
International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

DOI: 10.5121/ijsea.2024.15404 41

STRUCTURAL COMPLEXITY METRICS FOR

LARAVEL SOFTWARE

Kevin Agina Onyango1, Geoffrey Muchiri Muketha2 and John Gichuki Ndia1

1 Department of Information Technology, School of Computing and Information

Technology, Murang’a University of Technology, Kenya
2 Department of Computer Science, School of Computing and Information Technology,

Murang’a University of Technology, Kenya

ABSTRACT

Existing software complexity metrics do not adequately address the unique architectural patterns of

Laravel. This research, therefore, solves this problem by proposing a suite of novel complexity metrics for

Laravel software. The metric definition employs the Entity-Attribute-Metric-Tooling (EAMT) model. These

proposed metrics are designed to assess the complexity of Laravel software at the class level within

Laravel's Model-View-Controller (MVC) architecture as guided by an Architecture-based Complexity
Classification Framework for Laravel Software (ACCFLS). The metrics offer a better approach to

understanding and managing software complexity in Laravel projects. The study defined three composite

metrics namely Controller Complexity Metrics for Laravel (CCMLV), Model Complexity Metrics for

Laravel (MCMLV), and View Complexity Metrics for Laravel (VCMLV). They were theoretically validated

with Weyuker’s properties framework and satisfied seven out of the nine properties, which is an acceptable

compliance level. Moreover, the validation of the metrics against the Kaner framework further emphasizes

their practicability and relevance to real-world software development scenarios. This research not only

contributes to a deeper understanding of software complexity in Laravel applications but also lays the

groundwork for future empirical validation and the development of automated tools for complexity

measurement.

KEYWORDS

Software Metrics, Laravel Software, Theoretical Validation, Software Quality, MVC Design Pattern &

EAMT Model.

1. INTRODUCTION

In the evolving field of web development, Laravel has emerged as a preferred PHP- development

framework for many developers, known for its elegant syntax and robust features that facilitate

rapid application development [1-2]. However, as with any software development process,

understanding and managing the complexity of code is paramount to maintaining high quality,
scalability, and ease of modification [3]. Traditional software complexity metrics, while

providing a generalized understanding, often fall short in addressing the nuances and architectural

specifics of frameworks like Laravel [1, 4-5]. This gap underscores the need for a set of novel
metrics that are specifically designed to evaluate the complexity of Laravel applications.

Moreover, complexity metrics tailored to Laravel can provide insights into the cognitive load

required to understand and modify the code, thereby facilitating better project planning and risk
management. This study aims to address this gap by proposing a suite of theoretically sound

complexity novel metrics designed for Laravel applications guided by the Model-View-

Controller (MVC) design pattern.

https://airccse.org/journal/ijsea/vol15.html
https://doi.org/10.5121/ijsea.2024.15404

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

42

Software complexity, also known as program complexity describes the attributes of software that
affect its internal interactions i.e. how the attributes are intertwined with one another [6].

Focusing on how the code interacts with other pieces or entities of code [6-7]. Previous studies

indicate that, in software development, software complexity cannot be eliminated in totality but

instead, the concept can only be controlled [5, 8]. Software metrics over time have been
appreciated by researchers as one of the measures of software characteristics that are quantifiable

[7]. Metrics play a crucial role in understanding and managing software complexity as they can

be used to evaluate and predict software complexity [4].

Previously, an Architecture-based Complexity Classification Framework for Laravel Software

(ACCFLS) was developed to identify the unique Laravel attributes that course inherent complexity
in software developed using Laravel and classify those attributes under the three main classes of

Laravel architecture guided by the MVC design pattern theory. Based on the identified attributes

by the ACCFLS classification framework, this study, therefore, proposes a novel set of metrics

that accurately reflect the complexity of Laravel applications at the class level. Kaner framework
and Weyuker's properties were used to validate the proposed metrics to establish their practicality

and theoretical soundness.

The remainder of this paper is organized as follows: Section 2 reviews related works. Section 3

details the identification of attributes, followed by Section 4, where the proposed metrics are

defined. Section 5 presents the theoretical validation of these metrics. Discussion, Conclusion,and
suggestions for future research are presented in sections 6 and 7 respectively.

2. RELATED WORKS

This section describes various structural metrics that that been mostly adopted to measure
software complexity in web-based domains and other paradigms for instance:

i) Control Flow Complexity Metrics (“McCabe’s’ Cyclomatic complexity metrics”). McCabe’s
metrics are based on a control flow representation of the program. In this measure, a program

graph is used to depict control flow whereas nodes represent processing tasks, and the edge

of the program graph represents the control flow between nodes [9]. According to this metric,

the complexity M is then defined as shown in Eq. 1:

 ………………… Eq. (1)

where: “E = the number of edges of the graph. N = the number of nodes of the graph. P = the

number of connected components.”

ii) Language Complexity Metrics (“Halstead Metrics”). The Halstead complexity metrics use
distinct operators and operands to compute the volume, difficulty, and effort among other

parameters of a piece of code. This metric is a way of determining a quantitative measure of

complexity directly from the operators and operands of a module. It measures the complexity
of a given programming language by summarizing the number of operators and operands

contained in a program [10].

iii) Interface Complexity (“Henry fan-in/fan-out metrics”). Interface complexity measures the

complexity as a function of fan in and fan out. Fan in is defined as the number of local flows

into a given procedure plus the number of data structures from which that procedure retrieves

information. Fun out on the other hand is the number of local flows outs out of a given
procedure plus the number of data structures that the procedure updates [11]. The metric is

given as shown in Eq. 2:

https://en.wikipedia.org/wiki/Connected_component_(graph_theory)

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

43

Complexity = (Procedure Length) * (fan-in * fan-out)2………………… Eq. (2)

iv) Throughput and Load Time. These are performance metrics that can indirectly indicate the

complexity of the Laravel software. Throughput measures the number of requests the Laravel

system can handle without going down, and load time measures the amount of time it takes
for an HTTP request to respond [12].

v) Average Complexity per LLOC, Class, and Method. These are specific metrics that measure
the average complexity of lines of code, classes, and methods in a given Laravel application

[12].

vi) Query complexity and database size measures for performance, and coupling and cohesion

measures for maintainability. These measures were proposed to evaluate the maintainability

and performance of object-relational mapping of Laravel [12].

Although these studies are promising, they have overlooked metrics that focus on the unique

structural features of Laravel like restful controller functions, their function calls, the special

array variables, entity relationships, view bade template inheritance, and view blade template
nesting as guided by the MVC design pattern of a Laravel Software. Therefore, in Laravel, the

existing traditional software complexity metrics need to be adopted directly to analyze the

complexity of Laravel software due to the structural differences.

3. ATTRIBUTES IDENTIFICATION

This study adopted the Entity-Attribute-Metric-Tool (EAMT) metrics definition model [2-3] to

define the proposed metrics. The Laravel software was identified as the entity of concern which
is made up of three main classes that is Model class, View class, and Controller class, following

the MVC design pattern, which is a conventional design pattern for Laravel software

development.

In a Laravel Controller class, the main attributes to measure are functions and function calls. In a

Laravel Model class, entity relationships and array variables stood out as the main attributes to

measure while in a View class, blade template directives are the main attributes of focus.

ACCFLS framework also highlighted granularized measurable sub-attributes of each of these

attributes of concern. Therefore, to define metrics for each attribute of concern, the measurable

attributes and corresponding sub-attributes were considered as presented in the subsequent
section.

4. METRICS DEFINITION

The proposed metrics are defined at the class level, according to the attributes identified and

classified by the ACCFLS, the attributes are classified, the classes concerned are Laravel

controller class, Laravel model class, and Laravel view class.

Therefore, the three proposed composite complexity metrics measure the complexity of Laravel

software at the class level and are formally defined as a 3-tuple < 𝑀, 𝑉, 𝐶 >. They include;

Controller Complexity Metrics for Laravel (CCMLV), Model Complexity Metrics for Laravel
(MCMLV), and View Complexity Metrics for Laravel (VCMLV).

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

44

4.1. Controller Complexity Metrics for Laravel (CCMLV)

The Laravel controller class is majorly composed of Laravel Functions and Function calls [13].

Therefore, as shown in Eq. 3, the proposed CCMLV is a composite metric containing two
independent metrics informed by the two main controller-based attributes. These independent

metrics are Laravel Function Complexity Metric (LF) and Laravel Function Call Complexity

Metric (LFC).

𝐶𝐶𝑀𝐿𝑉 = 𝐿𝐹 + 𝐿𝐹𝐶………………… Eq. (3)

Where

𝐿𝐹 is the Laravel Function Complexity Metric

𝐿𝐹𝐶 is the Laravel Function Call Complexity Metric

4.1.1. Laravel Function Complexity Metric (LF)

Laravel function is determined by considering the two measurable sub-attributes that is
Parameterized functions (Pf) and Non-Parameterized Laravel functions (NPf). Therefore, the

definition of a metric to assess the complexity of the Laravel function here is done in two stages,

the first stage is the definition of base metrics, i.e. where the study collects and computes the
metrics directly from a Laravel controller class. This will measure the number of Pf and the

number of NPf [13]. Therefore, in the definition of the derived LF metric, weights are assigned to

the count of individual measurable sub-attributes.

In Laravel, when a function is parameterized, its complexity is increased since there are other

elements (parameters) that must be executed within the braces before proceeding to the next line

of execution e.g. public function update (company $company). This implies that before

execution of the next line of code, the content inside the brace () must first be executed. On the
other hand, non-parameterized functions are less complex since it does not have instructions

(parameters) inside the braces to be executed before going to the next line of code for instance

public function index (). This implies that in Laravel, Pf is weightier and more complex
compared to NPf.

In Laravel, non-parameterized Laravel functions are logical program statements inside the
outermost level of control structures with empty parenthesis therefore are assigned a weight of 1

while parametrized Laravel functions are logical statement structures inside the outermost level

of control structures with parameters inside the parenthesis hence a weight of 1.5 is assigned to it

as shown in Table 1, based on existing weighting theories [14-16].

Table 1: Weights assigned to Laravel Functions

Types of Laravel

Functions (Fi)

Weight Description Corresponding

Weights (Wi)

Non-Parameterized

Function (𝑁𝑃𝑓)
Weight of Non-Parameterized Function (WNPf) 𝑊𝑁𝑃𝑓 =1.0

Parameterized Function (𝑃𝑓) Weight of Parameterized Function (WPf) 𝑊𝑃𝑓 = 1.5

Therefore, to compute the complexity of LF, the corresponding weight is multiplied by the

number of each sub-attribute of Parameterized Function and Non-Parameterized function as
shown in Eq. 4:

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

45

LF =∑ (FiWi)
n
i=1 ………………… Eq. (4)

Where,

F is the various types of Laravel functions, i is the start of the first Laravel function, Wi is the

weight assigned to the corresponding various Laravel functions, and n is the last Laravel function

.

4.1.2. Laravel Function Call Complexity Metric (LFC)

Function calls are the other attribute that makes up a Laravel controller class. Laravel function

calls can be categorized as Regular Function calls (𝑅𝐹𝐶), Nesting Function call (𝑁𝐹𝐶), Chaining

Function call (𝐶𝐹𝐶) and Hybrid Function call (𝐻𝐹𝐶). These four classifications form the

measurable sub-attributes in the definition of the proposed LFC metric [13]. Therefore, the metric

to measure the complexity of the Laravel function call is done in two stages. The first stage is the
definition of the base metrics, where these measurable sub-attributes are directly collected and

computed by counting the number of 𝑅𝐹𝐶 , 𝑁𝐹𝐶 , 𝐶𝐹𝐶 and 𝐻𝐹𝐶 . The second stage of the metrics

definition process is viewed as derived metrics, this will give the overall LFC. In the definition of
the derived metrics, weights are assigned to measurable sub-attributes.

When structural compositions of these Laravel function calls implementation are considered, the
regular function call is the least complex since there is only a single function being called e.g.

return view(‘home’). This makes the regular function call less complex compared to the nesting,

chaining, and hybrid function calls. In a nesting function call, there is a function call inside

another function call e.g. return view (‘company. index’, compact(companies)); so in this
scenario, the function call compact(‘companies’) is a function called inside another function

return view(‘company.index’). In a chaining function call, one function call is

chained/points/directs or leads to another function call in the same execution line of code after
another function call e.g. $comapnies=Company::with(‘customers’) -> paginate(5), in this

scenario the with(‘customers’) function call is chaining to -> paginate(5) function call and are

executed together with the nesting function call in the same execution block. Hybrid function
calls on the other hand are those function calls that comprise more than one function call in one

execution line of code e.g. return redirect()->route('customer.show', compact('customer')), in

this scenario the redirect() function call which is a regular function call is chained and nested in

the same execution line with ->route('customer.show', compact('customer')) function call. Such
function calls will be more complex compared to regular, nesting, and chaining function calls.

This implies that Laravel function call complexity increases from regular function call to nesting
function call then to chaining function call finally the most complex is the hybrid function call.

Therefore, when assigning weights based on the previous weight assignment criteria, the regular

function calls will be assigned a weight of 1.0, nesting function calls will be assigned a weight of

2.0, chaining function calls will be assigned a weight of 2.5 and the hybrid function calls will be
assigned a weight of 3 as shown in Table 2, based on existing weighting theories [14-16].

Table 2: Weights assigned to Laravel Function Calls

Types of Laravel Function

Calls (FCj)

Weight Description Corresponding

Weights (Wj)
Regular Function Call (𝑅𝐹𝐶) Weight of the Regular Function call (𝑊𝑅𝐹𝐶) 𝑊𝑅𝐹𝐶 = 1.0

Nesting Function Call (𝑁𝐹𝐶)

Weight of the Nesting Function call (𝑊𝑁𝐹𝐶) 𝑊𝑁𝐹𝐶 = 2.0

Chaining Function Call (𝐶𝐹𝐶)

Weight of the Chaining Function call (𝑊𝐶𝐹𝐶) 𝑊𝐶𝐹𝐶 = 2.5

Hybrid Function Call (𝐻𝐹𝐶) Weight of the Hybrid Function call (𝑊𝐻𝐹𝐶) 𝑊𝐻𝐹𝐶 = 3.0

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

46

Thus, when computing the derived metrics for the function call complexity, the individual
function calls are computed and multiplied by the corresponding weights to give the LFC, as

shown in Eq. 5.

𝐿𝐹𝐶 = ∑ (𝐹𝐶𝑗 𝑊𝑗)𝑛
𝑗=1 ………………… Eq. (5)

Where,

FC is the various types of Laravel function calls, j is the start of the first Laravel function call, Wj

is the weight assigned to the corresponding various Laravel function calls and n is the last

Laravel function call.

Operationalization of CCMLV Metric

The code snippet represented in Figure 1, helps to demonstrate how to operationalize the
computation process of the metrics values for the CCMLV composite metric. This computation

happens in two steps, with each step showing the computation of the metric values for the two

derived metrics LF and LFC as shown:

Figure 1: A Code Snippet Scenario to Compute CCMLV

Calculating the Metrics values for CCMLV

Step 1: Calculating the Metrics values for LF

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

47

From the code snippet in Figure 1;

The number of Parameterized Functions (𝑃𝑓) = 3

The Weight of the Parameterized Function (𝑊𝑃𝑓) = 1.5

The number of Non-Parameterized Functions (𝑁𝑃𝑓) = 3

The Weight of the Non-Parameterized Function (𝑊𝑁𝑃𝑓) =1

Therefore, guided by Eq. (4);

𝐿𝐹 = ∑ (𝐹𝑖𝑊𝑖)𝑛
𝑖=1

 = ∑ (𝑃𝑓(𝑖) ∗ 𝑊𝑃𝑓(𝑖))𝑛
𝑖=1 + ∑ (𝑁𝑃𝑓(𝑖) ∗ 𝑊𝑁𝑃𝑓(𝑖))𝑛

𝑖=1

= ∑ (𝑃𝑓(𝑖) ∗ 1.5)3
𝑖=1 + ∑ (𝑁𝑃𝑓(𝑖) ∗ 1)3

𝑖=1

 = (3 ∗ 1.5) + (3 ∗ 1)
 = 4.5 + 3

 = 7.5

Step 2: Calculating the Metrics values for LFC

From the code snippet in Figure 1;

The number of Regular Function calls (𝑅𝐹𝐶) =3

The Weight of the Regular Function call (𝑊𝑅𝐹𝐶) =1

The number of Nesting Function calls (𝑁𝐹𝐶) = 4

The Weight of the Nesting Function call (𝑊𝑁𝐹𝐶) = 2

The number of Chaining Function calls (𝐶𝐹𝐶) = 4

The Weight of the Chaining Function call (𝑊𝐶𝐹𝐶) = 2.5

The number of Hybrid Function calls (𝐻𝐹𝐶) = 3

The Weight of the Hybrid Function call (𝑊𝐻𝐹𝐶) = 3

Therefore, following Eq. (5);

𝐿𝐹𝐶 = ∑ (𝐹𝐶𝑗 𝑊𝑗)𝑛
𝑗=1

𝐿𝐹𝐶 = ∑ (𝑅𝐹𝐶(𝑗) ∗ 𝑊𝑅𝐹𝐶(𝑗))𝑛
𝑗=1 + ∑ (𝑁𝐹𝐶(𝑗) ∗ 𝑊𝑁𝐹𝐶(𝑗))𝑛

𝑗=1 + ∑ (𝐶𝐹𝐶(𝑗) ∗ 𝑊𝐶𝐹𝐶(𝑗))𝑛
𝑗=1 +

∑ (𝐻𝐹𝐶(𝑗) ∗ 𝑊𝐻𝐹𝐶(𝑗))𝑛
𝑗=1

= ∑ (𝑅𝐹𝐶(𝑗) ∗ 1)3
𝑗=1 + ∑ (𝑁𝐹𝐶(𝑗) ∗ 2)4

𝑗=1 + ∑ (𝐶𝐹𝐶(𝑗) ∗ 2.5)4
𝑗=1 + ∑ (𝐻𝐹𝐶(𝑗) ∗ 3)3

𝑗=1

= (3 ∗ 1) + (4 ∗ 2) + (4 ∗ 2.5) + (3 ∗ 3)

= 3 + 8 + 10 + 9

= 30

Finally, as per Eq. (3), to get the metric values for the composite metric CCMLV, the summation

of both LF and LFC is done as shown;

CCM𝐿𝑉 = 𝐿𝐹 + 𝐿𝐹𝐶

=∑ (𝐹𝑖𝑊𝑖)𝑛
𝑖=1 + ∑ (𝐹𝐶𝑗𝑊𝑗)𝑛

𝑗=1

= 7.5 + 30

 = 37.5

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

48

4.2. Model Complexity Metrics for Laravel (MCMLV)

In Laravel, a model class majorly handles the operations in the Laravel database. It is part of

Laravel’s Eloquent Object-Relational Mapper (ORM) which provides an enjoyable and efficient
way to interact with a database [17-19]. Models in Laravel are responsible for retrieving, storing,

and processing data as they contain the logic related to the data being manipulated [13]. Model-

based attributes are composed of entity relationships for manipulating database cardinalities and
the array variables that execute the various functions in the development process [17, 18].

Therefore, as shown in Eq. 6, the composite metric MCMLV is calculated in two levels. The first

level is the Laravel Array Variable Complexity Metrics (LAV) which is the complexity brought

about by the Laravel array variables and the second one is the Laravel Entity Relationship
Complexity Metrics (LER) which is the complexity contributed by the Laravel entity relationship

Variables.

𝑀𝐶𝑀𝐿𝑉 = 𝐿𝐴𝑉 + 𝐿𝐸𝑅 ………………… Eq. (6)

= ∑ (𝐴𝑉𝑖)𝑛
𝑖=1 + ∑ (𝐸𝑅𝑖𝑊𝑖)𝑛

𝑖=1

Where

𝐿𝐴𝑉 is Laravel Array Variable Complexity Metric

𝐿𝐸𝑅 is Laravel Entity Relationship Complexity Metric

4.2.1. Laravel Array Variable Complexity Metrics (LAV)

Laravel adopts special array variables to perfume mass assignment of database fields [17-19].

Mass assignment in Laravel is a feature that allows one to assign multiple attributes to a model at

once [20]. This is useful when saving data to the database, as it saves the programmer time and

effort, for instance, $user = new User(request()->all()); using this code-snippet, with a single
push the programmer can mass assign multiple fields on a model. However, sometimes mass

assignment can pose certain security risks, let’s say the programmer has a field in the user table

that can have values of “user” or “admin” [20-21]. To prevent this, Laravel provides three special
array variables $attributes, $fillable, and $guarded. The $attributes [array items] array enables the

programmer to set default values for the user logging into the system e.g. the programmer can set

the user access right to “user” or “admin” during the login phase to avoid users accessing admin
rights in the system. $fillable [array items] array variable contains all the attributes that should be

mass assignable while $guarded [array items] array variable contains attributes that should not be

mass assignable [20-21].

To compute the complexity metric for LAV, each array variable is counted as shown in Eq. 7:

𝐿𝐴𝑉 = ∑ (𝐴𝑉𝑖)𝑛
𝑖=1 ………………… Eq. (7)

Where,

AV is the various types of Laravel Array variable, i is the start of the first Laravel Array variable

and n is the last Laravel Array variable.

4.2.2. Laravel Entity Relationship Complexity Metrics (LER)

In Laravel, Database Entity Relationship is managed by ORM [21]. ORM supports a variety of

unique entity relationships, such as; BelongsTo (BT), HasMany (HM), HasOneThrough (HOT),

and HasManyThrough (HMT) [17-19].

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

49

Uncontrolled usage of these entity relationships increases the model complexity due to their
interrelation. For instance, let us take a scenario of three models; Country, Team, and Athlete.

The BT relationship shows the direct relation of a single model to another single model instance,

hence can be assigned the simplest weight of 1.1 while the “HM” relationship shows that one

model is related to many model instances, so this is a little bit complex presuming a weight of
1.3. In the scenario of the three models, the entity relationship can illustrate that a team can only

belong to one country, which is represented using the “BT” relationship while a team has many

athletes which is represented using the “HM” relationship. An athlete has one country through a
team and this can be represented using a “HOT” relationship making it more complex and hence

can presume a weight of 1.5. Finally, you can also have a scenario where a country can have

many athletes through a team, this is represented using “HMT” relationships, hence the most
complex of the four entity relationships with a weight of 2.0 as summarized in Table 3, based on

existing weighting theories [14-16].

Table 3: Weights assigned to Laravel Entity Relationships

Types of Entity

Relationships (ERi)

Weight Description Corresponding

Weights (Wi)
BelongsTo relationship (𝐵𝑇) Weight of the BelongsTo entity relationship

(𝑊𝐵𝑇)

𝑊𝐵𝑇 = 1.1

HasMany relationship (𝐻𝑀) Weight of the HasMany entity relationship

(𝑊𝐻𝑀)

𝑊𝐻𝑀 = 1.3

HasOneThrough relationship

(𝐻𝑂𝑇)

Weight of the HasOneThrough entity

relationship (𝑊𝐻𝑂𝑇)

𝑊𝐻𝑜𝑇 = 1.5

HasManyThrough

relationship (𝐻𝑀𝑇)

Weight of the HasManyThrough entity

relationship (𝑊𝐻𝑀𝑇)

𝑊𝐻𝑚𝑇 = 2.0

Therefore, to calculate the complexity of LER, each entity relationship is counted and multiplied
by individual corresponding weights as shown in Eq. 8:

𝐿𝐸𝑅 = ∑ (𝐸𝑅𝑖𝑊𝑖)𝑛
𝑖=1 ………………… Eq. (8)

Where,

ER is the various types of Laravel Entity Relationships, i is the start of the first Laravel Entity

Relationship, We are the complexity weight assigned to the corresponding various types of
Laravel Entity Relationships, and n is the last Laravel Entity Relationships.

Operationalization of MCMLV Metric

The code snippet represented in Figure 2, helps to demonstrate how to operationalize the

computation process of the metrics values for the MCMLV composite metric. This computation

happens in two steps, with each step showing the computation of the metric values for the two
derived metrics LAV and LER as shown:

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

50

Figure 2: A Code Snippet Scenario to Compute Model Complexity Metrics for Laravel (MCMLV)

Calculating the Metrics values for MCMLV

Step 1: Calculating the Metrics values for LAV

From the code snippet in Figure 2;

The number of $default array variable = 1

The number $fillable array variable = 1
The number $guarded array variable = 1

Therefore, following Eq. (7);

𝐿𝐴𝑉 = ∑ (𝐴𝑉𝑖)𝑛
𝑖=1

 = ∑ (𝑑𝑒𝑓𝑎𝑢𝑙 𝑎𝑟𝑟𝑎𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)𝑛
𝑖=1 + ∑ (𝑓𝑖𝑙𝑙𝑏𝑎𝑙𝑒 𝑎𝑟𝑟𝑎𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)𝑛

𝑖=1 +
∑ (𝑔𝑢𝑎𝑟𝑑𝑒𝑑 𝑎𝑟𝑟𝑎𝑦 𝑣𝑎𝑟𝑖𝑏𝑎𝑙𝑒)𝑛

𝑖=1

 = ∑ (1)1
𝑖=1 + ∑ (1)1

𝑖=1 + ∑ (1)1
𝑖=1

= (1) + (1) + (1)
 = 3

Step 2: Calculating the Metrics values for LER

From the code snippet in Figure 2;

The number of BelongsTo entity relationships = 1
The weight of the BelongsTo entity relationship = 1.1

The number of HasMany entity relationships = 1

The weight of the HasMany entity relationship = 1.3
The number of HasOneThrough entity relationships= 1

The weight of the HasOneThrough entity relationship = 1.5

The number of HasManyThrough entity relationships = 1

The weight of the HasManyThrough entity relationship = 2.0

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

51

Therefore, as per Eq. (8);

𝐿𝐸𝑅 = ∑ (𝐸𝑅𝑖𝑊𝑖)𝑛
𝑖=1

 = ∑ (𝐵𝑇(𝑖) ∗ 𝑊𝐵𝑇(𝑖))𝑛
𝑖=1 + ∑ (𝐻𝑀(𝑖) ∗ 𝑊𝐻𝑀(𝑖))𝑛

𝑖=1 + ∑ (𝐻𝑂𝑇(𝑖) ∗ 𝑊𝐻𝑂𝑇(𝑖))𝑛
𝑖=1 +

∑ (𝐻𝑀𝑇(𝑖) ∗ 𝑊𝐻𝑀𝑇(𝑖))𝑛
𝑖=1

 =∑ (𝐵𝑇(𝑖) ∗ 1.1)1
𝑖=1 + ∑ (𝐻𝑀(𝑖) ∗ 1.3)1

𝑖=1 + ∑ (𝐻𝑂𝑇(𝑖) ∗ 1.5)1
𝑖=1 + ∑ (𝐻𝑀𝑇(𝑖) ∗ 2.0)1

𝑖=1

 = (1 ∗ 1.1) + (1 ∗ 1.3) + (1 ∗ 1.5) + (1 ∗ 2.0)
 = 5.9

Finally, as per Eq. (6), to get the metric values for the composite metric MCMLV, the summation
of both LAV and LER is done as shown;

MCMLV = LAV + LER

 = ∑ (𝐴𝑉𝑖)𝑛
𝑖=1 + ∑ (𝐸𝑅𝑖𝑊𝑖)𝑛

𝑖=1

 = 3 + 5.9
 = 8.9

4.3. View Complexity Metrics for Laravel (VCMLV)

In Laravel, a View is a class that handles the presentation logic of an application. It separates the

controller application logic from the presentation logic to render output to the users [13]. The
view makes use of blade directives to echo values and data to be displayed to the user. The

directives in the Laravel View class are inherited from either Controller Class, Model class, or

any other sections of the code, the inheritance happens hierarchically. For instance, @extends is a
View blade directive that inherits and specifies a parent blade template from which the current

template will inherit its layout at the outer level of the hierarchy, they can therefore be named as

Level 1 Inheriting View Directives (L1IVD). It is like creating a base structure for a page and

then filling in the specific parts of the contents later. @section on the other hand is a directive
that is used to define a section of content being inherited. The contents of these @sections

directives are injected into the layout defined by the @extends template inherited at L1IVD.

Finally, @include and @csrf are directives that are implemented at the inner level of the

hierarchy within @section to include a blade view from another view and to generate security

tokens to manage each active user session in the application respectively [22], these directives

can be named as Level 2 Inheriting View Directives (L2IVD).

It implies that the @extends directive acts as a parent blade template layout, that inherits an

external layout file [13, 22] at the L1IVD. The @section directive also defined at L1IVD specifies
the content of the sections to be injected into the extended layouts, it defines the section of the

layout that has been inherited by the @extends directive. These two view directives presume a

weight of 1.3 since they work on externally inherited files. Then the other two directives i.e.
@csrf and @include are executed at the L2IVD within the @section directive, hence, presume a

weight of 1.5 as shown in Table 4, based on existing weighting theories [14-16].

Table 4: Weights assigned to Laravel View Directives

Types of Inheriting View Directives (IVD) Weight Description Corresponding

Weights (W)

Level 1 Inheriting View Directives (L1IVD) Weight of L1IVD 1.3

Level 2 Inheriting View Directives (L2IVD) Weight of L2IVD 1.5

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

52

The VCMLV metric measures the complexity brought about by inheriting view template directives
in Laravel software. The definition of this inheritance metric is borrowed from object-oriented

software since it does not directly exist in Laravel [12]. To define VCMLV, the complexity of

individual inheriting view directives must be defined. This is done by considering the count of

the L1IVD and L2IVD directives multiplied by their respective weights then a summation of all is
done to obtain the overall composite metrics to yield the complexity of the Laravel View class as

shown in Eq. 9.

Therefore,

𝑉𝐶𝑀𝐿𝑉 = ∑ (𝐿1𝐼𝑉𝐷𝑖 ∗ 1.3)𝑛
𝑖=1 + ∑ (𝐿2𝐼𝑉𝐷𝑗 ∗ 1.5)𝑛

𝑗=1 ………………… Eq. (9)

Where

𝐿1𝐼𝑉𝐷 = Level 1 Inheriting View Directives

𝐿2𝐼𝑉𝐷 = Level 2 Inheriting View Directives

Operationalization of VCMLV Metric

The code snippet represented in Figure 3, helps to demonstrate how to operationalize the

computation process of the metrics values for the VCMLV composite metric. This computation

happens in two steps, with each step showing the computation of the metric values for the two
derived metrics L1IVD and L2IVD as shown below:

Figure 3: A Code Snippet Scenario to Compute View Complexity Metrics for Laravel (VCMLV)

Calculating the Metrics values for VCMLV

From the code snippet in Figure 3;

The number of Level 1 Inheriting View Directives = 3

The weight of the Level 1 Inheriting View Directives = 1.3
The number of Level 2 Inheriting View Directives = 2

The weight of the Level 2 Inheriting View Directives = 1.5

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

53

Therefore, as following Eq. (9);

VCM𝐿𝑉 = ∑ (L1IVD𝑖 ∗ 1.3)𝑛
𝑖=1 + ∑ (L2IVD𝑗 ∗ 1.5)𝑛

𝑗=1

 = ∑ (@𝑒𝑥𝑡𝑒𝑛𝑑𝑠 ∗ 1.3 + @𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 1.3 + @𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 1.3)3
𝑖=1 + ∑ (@csrf ∗2

𝑗=1

 1.5 + @include ∗ 1.5)
= (3 ∗ 1.3) + (2 ∗ 1.5)

= (3.9) + (3.0)

= 6.9

5. VALIDATION OF THE PROPOSED METRICS

In software measurement, each newly defined metric must be validated either internally or

externally [3, 5, 23-24]. Internal validation is the theoretical validation to assess the mathematical
soundness of the defined metrics. External validation, on the other hand, involves the empirical

study of the software metrics, it shows how the metrics can be illustrated using a real-world

scenario for intuition, and it’s always a complement to theoretical validation [25-26]. However,
both validations are necessary for a newly defined metric, these approaches are illustrated in

Figure 4.

Figure 4: Software Metrics Validation Approaches

This process is recommended for any newly defined metrics as they ascertain their mathematical

soundness and practicability. Theoretical validation also is seen as a crucial process because it

provides a scientific basis for the discipline of software measurement, without it, there would be
no confidence in the consumption of the newly defined metrics from the software engineering

realm [27-29].

In this study, the three composite metrics newly defined are purposed to measure the inherent

attributes that cause the complexity of software products developed using Laravel that might

negatively affect the modifiability of such products. Therefore, the three newly proposed metrics
CCMLV, MCMLV, and VCMLV are validated to ascertain their practicality using the Kaner

METRICS

DEFINITION

Theoretical Validation Empirical Validation

Property-

based/Axiomatic

approach e.g. Kaner

Framework,Weyuker’

s Properties,Briand’s

Properties

Measurement-

theory based

approach e.g.

Fenton &

Kitchenham’s

Properties

Experiments Case-Studies Surveys

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

54

framework, their mathematical soundness was also attested using Weyuker’s nine properties as
summarized in Table 5.

5.1. Theoretical Validation using Weyuker’s Nine Properties

“Property 1: (∃P) (∃Q) (|P| ≠ |Q|) Non-coarseness:” There exist Laravel projects Q and P in a

way that |Q| is not equivalent to |P|. The property implies that a metric is not supposed to rank
each Laravel project with equivalent complexity if they are not identical. These defined metrics

return non-identical complexity values for any two different Laravel projects. Therefore, all three

proposed metrics satisfy this property.

“Property 2: Granularity:” If C is a positive number. Then there are a finite number of Laravel

software of complexity C. This property states that a change in a Laravel project must also lead to

a change in its complexity. Therefore, the three proposed metrics CCMLV, MCMLV, and VCMLV

satisfy this property.

“Property 3: Non-uniqueness (Notion of Equivalence):” There can exist two distinct Laravel
projects Q and P where |P| = |Q|. The property states that two different Laravel projects can have

the same metric value if they have the same attributes. Thus, this property holds for all the

defined metrics.

“Property 4: (∃P) (∃Q) (P ≡ Q & |P| ≠ |Q|) Design Details are Important:” There exist two

Laravel projects P and Q in a way that the external effects of P and Q are similar, but |P| is

unequal to |Q|. This property indicates that two Laravel projects P and Q could look identical in
terms of the fact that they contain the same number of class attributes, but could have different

complexities if the types of these attributes are different, this is because the attributes are

assigned different weights. Therefore, the three proposed metrics namely CCMLV, MCMLV, and

VCMLVsatisfy this property.

“Property 5: (∃P) (∃Q) (|P| ≤ |P; Q| & (|Q| ≤ |P; Q|) Monotonicity:” This property states that if

two Laravel projects P and Q are concatenated, then the resulting metric value shall be greater
than or equal to the individual Laravel project. Therefore, all three proposed metrics satisfy this

property.

"Property 6: (∃P) (∃Q) (∃R) (|P| =|Q| and |P; R| ≠ |Q; R|) Nonequivalence of interaction:”
There are similar Laravel projects P, R, and Q in a way that |P| is equivalent to |Q| however |P; R|

is unequal to |Q; R|. This indicates that two similar Laravel projects can exist, but if presented to

a third code in the same program, their proceeding complexities are different. This indicates that
the action of combining two projects has the capability of initiating complexity additional to that

inherent in real projects. Also, this newly incorporated complexity is not fully discovered by any

of the interacting projects. All the defined metrics consider the physical measurable attributes of
Laravel projects by assigning them fixed values and weights. Due to the existence of these

constant values, anytime two Laravel projects are sequenced, it is impossible to introduce

external complexity. Therefore, all the proposed metrics fail to satisfy this property.

Property 7: Permutation. There exist two Laravel projects P and Q which have the same

number and type of attributes in a permuted order, then |P| is not equal to |Q|. This property

implies that the order of similar attributes affects their complexity. For instance, if two Laravel
projects have the same number and types of attributes but differ in ordering, then they don’t need

to have the same complexity level. Therefore, property 7 does not apply to all the metrics

defined.

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

55

“Property 8: Renaming:” If P is a renaming of Q, then |P| = |Q|. If a Laravel project P is a
renaming of a Laravel project Q, then the complexity of Laravel project P should be equal to the

complexity of project Q (|P| is equal to |Q|). Therefore, all proposed metrics satisfied this

property.

“Property 9: (∃P) (∃Q) (|P| +|Q| < (|P; Q|) Interaction Increases Complexity:” There exist

Laravel projects Q and P where |P|+|Q| is less than |P; Q|. This attribute argues that the

interrelation between sections of a project causes additional positive complexity. When a Laravel
project is modified by introducing new class attributes, the complexity values of the new Laravel

project will be higher than the original project. All three proposed metrics satisfy property 9.

Table 5: Metrics Validation using Weyuker’s nine properties

Key

 = Satisfying Property  = not satisfying property

5.2. Validation using Kaner Framework

Kaner proposed an eleven-question framework to validate the practicality of any newly proposed

metrics [27]. Therefore, the newly proposed Laravel metrics are subjected to the Kaner
framework to ascertain their practicality.

i. “What is the purpose of this measure?”

The purpose of the three newly proposed metrics CCMLV, MCMLV, and VCMLV is to measure and

help in the evaluation of the complexity of software developed using Laravel.

ii. “What is the scope of this measure?”

The three newly proposed metrics CCMLV, MCMLV, and VCMLV focus on measuring the
complexity of software developed using Laravel at the class level.

iii. “What attribute are we trying to measure?”

The defined metrics are classified under controller-based attributes, view-based attributes, and

model-based attributes. These attributes measure the complexity of Laravel software which has a

direct contribution to the modifiability of such software products.

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

56

iv. “What is the natural scale of the attribute we are trying to measure?”

The ordinal scale is used as the natural scale of measure for the defined attributes.

v. “What is the natural variability of the attribute?”

Different Laravel software will have attributes that naturally vary from one software to another,

hence the quality attributes are subjective.

vi. “Metrics definition”

All the three newly proposed metrics CCMLV, MCMLV, and VCMLV have been defined clearly

following the known measurement theory.

vii. “What is the metric and what measuring instrument do we use to perform the

measurement?”

Three novel metrics CCMLV, MCMLV, and VCMLV are defined to manually compute the
complexity of Laravel software. Besides, a static metrics tool will be developed as a

measurement instrument in the future to automate the metrics computation process.

viii. “What is the natural scale for this metric?”

All the three proposed metrics give metric values on a numerical natural scale.

ix. “What is the natural variability of readings from this instrument?”

The instrument that will be used to automate the metrics computation process will be validated to
ensure that there is no natural variability of the readings.

x. “What is the relationship of the attribute to the metric value?”

All the three newly proposed metrics CCMLV, MCMLV, and VCMLV are defined based on the

identified attributes. Meaning that the metric values have a direct relationship and are directly

proportional to the metric values.

xi. “What are the natural and foreseeable side effects of using this instrument?”

The instrument is a static analyzer tool to be used in the automation of the metric computation

process. It does not have any natural and foreseeable side effects.

6. DISCUSSION

Three novel structural complexity metrics namely CCMLV, MCMLV, and VCMLV were defined

and validated theoretically. These metrics are designed to assess the complexity of Laravel

software at the class level within Laravel's MVC architecture. The metrics offer a better approach
to understanding and managing software complexity in Laravel projects. The definition and

validation of the metrics tailored for Laravel applications present a substantive contribution to the

software complexity metrics field.

The theoretical validation of these metrics, employed Weyuker’s nine properties and the Kaner

framework, indicated a substantial alignment with established properties of mathematical

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

57

soundness and practicability of the complexity metrics respectively. Notably, the metrics showed
a high degree of compliance satisfying seven out of nine of Weyuker’s properties. This implies

that the proposed metrics are mathematically sound, robust, and reliable in measuring the

complexity of Laravel software. The failure to comply with properties six and seven can be

attributed to the specialized nature of Laravel’s architectural elements, which require a more
tailored approach to complexity assessment.

Moreover, the validation of the metrics against the Kaner framework further emphasizes their
practical applicability and relevance to real-world software development scenarios. The

comprehensive nature of the Kaner framework's questions implied that the metrics are not only

theoretically sound but also practically applicable to the Laravel domain.

These results, therefore, imply that all the three newly proposed metrics CCMLV, MCMLV, and

VCMLV present a significant contribution to the domain of software complexity metrics and can

be adopted by Laravel developers to measure and therefore, control the complexity of Laravel
software.

7. CONCLUSIONS AND FUTURE WORK

In conclusion, this study highlights the importance of developing framework-specific complexity

metrics that consider the unique features and architectural patterns of modern web development

frameworks. By focusing on Laravel, a widely used PHP development framework, the study

addresses a critical gap in the literature and practice of software engineering metrics. The
proposed metrics provide a valuable measure for developers and project managers to identify

potential complexities, inform refactoring decisions, and ultimately improve the modifiability and

quality of Laravel applications.

The study lays a robust foundation for measuring complexity in Laravel applications, several

avenues for future research emerge, such as tool development; the development of automated
tools based on these metrics for static code analysis would significantly enhance their

applicability in the industry, allowing for real-time complexity assessment during development.

Empirical validation; in the future, the study recommends conducting empirical studies to

validate the proposed metrics against real-world Laravel projects to further establish their
usefulness and effectiveness in practical scenarios.

REFERENCES

[1] N. Yadav, D. S. Rajpoot & S. K. Dhakad, “LARAVEL: A PHP Framework for E-Commerce

Website,” 2019 Fifth International Conference on Image Information Processing (ICIIP), Nov. 2019,

doi: https://doi.org/10.1109/iciip47207.2019.8985771.

[2] S. Tenzin, “PHP Framework for Web Application Development,” IARJSET, vol. 9, no. 2, Feb. 2022,

doi: https://doi.org/10.17148/iarjset.2022.9218.

[3] J. G. Ndia, “Structural Complexity Framework and Metrics for Analyzing the Maintainability of

Sassy Cascading Style Sheets” (Doctoral dissertation, MMUST), 2019.

[4] J. G. Ndia, G. M. Muketha & K. K. Omieno, “Structural Complexity Attribute Classification

Framework (SCACF) for Sassy Cascading Style Sheets”, International Journal of Software

Engineering & Applications (IJSEA), Vol.11, No.1, DOI: 10.5121/ijsea.2020.11105, January 2020.
[5] G. M. Muketha, A. A. A. Ghani, M. H., Selamat & R. Atan, “Complexity Metrics for Executable

Business Processes”, Information Technology Journal. 9(7), 2010a, 1317-1326.

[6] J. Estdale & E. Georgiadou, “Applying the ISO/IEC 25010 quality models to software products,” In

Systems, Software and Services Process Improvement: 25th European Conference, EuroSPI 2018,

Bilbao, Spain, September 5-7, 2018, Proceedings 25 (pp. 492-503). Springer International Publishing.

https://doi.org/10.1109/iciip47207.2019.8985771
https://doi.org/10.17148/iarjset.2022.9218
http://scialert.net/abstract/?doi=itj.2010.1317.1326
http://scialert.net/abstract/?doi=itj.2010.1317.1326

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

58

[7] H. Panduwiyasa, M. Saputra, Z. F. Azzahra & A. R. Aniko, “Accounting and smart system:

functional evaluation of iso/iec 25010: 2011 quality model (a case study)”, In IOP Conference Series:

Materials Science and Engineering (Vol. 1092, No. 1, p. 012065). IOP Publishing, March, 2021.

[8] H. Zhang & M. A. Babar, "On the complexity of Laravel application models: A framework-specific

metrics analysis," Proceedings of the 5th International Workshop on Software Quality and
Maintainability, 2011.

[9] T. J. McCabe, "A complexity measures." IEEE Transactions on Software Engineering, SE-2(4), 308-

320. This seminal paper introduced Cyclomatic complexity, a foundational metric for understanding

control flow complexity in software systems, 1976.

[10] M. H. Halstead, “Elements of Software Science”. Elsevier North-Holland, Inc., 1977.

[11] S. Henry & D. Kafura, "Software structure metrics based on information flow." IEEE Transactions on

Software Engineering, SE-7(5), 1981, 510-518.

[12] S. R. Chidamber & C. F. Kemerer, "A metrics suite for object-oriented design." IEEE Transactions

on Software Engineering, 20(6), 1994, 476-493.

[13] “Laravel - The PHP Framework for Web Artisans,” laravel.com.

https://laravel.com/docs/10.x/eloquent

[14] Y. Wang & J. Shao, “A new measure of software complexity based on cognitive Weights.” IEEE
Canadian Journal of Electrical and Computer Engineering, 2003, pp. 69-74

[15] C. J. Selvaraj, A. Aloysius & L. Arockiam, “A Comparision of Proposed Cognitive weights for

control structures and Object-Oriented programming languages,” In Proceedings of International

Conference on Advanced Computing ICAC09, 2009 (pp. 380-385).

[16] U. Chhillar & S. Bhasin, “A new weighted composite complexity measure for object-oriented

systems, ”International journal of information and communication technology research, 1(3), 2011.

[17] “Laravel Models | Defining Eloquent Models with CRUD Operations, ”EDUCBA, Jan. 09, 2020.

https://www.educba.com/laravel-models/, accessed Jul. 30, 2024.

[18] “Illuminate\Database\Eloquent\Model | Laravel API, ”laravel.com.

https://laravel.com/api/7.x/Illuminate/Database/Eloquent/Model.html, accessed Jul. 30, 2024.

[19] “Understanding Laravel Models: A Comprehensive Guide,” www.gyata.ai.
https://www.gyata.ai/laravel/laravel-model/, accessed Jul. 30, 2024.

[20] Admin, “What Does ‘Mass Assignment’ Mean in Laravel? - LaravelTuts,” Laravel Tuts, Jun. 12,

2023. https://laraveltuts.com/what-does-mass-assignment-mean-in-laravel/, accessed Jul. 30, 2024.

[21] “What does ‘Mass Assignment’ mean in Laravel?, ”Stack Overflow.

https://stackoverflow.com/questions/22279435/what-does-mass-assignment-mean-in-laravel,

accessed Mar. 11, 2024.

[22] “Laravel @extends and @include,” Stack Overflow.

https://stackoverflow.com/questions/39749683/laravel-extends-and-include , accessed Jul. 30, 2024.

[23] D. Soni, R. Shrivastava & M. Kumar, “A Framework for Validation of Object-Oriented Design

Metrics,” International Journal of Computer Science and Information Security (IJCSIS), vol. 6, no. 3,

2009, Accessed: Jul. 30, 2024. [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/1001/1001.1970.pdf
[24] N. Fenton, "Software Metrics: Theory, Tools and Validation," Software Engineering Journal, pp. 65-

78, January 1990.

[25] K. P. Srinivasan & T. Devi, “Software Metrics Validation Methodologies in Software Engineering,

”International Journal of Software Engineering & Applications, vol. 5, no. 6, pp. 87–102, Nov. 2014,

doi: https://doi.org/10.5121/ijsea.2014.5606.

[26] B. Smith, “Software metrics validation criteria: a systematic literature review,” North Carolina State

University Department of Computer Science, Raleigh, NC, Jan. 2010, Accessed: Jul. 30, 2024.

[Online]. Available:

https://www.academia.edu/94649556/Software_metrics_validation_criteria_a_systematic_literature_r

eview.

[27] W. Bond, “Software Engineering Metrics: What Do They Measure and How Do We Know?”
Accessed: Jul. 30, 2024. [Online]. Available: https://kaner.com/pdfs/metrics2004.pdf

[28] E. J. Weyuker, “Evaluating software complexity measures,: IEEE Transactions on Software on

Software Engineering, 1988, 14: 1357-1365.

https://laravel.com/docs/10.x/eloquent
https://www.educba.com/laravel-models/
https://laravel.com/api/7.x/Illuminate/Database/Eloquent/Model.html
https://www.gyata.ai/laravel/laravel-model/
https://laraveltuts.com/what-does-mass-assignment-mean-in-laravel/
https://stackoverflow.com/questions/22279435/what-does-mass-assignment-mean-in-laravel
https://stackoverflow.com/questions/39749683/laravel-extends-and-include
https://arxiv.org/ftp/arxiv/papers/1001/1001.1970.pdf
https://doi.org/10.5121/ijsea.2014.5606
https://www.academia.edu/94649556/Software_metrics_validation_criteria_a_systematic_literature_review
https://www.academia.edu/94649556/Software_metrics_validation_criteria_a_systematic_literature_review
https://kaner.com/pdfs/metrics2004.pdf

International Journal of Software Engineering & Applications (IJSEA), Vol.15, No.4, July 2024

59

[29] A. W. King'ori, G. M. Muketha & J.G. Ndia, “A SUITE OF METRICS FOR UML BEHAVIORAL

DIAGRAMS BASED ON COMPLEXITY PERSPECTIVES,” International Journal of Software

Engineering & Applications (IJSEA), vol. 15, no. 2, 2024, doi:

https://doi.org/10.5121/ijsea.2024.15201.

AUTHORS

Kevin Agina Onyango is a Tutorial Fellow in the Department of Information

Technology, School of Computing and Information Technology, Murang'a

University of Technology. He received his BSc. and MSc. in Information

Technology from Murang’a University of Technology, Kenya. He is currently

pursuing his PhD Information Technology at Murang’a University of Technology.

His research interests mainly include software engineering, software measurement,

program analysis, and soft computing. He is a Student Professional Member of the

Institute of Electrical and Electronics Engineers (IEEE).

Geoffrey Muchiri Muketha is a Professor of Computer Science and Director of

Postgraduate Studies at Murang'a University of Technology, Kenya. He received his

BSc. in Information Sciences from Moi University, Kenya in 1995, his MSc. in

Computer Science from Periyar University, India in 2004, and his PhD in Software

Engineering from Universiti Putra Malaysia in 2011. He has wide experience in

teaching and supervision of postgraduate students. His research interests include

software and business process metrics, software quality, verification and validation,

empirical methods in software engineering, and computer security. He is a member

of the International Association of Engineers (IAENG).

John Gichuki Ndia is a Senior Lecturer at the Department of Information

Technology and the Dean School of Computing and Information Technology,

Murang'a University of Technology, Kenya. He earned his Bachelor of Information

Technology from Busoga University in 2009, and his MSc. in Data
Communications from KCA-University in 2013. He pursued his PhD in Information

Technology at Masinde Muliro University of Science and Technology in 2020. His

research interests include Software quality, artificial intelligence applications in

software engineering, and computer network security. He is a member of the Institute of Electrical and

Electronics Engineers (IEEE) and the Association for Computing Machinery (ACM)

https://doi.org/10.5121/ijsea.2024.15201

	Abstract
	Keywords
	Software Metrics, Laravel Software, Theoretical Validation, Software Quality, MVC Design Pattern & EAMT Model.

