural 
diagrams to establish the extent to which the metrics are intuitional. 

 

6.1.1. Calculating Metrics for Statechart Diagrams 

 
To compute the WNSA, the computer gaming statechart presented in Figure 7 (a) has 11 simple 

states out of which 8 simple states have no activities while 3 simple states have one activity to be 

executed. In addition, the diagram has 1 final state, 2 initial states and 1 orthogonal state. To 
calculate the ACFC, the statechart has 13 sequences with no guard, and 1 sequence with 1 guard. 

In addition, there are 3 loops and 2 parallel control flows. Further, to compute TIC, the statechart 

has 11 objects/ states out of which 4 states have 1 incoming transition, 4 states have 2 incoming 

transitions, and 3 states with no incoming transitions. In addition, there are 3 states with 2 
outgoing transitions, 6 states with 1 outgoing transition and 1 state with no outgoing transition.   

 

 
 

Figure 7 (a). Computer gaming statechart diagram 
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Figure 7 (b). Order processing statechart diagram 

 

To compute the WNSA, the order processing statechart diagram in Figure 7 (b) has 4 simple 
states out of which 2 simple states have no activities while 2 simple states have one activity to be 

executed. Also, the diagram has 1 final state. To calculate the ACFC, the diagram has 3 

sequences with no guard, 3 sequences with 1 guard, and 2 sequences with 2 guards. In addition, 
there are 2 loops. To calculate the TSC, the order processing diagram has 4 objects/ states out of 

which 1 state has 1 incoming transition and 3 states have 2 incoming transitions. In addition, 

there is 1 state with 3 outgoing transitions, 1state with 2 outgoing transitions, 1 state with 1 

outgoing transition, and 1 state with no outgoing transition. The metrics values for computer 
gaming and order processing statechart diagrams are presented in Table 8. 

 
Table 8.  Values of metrics for statechart diagrams 

 
Metric Computer gaming 

statechart diagram  

Order processing 

statechart diagram  

WNSA 23.4 7.6 

ACFC 31.2 15.4 

IIC 8.8 4.6 

OIC 15 6 

TIC 23.8 10.6 

 

6.1.2. Calculating Metrics for Activity Diagrams 
 

This section demonstrates how to calculate our metrics from activity diagrams. To compute the 

AWNS, the quadratic equation roots finder diagram shown in Figure 8 (a)has 8 action states, 1 
final state, and 1 initial state. To compute ACFC, the diagram has 9 sequences with no guard, 5 

sequences with 1 guard, and 1 sequence with 6 guards. In addition, there are 6 decisions in the 

statechart diagram. To calculate TIC, the activity diagram has 9 objects/ action states out of 

which 7 action states have 1 incoming edge and 2 action states have 3 incoming edges. Also, 
there are 5 action states with 1 outgoing edge, 2 action states have 3 outgoing edges and 2 action 

states have 4 outgoing edges.  
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Figure 8(a). An activity diagram for finding the roots of a quadratic equation 

 

 
 

Figure 8(b). An activity diagram for questionnaire processing 

 
To calculate the AWNS, the questionnaire processing activity diagram in Figure 8(b) has 11 

action states, 1 final state, and 1 initial state. To compute the ACFC, the questionnaire processing 

system has 10 sequences with no guard and 6 sequences with 1 guard. In addition, there are 3 

decisions, 1 loop and 2 parallel control flows. For computation of TIC, the questionnaire 
processing system, has 11 objects/ action states out of which 4 action states have 1 incoming edge 

and 7 action states have 2 incoming edges. In addition, there are 4 action states with 2 outgoing 

edges and 7 action states that have 1 outgoing edge.  The computed metrics values for activity 
diagrams are shown in Table 9. 
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Table 9.  Values of metrics for activity diagrams 

 
Metric An activity diagram for finding the 

roots of a quadratic equation 

An activity diagram for 

questionnaire processing 

AWNS 20 24 

ACFC 29.2 34.2 

IIC 9.8 12.4 

OIC 17.5 18.5 

TIC 27.3 30.9 

 

6.1.3. Calculating Metrics for Sequence Diagrams 

 

To demonstrate computation of the proposed of metrics for sequence diagrams are provided in 
Figures 9 (a) and 9 (b). To obtain the TSC, the AWMI and AWMOL are first computed. 

 

To calculate AWMIL, first count the number of each category of message into lifeline and 

multiply each category of message by the weights assigned to category of message and length of 
message. Considering Figure 9(a), the FW upload lifeline has 1 delay message of length 

complexity 1, and1 synchronous message of length complexity 1.2. The signal generator lifeline 

has 1 synchronous message of length complexity 1.0 while the timer_answer lifeline has 1 
asynchronous message of length complexity 1.2 and 2 asynchronous messages of length 

complexity 1.2. 

 
To calculate AWMOL, first count the number of each category of message out of lifeline and 

multiply each category of message by the weights assigned to category of message and length of 

message. Considering Figure 9(a), the FW upload lifeline has 1 asynchronous message of length 

complexity 1.2, 1 synchronous message of length complexity 1.0 and 2 synchronous messages of 
length complexity 1.2. The signal generator lifeline has 1 delay message of length complexity 

1.0, while the timer_answer lifeline has 1 asynchronous message of length complexity 1. 

 
To obtain the ACFC, the diagram has 4 sequences with no guard and 2 sequences with 1 guard. 

In addition, the diagram has 1 decision control flow and 1 loop. To compute the TIC, there are 3 

objects/ lifelines. The FW upload lifeline has 4 outgoing messages, the signal generator, and 

Timer_answer lifeline each has 1 outgoing message. In addition, the bidder lifeline has 2 
incoming messages, the signal generator lifeline has 1 incoming message and Timer_answer 

lifeline has 3 incoming messages.  

 

 
 

Figure 9 (a). A sequence diagram for timer functionality 
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Figure 9 (b). A sequence diagram for seminar enrollment. 

 

Another example in Figure 9 (b), to calculate AWMIL, first count the number of each category of 
message into lifeline and multiply each category of message by the weights assigned to category 

of message and length of message. The student lifeline has 1 asynchronous message of length 

complexity 1.2, and 1 return message of length complexity 1.0. The seminal lifeline has 1 return 

message of length complexity 1.0 and 1 asynchronous message of length complexity 1.0 while 
the course lifeline has 1 return message of length complexity 1.2. 

 

 To calculate AWMOL, first count the number of each category of message out of lifeline and 
multiply each category of message by the weights assigned to category of message and length of 

message. Considering Figure 9(b), the student lifeline has 1 asynchronous message of length 

complexity 1.0 and 1 return message of length complexity 1.2. The seminar lifeline has 1 
asynchronous message of length complexity 1.0 and 1 return message of complexity1.0 while the 

course lifeline has 1 asynchronous message of length complexity 1.2 and 1 return message of 

length complexity 1.0. 

 
To obtain the ACFC, the diagram has 6 sequences with no guard. To compute the TIC, all the 3 

lifelines have 2 outgoing and 2 incoming messages. The computed values from the sequence 

diagrams are presented in Table 10. 
 

Table 10.  Values of metrics for sequence diagram 

 
Metric Sequence diagram for 

timer functionality 

Sequence diagram for 

seminar enrollment 

AWMIL 8.2 8.96 

AWMOL 8.2 8.96 

TSC 4521.22 6445.14 

ACFC 11.4 6.0 

IIC 7.6 7.2 

IOC 15 12 

TIC 22.6 19.2 

 

6.2. Comparison with Existing UML Behavioral Metrics 
 

A number of researchers have proposed metrics to assess the complexity of UML behavioural 
diagrams. However, some metrics are defined without applying a metrics definition framework. 

In addition, they focus on one measurement aspect while others are defined to assess a particular 

behavioural diagram. The metrics defined in this study are established based on the complexity 
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perspective of UML behavioural diagrams that factors common features in all behavioural 
diagrams. Table 11 represents the comparison with existing UML metrics. 

 
Table 11.  Comparison with existing metrics 

 
Metrics Type of Metrics Multiple Diagrams 

Measured 

Multiple Perspectives 

Measured 

Genero et al. 

metrics [13] 

Size and complexity No No 

King’ori et al. 

metrics [13] 

Complexity No No 

Omar metrics [15] Complexity No No 

Maina et al. metrics 

[17] 

Complexity No No 

Kim & Boldyreff 

[26] metrics 

Size and complexity No No 

Proposed 
perspective based 

Metrics 

Complexity Yes Yes 

 

6.3. Theoretical Validations 
 

This section presents validation results based on Weyuker’s properties [20]. Weyuker’s 

properties have been widely used for assessing the theoretical soundness of complexity metrics 
[14,17,23,24]. Several researchers have however criticized these properties as being over-

ambitious and not suitable for object-oriented and non-complexity metrics [14,23]. Since our 

metrics fall under the complexity category, we decided to validate them using Weyuker’s 
properties.   

 

Property 1 (Noncoarseness): This property states that a valid measure should return different 

complexity values for two behavioral diagrams that are dissimilar. All the defined metrics return 
different values for behavioral diagrams that are not similar. Therefore, all the metrics satisfy this 

property. 

 
Property 2 (Granularity): Weyuker’s property 2 states that a change in a behavioral diagram 

results to a change in its complexity. The complexity values for the WNSA, AWMIL, AWMOL, 

TSC, AWNS, ACFC, IIC, OIC, and TIC metrics change when the number of types of elements, 
control flow, and interaction is changed. Therefore, the defined metrics satisfy this property. 

 

Property 3 (Nonuniqueness): This property argues that two behavioral diagrams P and Q may 

be distinct but have equal complexity values. The diagrams could differ only in the naming of 
their elements, but the number and types of elements, interaction, and control flow are the same. 

Therefore, the defined metrics satisfy this property since they give different values when the 

number of types of elements, control flow, and interaction is changed. 
 

Property 4 (Design features are essential): This property states that two behavioral diagrams P 

and Q could look the same in terms of containing the same number of elements but could have 
different complexities if the types of elements, control flow, and interactions are different. The 

WNSA, AWMIL, AWMOL, TSC, AWNS, ACFC, IIC, OIC, and TIC metrics satisfy this 
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property since they give different values when the types of elements, control flow, and 
interactions are changed. 

 

Property 5 (Monotonicity): This property argues that when two behavioral diagrams P and Q 

interact, their complexity is greater than the two initial diagrams computed separately. All the 
defined metrics satisfy this property since they give numeric values.  

 

Property 6 (Nonequivalence of interaction): This property argues that combining two 
behavioral diagrams with a third one results in complexities that are different from their initial 

complexities due to the effect of interaction. All the defined metrics do not satisfy this property, 

since they allocated constant weights to each of their types of element, control flow and 
interaction. 

 

Property 7 (Permutation): The property states that the order of elements, control flow and 

interaction can affect the complexity of a behavioral diagram. All the defined metrics allocated 
constant weights to each of their types of elements, control flow, and interaction. Therefore, the 

metrics do not satisfy property 7. 

 
Property 8 (Renaming property): The property states that two behavioral diagrams are equal if 

they only differ in the choice of their names. The proposed metrics give numeric values hence the 

choice of name of a behavioral diagram cannot change its complexity. Therefore, the metrics 
satisfied this property. 

 

Property 9 (Interaction): This property states that the complexity of a diagram increases as a 

result of interaction between its parts. When a statechart diagram is modified by introducing new 
states, transitions, and events, the complexity values of the new diagram are higher than the 

original diagram. This property held true for all the metrics. This information is represented in 

Table 12.  
 

Table 12. Validation results using Weyuker’s nine properties 

 
Property 1 2 3 4 5 6 7 8 9 

WNSA Yes Yes Yes Yes Yes No No Yes Yes 

AWMIL Yes Yes Yes Yes Yes No No Yes Yes 

AWMOL Yes Yes Yes Yes Yes No No Yes Yes 

TSC Yes Yes Yes Yes Yes No No Yes Yes 

AWNS Yes Yes Yes Yes Yes No No Yes Yes 

ACFC Yes Yes Yes Yes Yes No No Yes Yes 

IIC Yes Yes Yes Yes Yes No No Yes Yes 

OIC Yes Yes Yes Yes Yes No No Yes Yes 

TIC Yes Yes Yes Yes Yes No No Yes Yes 

 
Key: Yes, satisfies property; No, does not satisfy property.  

 

7. DISCUSSION 
 
Results computation of metrics values from the behavioral diagrams indicate that the newly 

defined metrics are intuitional. For example, the metric values obtained from the computer 

gaming statechart diagram are higher than the values obtained from the order processing 

statechart. This makes sense because the computer gaming statechart has more number of states 
and control flows. Also, it has an orthogonal state and loop control flow which are weighted more 

than other categories of their types. Considering the activity diagrams, the questionnaire 
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processing diagram has higher complexity values than the activity diagram for finding the roots 
of a quadratic equation, this is because the diagram has a higher number of action states, control 

flows and the interaction of objects is also higher. For the case of sequence diagrams, the TSC is 

higher for the seminar enrolment sequence diagram because of the types of message and 

complexity due to length covered by the message. The ACFC is higher in the timer functionality 
because of the presence of guards, decision and loop which have higher complexity weights. The 

TIC metrics values are also higher in timer functionality sequence diagram meaning that the 

objects interact more. 
 

By comparing the newly defined perspective based metrics with existing UML metrics, it is 

observed that the proposed metrics are able to measure all UML behavioural diagrams, while 
other existing metrics target only one diagram. The proposed metrics are based on a perspective 

based attribute structuring framework as opposed to other existing metrics. This means that the 

proposed metrics are more complete when looking at the entire system behaviour in multiple 

perspectives.  

 
For the case of theoretical validation, the metrics satisfied 7 out of 9 Weyuker’s properties. This 

means that the 7 properties are the critical properties for complexity metrics. In addition, the 

metrics failed to satisfy property 6 (non-equivalence of interaction) and property 7 (permutation) 
because all the defined metrics allocated constant weights to each of their types of elements, 

control flow, and interaction, meaning they are not critical. Therefore, the defined metrics are 

good metrics for behavioral diagrams in their respective perspectives.  

 

8. CONCLUSIONS AND FUTURE WORKS 
 

In this paper, we presented the complexity perspectives of UML behavioral diagrams namely 

element, control flow, and interaction perspectives. In addition, The Entity-Attribute-Metric 
model was employed to identify the entity to be measured i.e. the behavioral diagram, identify 

measurable attributes under each perspectives and definition of metrics. Nine metrics namely, 

WNSA, AWMIL, AWMOL, TSC, AWNS, ACFC, IIC, OIC and TIC to assess the complexity of 

statechart, activity and sequence diagrams. The new measures were used to calculate metric 
values from behavioral diagrams to examine if the metrics are intuitional. Results indicate that a 

diagram with higher number of weighted elements, control flows and interaction returned high 

complexity values. Comparison with existing metrics indicate that the proposed metrics are fully 
inclusive to evaluate the behavior of a complete system in multiple perspectives. Theoretical 

validation of metrics with Weyuker’s properties indicate that the metrics are mathematically 

sound and can be relied upon to assess the complexity of behavioral diagrams. The metrics 
satisfied 7 out of 9 Weyuker’s properties which are critical for complexity metrics.  

 

Future work includes designing empirical studies to validate the metrics presented in this paper. 

In addition, other element complexity metrics should be defined to include other behavioral 
diagrams not captured under the element perspectives such as use case, interaction, and timings 

diagrams. 
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