International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

INTELLIGENCE AS A FEATURE: MODELING ML IN
SOFTWARE PRODUCT LINES

Luz-Viviana Cobaleda !, Andrés Lopez 2, Paola Vallejo 3, Raul Mazo 2, Julian
Carvajal !

! Facultad de Ingenieria, Universidad de Antioquia, Medellin, Colombia.
2 Lab-STICC, ENSTA, Brest, Francia.
3 Escuela de Ciencias Aplicadas e Ingenieria, Universidad EAFIT, Medellin, Colombia.

ABSTRACT

The integration of Machine Learning (ML) components into modern software systems enhances data-
driven decision-making but introduces new challenges for Sofitware Product Line (SPL) engineering.
Variability modeling, configuration, and reuse become increasingly complex when adaptive ML
components are involved. Although previous studies have addressed variability in traditional SPLs and ML
integration in standalone systems, limited work has systematically explored the intersection of these two
domains. This paper presents a structured framework that extends SPL engineering to support ML-aware
variability management. The framework enables the systematic modeling and configuration of ML
components and has been implemented in the VariaMos web tool. A case study demonstrates the
framework’s feasibility and applicability, illustrating how it supports the development of adaptive and
intelligent product lines.

KEYWORDS

Machine Learning (ML), Software Product Lines (SPL), ML-based systems, variability modeling.

1. INTRODUCTION

The rapid evolution of artificial intelligence (Al) over the last decade stems from advances in
computational power, the availability of massive datasets, and increasingly sophisticated
algorithms. As a result, Al has become a transformative technological force, empowering
software-intensive systems with new capabilities across diverse domains [1], [2], [3], [4]. Al-
based systems are essentially software systems whose functionalities are enabled by at least one
Al component (e.g., for image and speech recognition or autonomous driving) [4]. However,
incorporating Al components into software products introduces new software engineering
challenges and amplifies existing ones. The situation becomes even more critical when these
components are integrated not only into a single product but into a family of software products or
a Software Product Line (SPL). Thus, the integration of Machine Learning (ML) components into
SPLs introduces new dimensions of variability that traditional modeling techniques are not
prepared to handle. This raises fundamental questions: How can an AI/ML component be
modeled within an SPL? How can architects effectively integrate ML components into their
SPLs? What information about the model is necessary to enable a successful SPL configuration
process? The inability of current modeling approaches to address these questions reveals a
significant research gap. Additionally, the integration of ML components into software systems
introduces unique challenges that have given rise to the field of Software Engineering for Al
(SE4AI). Recent literature has systematically identified the issues that emerge across the software
lifecycle, impacting areas such as requirements engineering, architecture, testing, deployment,

DOI: 10.5121/ijsea.2025.16601 1

https://airccse.org/journal/ijsea/vol16.html
https://doi.org/10.5121/ijsea.2025.16601
https://www.zotero.org/google-docs/?SoGxCk
https://www.zotero.org/google-docs/?lbcQSH

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

and maintenance [3], [4], [5], [6]. While these challenges are broad, this paper focuses on those
most relevant to the design of SPL.

Most research in SE4AI has focused on the challenges of integrating ML components into
individual software systems. In the context of SPLs, where systematic reuse is central, these
challenges persist but evolve into variability management problems. For instance, defining
performance metrics for a single product is an engineering task, whereas managing multiple
components with diverse performance profiles across products becomes a variability challenge.
However, literature explicitly addressing this transformation of ML-related challenges in SPLs
remains scarce, revealing a significant research gap. Among the documented issues in individual
systems, requirements engineering is particularly critical: both customers[3] and development
teams [6] often overestimate ML capabilities, leading to unrealistic expectations such as perfect
accuracy or zero false positives[4]. This gap between business goals and technical specifications
is compounded by the dynamic nature of ML components, which introduces new and still poorly
understood quality attributes—such as freshness and robustness[3], [4] —and trade-offs,
including fairness versus accuracy [3], [4].

Although these challenges are significant for individual systems, their impact is amplified in
SPLs, where systematic reuse and variability management are essential. The inclusion of ML
components introduces additional variability concerns—such as defining performance metrics at
the product line level, aligning stakeholder understanding, and specifying monitoring policies—
that extend beyond individual products. Despite extensive research on Al-related software
components, the literature still lacks approaches that explicitly address their distinctive
characteristics within SPLs[3], [4].

In this paper, we propose a framework for enhancing SPLs by considering intelligence as a first-
class feature and enabling the seamless integration of ML components. The main contribution
lies in a specification-oriented approach that systematically guides the integration of ML-based
functionalities into SPLs, addressing key aspects such as variability management, probabilistic
feature modeling, ML component characterization, continuous monitoring, component
replacement, and product derivation with ML components. This framework promotes consistent
reuse, customization, and traceability of intelligent features across product configurations within
the SPL context.

This proposal builds upon and improves the version presented initially in [7] by providing an
enhanced demonstration of the framework’s feasibility and applicability through a running
example and its implementation in the VariaMos web tool (www.variamos.com). As part of an
ongoing effort to operationalize and validate its practical use, this web-based tool leverages a
microservices architecture to support the specification of product lines through a multi-language
modeling approach, as well as reasoning over products and product lines.

The remainder of the paper is structured as follows: Section 2 provides background information
on SPL engineering and ML components documentation. Section 3 introduces the running
example in the virtual store domain, which will be referenced throughout the remainder of the
paper. Section 4 presents the proposed framework for designing SPLs with ML components and
discusses the implications of this approach. Section 5 reviews related work. Finally, Section 6
concludes the paper and outlines directions for future research.

https://www.zotero.org/google-docs/?698EFP
https://www.zotero.org/google-docs/?HhWZIQ
https://www.zotero.org/google-docs/?TueeWw
https://www.zotero.org/google-docs/?tyt5fa
https://www.zotero.org/google-docs/?qlvPCZ
https://www.zotero.org/google-docs/?wi8QPN
https://www.zotero.org/google-docs/?7lrCpW
https://www.zotero.org/google-docs/?PoOwTk
http://www.variamos.com/

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025
2. BACKGROUND

The design and development of SPLs rely on systematic approaches to manage variability and
promote reuse across families of related software systems. To provide the necessary foundation
for the proposed framework, this section outlines the core concepts of SPL engineering and the
integration of ML components.

2.1. SPL and Variability Management

A SPL represents a systematic approach to developing families of related applications within a
specific domain through strategic reuse of common assets [8]. This paradigm leverages shared
components and systematic variability management to achieve significant reductions in
development time and costs while improving product quality through the incorporation of proven,
reusable artifacts.

Software Product Line Engineering (SPLE) operationalizes this approach through two
fundamental processes, as presented in Figure 1: (1) Domain engineering, which establishes
reusable assets and variability models, and (2) Application engineering, which derives specific
products from these shared resources[8]. Variability—the capacity of a system to be adapted or
configured for specific contexts—serves as the core mechanism enabling this systematic reuse
across diverse product requirements.

1) Domain engineering establishes the foundation of reusable assets through two sequential
phases. A) Domain analysis identifies and specifies SPL variability using formal models such as
feature models [9], which define variation points, available alternatives, and constraint
relationships. This phase encompasses: domain requirements definition to capture stakeholder
needs and scope constraints, reference architecture specification aligned with domain
requirements, and variability model quality assurance through systematic verification, diagnosis,
and validation activities. B) Domain implementation transforms abstract specifications into
concrete, reusable components. Key activities include requirements engineering for domain
components, architectural design specification, domain component implementation,
comprehensive unit testing, and explicit linkage between components and variability model
elements. This phase produces the core asset base comprising domain components, architectural
models, and associated test suites.

2) Application engineering derives specific products through the systematic configuration and
instantiation of domain assets across two phases. A) Configuration and customization
management captures customer-specific requirements and configures variability models
accordingly, encompassing application requirements engineering, variability —model
configuration, application architecture definition, and component customization to meet specific
product needs. B) Derivation constructs final products from configured domain assets through
requirements engineering for the derivation process, assembly architecture definition, systematic
product implementation from domain components, and comprehensive system integrity testing,
including performance, validation, and audit verification.

This dual-process framework ensures systematic reuse while maintaining the flexibility necessary
to address diverse product requirements within the target domain. The SPLE framework applies
to various domains, including, but not limited to, education [10], agricultural systems [11], smart
buildings [12], e-commerce [13], automotive manufacturing [14], and information systems [15].
Our running example belongs to the e-commerce domain.

https://www.zotero.org/google-docs/?iN4iu9
https://www.zotero.org/google-docs/?MbPFhe
https://www.zotero.org/google-docs/?g5WZk5
https://www.zotero.org/google-docs/?YTLVuI
https://www.zotero.org/google-docs/?ST77A9
https://www.zotero.org/google-docs/?iKHRHR
https://www.zotero.org/google-docs/?Tw7eYA
https://www.zotero.org/google-docs/?mTsJwC
https://www.zotero.org/google-docs/?iMg3rk

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

Problem space Solution space
Domain analysis " P Domain implementation
- implementation
g
= ¢ Requirements engineering for domain components
2 * Domain requirements definition * Architectural design specification
= ¢ Reference architecture specification * Domain component implementation
= * Variability model quality assurance * Comprehensive unit testing
g * Linkage components with variability model elements
2 _ —— e
* Requirements variability model £ :
) £ || * Domain component model
* Reference architecture model .,'é
.*__—_—__4_,_.—-———_—*_-—-_
g
g
Configuration and g' Derivation
customization management
&0
B e Application requirements engineering * Requirements engineering for the derivation process
o 4 2y
£ s Variability model configuration ¢ Assembly architecture definition
=0 . - - = . - - -
g ¢ Application architecture definition ¢ Systematic product implementation
£ * Component customization s System integrity testing
=
=
E_ . Conﬁgyredprodyc{s * Derivation G?ﬁfﬁl‘cfS
derivation > Products

Figure 1. SPLE framework implemented in the VariaMos web tool, from [8]
2.2. ML Components

An ML component is a special type of software component that encapsulates ML models along
with their associated data processing, inference logic, and system integration capabilities [6],
[16]. These components constitute the primary means of integrating ML capabilities into complex
software systems, acting as a bridge between the underlying ML models and the overall system
architecture. Component reuse is a foundational principle that enables the efficient development
of multiple products from a shared, common core.

3. RUNNING EXAMPLE: E-COMMERCE

To illustrate the applicability of the proposed Framework for ML-Aware Variability, we present a
running example in the virtual store domain. Virtual stores constitute a representative and
relevant domain for SPLs. These platforms enable the online exchange of goods and services,
allowing businesses to publish product catalogs and customers to perform transactions. Although
they may operate in diverse markets, such as fashion, electronics, or digital services, their
primary goal is to facilitate efficient and secure commercial transactions among multiple users.
Virtual stores thus represent a cornerstone of modern e-commerce systems.

Our SPL for virtual stores captures a set of core components common to most instances,
including a Product catalog (for listing and managing items), a Shopping cart (to collect selected
products before purchase), a Payment module (for processing transactions via various methods),
and a Delivery system (to coordinate product shipment or digital access). Beyond these shared
functionalities, the SPL supports a wide range of variability points. For instance, products may
differ in terms of user authentication mechanisms, catalog presentation styles, supported payment
gateways, shipping logistics, or user interface customization. In addition to these structural
variations, ML components introduce a new layer of variability that enhances user experience
and system efficiency. Examples include a semantic search engine (trained to interpret the

4

https://www.zotero.org/google-docs/?OaEE2r
https://www.zotero.org/google-docs/?HtoXE6
https://www.zotero.org/google-docs/?HtoXE6

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

context of user queries), a sentiment analysis module (applied to customer reviews), and a
content moderation system (which classifies and filters inappropriate content).

These ML-based components add complex dimensions of wvariability related to model
architecture, inference thresholds, latency, and human-in-the-loop decision-making. For example,
the content moderation module can be instantiated in two configurations: (i) a human-assisted
moderation system, where a toxicity classification model flags suspicious comments for manual
review, and (ii) an automated moderation system, where the same model flags comments for
automatic censorship using a higher confidence threshold. Choosing between these
configurations entails trade-offs. The automated system requires higher model precision to
minimize false positives (i.e., unjustified censorship). In contrast, the human-assisted
configuration can operate with a lighter, lower-latency model, as human moderators make the
final decisions. To implement such ML functionalities, the SPL can rely on pre-trained models
(e.g., text classifiers or Sentence Transformers) obtained from public repositories, such as
Hugging Face. Within the SPL context, these models can be encapsulated as reusable
components, enabling developers to integrate intelligent behavior without having to redesign
models from scratch for each product instance. This running example will be referenced
throughout the paper to demonstrate the modeling of variability, the configuration of intelligent
components, and the systematic reuse of ML assets in SPL.

4. A FRAMEWORK FOR ML-AWARE VARIABILITY

The integration of ML components into SPL represents a fundamental paradigm shift that
challenges the traditional assumptions underlying systematic software reuse. While conventional
SPL approaches have proven effective for deterministic software components with predictable
behavior and stable interfaces [17], [18], ML components introduce unprecedented complexity
through their inherent stochasticity, data dependency, continuous evolution requirements, and
non-functional characteristics that defy traditional software engineering practices [3], [4].

The proposed framework is organized into five interconnected phases that collectively address
the complete lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive
architecture design, ML-aware domainimplementation, Dynamic product configuration,
and Product derivation and validation of its resulting products. Each phase builds upon
established SPL theory while introducing novel concepts and recommended practices specifically
designed to handle the probabilistic nature, performance variability, and operational complexity
inherent in ML systems.

4.1. ML-Aware Domain Analysis

The domain analysis phase requires significant adaptations when ML components are involved,
particularly in feature modeling and architectural decision [8]. Traditional Boolean feature
satisfaction proves inadequate for ML components whose capabilities vary across contexts and
exhibit probabilistic behavior [6]. A key distinction of ML-based features lies in their reliance
on training data properties. The performance and capabilities of these features are susceptible
to the characteristics of the training data, including its quality, representativeness, and intrinsic
attributes. Additionally, implementing ML-based features can introduce risks associated with
sensitive data, particularly regarding privacy, security, and information governance, due to the
implications of data use and storage for model training and inference.

https://www.zotero.org/google-docs/?i9uARZ
https://www.zotero.org/google-docs/?rCX3Do
https://www.zotero.org/google-docs/?UFcOVe
https://www.zotero.org/google-docs/?P5KOAG

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

Recommendation 1: Implement Probabilistic Feature Modeling.

SPL engineers should extend conventional feature models to capture the uncertainty in ML
component capabilities [9]. Rather than relying on binary feature satisfaction, engineers should
model features with quality distributions that reflect variability in ML component performance.

Practical Implementation: For each feature that will be satisfied by an ML component, SPL
engineers should identify it as an “ML-based feature” and define the following Feature Quality
Profile:

FeatureQualityProfile = {

feature_id: String,

feature_type: type,

ml_component_id: String,

quality distribution: {
accuracy_range: [min_accuracy, max_accuracy],
context_sensitivity: Map[Context, AccuracylLevel],
confidence_intervals: Map[Scenario, ConfidenceRange]

1}

Application in the E-commerce Example: In our running example, the fraud detection feature
is defined with an accuracy ranging between 0.88 and 0.95. This metric is influenced by
context—decreasing to (.75 for international transactions during weekends, but reaching 0.98 for
transactions originating from suspicious IP addresses. Additionally, the confidence intervals are
established to classify the level of certainty of the machine learning model; for example, values
below 0.70 can be considered low confidence, values between 0.70 and 0.84 are considered
medium confidence, and values equal to or above 0.85 are considered high confidence. Figure 2
shows the implementation of the Probabilistic Feature Modeling in the VariaMos tool; this
representation enables the management of the inherent uncertainty in ML-based features,
supporting more accurate reasoning mechanisms and better-informed, adaptive, and reliable
product configurations.

Virtual store

Mandeftory Ve Y Mandatory
administration q et o ® products a

purchases

users shopping cart | payment

ptiona ptona

® e SARRREEE @

reviews fraud detection

|
1 Accuracy_range: [0.88, 0.95]
| | Context_sensitivity: domestic_transactions_during_week:0.95,
I international_transactions_during_week: 0.88,
ptipna domestic_transactions_during_weekend: 0.90
. 0 1 international_transactions_during_weekend: 0.75
transactions_from_suspicious_IP: 0.98
sentiment analysis I transactions_less_than_10_USD: 0.70
| Confidence_intervals: low: [0.0, 0.69]
medium: [0.70, 0.84)
I high: [0.85, 1.0]

Figure 2. Probabilistic feature modeling implemented in the VariaMos web tool.

https://www.zotero.org/google-docs/?M3Xrzc

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025
4.2. Adaptive Architecture Design

The reference architecture must explicitly address the dynamic and context-sensitive nature of
ML components. ML models often evolve, depend on external data sources, and exhibit
probabilistic behavior that affects system reliability and performance. Therefore, architectural
decisions must incorporate design strategies that manage adaptability and traceability, ensure
periodic updates, and maintain the long-term stability and performance of integrated ML
functionalities. These strategies should align feature wvariability, model capabilities, and
operational constraints, which is paramount for ensuring the robustness, adaptability, scalability,
and maintainability of the ML-based SPL.

Recommendation 2: Design ML-Aware Reference Architecture.
The reference architecture must account for several key aspects.

e It must provide for a clear separation of concerns between the core SPL framework, the
ML model development cycle, the deployment pipeline, and model monitoring.

o It must support various deployment strategies, including on-device (edge computing), on-
premises, or cloud-based, depending on the specific product requirements and
constraints.

e It must ensure data privacy, security, and compliance, while facilitating seamless
integration with robust ML engineering practices, such as MLOps.

Practical Implementation: SPL engineers should be able to:

e Use microservice-based architecture, where ML components are deployed as decoupled
services accessible through well-defined APIs.

e Use of containerization (e.g., Docker) to package models and their dependencies,
ensuring environmental consistency and portability.

4.3. ML-aware Domain Implementation

The domain implementation phase requires a structured approach to documenting, versioning,
and managing ML components. This approach should be complemented by a formal monitoring
process that can detect performance degradation and automatically trigger component
replacement procedures. Effectively characterizing and selecting suitable ML components is
essential to understanding their capabilities, limitations, and performance profiles. This enables
successful integration and reduces associated risks. The monitoring system is designed to address
the dynamic and non-deterministic nature of ML components by identifying potential degradation
in the production environment and issuing alerts. Additionally, careful consideration is required
for some aspects. For example, orchestrating ML components across products involves managing
dependencies, activation conditions, and contextual adaptation. Furthermore, replacing ML
components systematically requires mechanisms to evaluate, decouple, and reintegrate new
versions with minimal disruption.

Recommendation 3: Adopt Intelligent Component Characterization.

To ensure the precise and systematic characterization of pre-trained ML components, it is
proposed that Model Cards be mandatorily adopted. Model Cards, introduced by Mitchell [19]
and further extended by Toma [20], provide a standardized framework for documenting ML
models in a transparent and structured manner. This approach recommends customizing specific

https://www.zotero.org/google-docs/?aXV651
https://www.zotero.org/google-docs/?3wMk7z

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

sections of the standard Model Card, such as Model Details, Intended Use, SPL reusability
Profile, Model Usage, Operational Requirements, Performance Metrics, and Caveats. These cards
are tailored for domain experts who, while not data scientists, are responsible for selecting and
integrating third-party components.

Practical Implementation: For each ML component in the SPL, a standardized model card is
proposed, capturing the following essential information:

ModelCard= {
model_details: {

model _id: String, version: ModelVersion,
developed_by: String, model_type: MLModelType,
license: LicenseSpecification

}, intended_use: {

primary_use: String, out-of-scope_use: String

}, spl_reusability profile: {

supported_domains: Set[Domain],
integration_complexity: String, (e.g., “Low”)

}, model_usage: {

api_endpoint: String,
deployment_guidance: String

}, performance_metrics: Map[clave, valor],
operational_requirements: {

}s

cpu: CPUSpecification, ram: RAMSize, gpu: String, notes: String

caveats: [String]

}

The SPL-aware Model Card specification defines the essential attributes for characterizing an
ML component. The purpose and content of each key attribute are detailed below:

e model details: Provides technical specifications—covering developer information, version
control, model architecture, training methodology, and licensing terms that define
commercial use rights, current license type, and redistribution permissions.

o

model_id: A unique identifier for the model, such as its name in a public repository.
version: The specific version of the model, following semantic versioning where
possible, to track changes and dependencies.

developed by: The organization, team, or individual responsible for the model's
development.

model_type: Specifies the model's task category (e.g., Text Classification, Object
Detection), informing its functional role.

license: The legal specification governing the use, modification, and distribution of the
model, crucial for commercial product derivation.

o intended use: Defines appropriate use cases, target applications, and intended user
populations by outlining usage scenarios, specifying primary and out-of-scope applications,
detailing the model’s adaptability, and highlighting its limitations and potential biases.

O

O

primary_use: A concise description of the model's main purpose and the scenarios
where it is designed to be applied (e.g., real-time fraud detection).

out-of-scope_use: Explicitly states the limitations and use cases for which the model has
not been designed or validated, preventing misuse.

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

o spl_reusability profile: A section dedicated to evaluating the ML component's fitness as a
reusable asset within the SPL context. This is a key input for variability modeling.

o supported_domains: A set of application domains where the model has demonstrated
reliable performance, highlighting potential domain biases.

o integration_complexity: A categorical rating (e.g., "Low", "Medium", "High") that
estimates the engineering effort needed to integrate the component, based on its
dependencies and API.

e Model usage: Offers guidance on model consumption through various interfaces (e.g., UL,
API) and outlines its compatibility with different deployment platforms and operating
systems. It also provides guidance on optimizing performance and outlines deployment
strategies for different environments, including local setups and cloud platforms.

o api_endpoint: The URL or interface for sending inference requests.
o deployment_guidance: A summary of instructions and best practices for deploying the
model in different environments (e.g., cloud, edge).

o performance metrics: Comprehensive performance evaluation including accuracy measures,
uncertainty quantification, and decision thresholds.

e operational requirements: Provides system requirements and hardware recommendations to
help users prepare for deploying or fine-tuning the model in their computing environment.

o cpu: The recommended minimum specification for the CPU. This is critical for overall
system performance and serves as the primary compute resource when no GPU is used.

o ram: The recommended minimum system RAM. This memory is required to hold the
operating system, host application, model dependencies, and the model itself before
being loaded into specialized hardware.

o gpu: Specify whether a GPU is required, as well as its minimum specifications.

o neotes: Provides additional qualitative context or performance tips.

e caveats and recommendations: Presents caveats and recommendations by assessing
potential societal impacts, fairness considerations, and bias mitigation strategies, while also
outlining behavioral limitations related to “Not Safe For Work” (NSFW) content, including
explicit material, violence, or hate speech.

This information empowers the SPL architect to make a reasoned configuration decision: either
accept a component with known limitations and plan for specific monitoring, or select an
alternative component whose characteristics better align with the product being built. In addition,
the systematic adoption of Model Cards represents a crucial step toward responsible ML
deployment by enhancing transparency around model behavior and operational boundaries. By
standardizing technical and ethical documentation practices, Model Cards enable stakeholders to
evaluate and compare models using multidimensional criteria that extend beyond traditional
performance metrics to encompass fairness, inclusivity, and equity considerations.

Application in the E-commerce Example: In the sentiment analysis case of our running
example, we defined a domain component that integrates two ML components: the
DistilBERTmodel from the Hugging Face repository (https://huggingface.co/distilbert) and the
CardiffNLPmodel also from Hugging Face (https://huggingface.co/cardiffnlp).

https://huggingface.co/cardiffnlp

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

For each ML component, we specified the recommended information. For example, for the
DistilBERTmodel, we defined the following elements: the model identifier (e.g.,
distilbert/distilbert-base-uncased-finetuned-sst-2-english), version (e.g., 1), model developer,
model type (in this case, text classification), primary use (classification), application domains
(e.g., products, music, among others), performance metrics (e.g., Accuracy), required
computational resources (e.g., 4-24GB of vVRAM for GPU), microservice API endpoint (e.g.,
http://localhost:5001), and interface type (REST API). Figure 3 shows an excerpt of the model
card implementation for the ML-based Sentiment analysis component in VariaMos.

The information in the model card enables the selection of the most suitable machine learning
model during product configuration, based on functional needs and the defined architecture,
promoting effective reuse and traceability of models across different contexts.

EI Properties
ML sentiment analysis
©
Sentiment analysis CardiffNLP | Sentiment analysis DistilBERT
:-m distilbert/distilbert-base-uncased-finetuned-sst-2-english
Sentiment analysis DistilBERT 1
:.m Hugging Face
ﬁ Text Classification
Apache-2.0
Custgmize i can be used for topic classification. You can use the raw model for
either masked language modeling or next sentence prediction, but it's mostly

The model should not be used to intentionally create hostile or alienating

ironments for people. In addition, the model was not trained to be factual or

Traditional sentiment analysis
Low
Sentiment analysis Rule based https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
7] A

This mo reaches an accuracy of 91.3 v set (for comparison, Bert bert

base-uncased version reaches an acc
4-24GB of vRAM

API REST

http://localhost:5001

Customize

Figure 3. Excerpt from the model card for the sentiment analysis component, implemented in the VariaMos
tool.

Recommendation 4: Implement Systematic ML Component Monitoring.

Given the inherently non-deterministic and data-dependent behavior of ML components, SPL
engineers must design robust monitoring mechanisms capable of detecting performance
degradation [21]. Operating at runtime, these mechanisms should continuously observe both
model performance and business-critical signals, while being seamlessly integrated with drift
detection and alerting processes to ensure resilient and self-adaptive system behavior.

Practical Implementation: To effectively implement this recommendation, SPL engineers
should define a dedicated ML monitoring component for each domain component that
incorporates ML capabilities. This component must specify the following attributes:

MLComponentMonitor: {

component_id: String,
monitoring configuration: {

10

https://www.zotero.org/google-docs/?RqyqI2

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

metrics: Set[MonitoringMetric],

frequency: TemporalSpecification,
data_collection_strategy: DataCollectionApproach,
baseline_establishment: BaselineDefinition

}s
threshold_definitions: {

performance_thresholds: Map[Metric, ThresholdSpec],
drift_detection_thresholds: Map[DriftType, ThresholdSpec],
business_impact_thresholds: Map[BusinessMetric, ThresholdSpec]

}s

intervention_strategies: {
alert_procedures: AlertSpecification

}
}

The specification defines the structural requirements needed to establish consistent, interpretable,
and actionable monitoring configurations. The key attributes of the monitoring specification are
detailed below:

e component_id: Unique identifier of the monitored ML component. Used to record events,
logs, and monitoring metrics.

e monitoring configuration: Parameters that define what, how, and when monitoring is
performed.

o metrics: Set of key metrics for monitoring model performance. These metrics depend on
the type of ML model (e.g., classification [F] Score, AUC, Accuracy], regression [RMSE,
MAE], and recommendation [Precision, Recall]).

o frequency: Frequency at which the model's status is evaluated. It may depend on the
traffic rate or importance of the model (e.g., Hourly: useful for high-volume production;
Daily: balanced for general use; EveryBatch: suitable for batch systems; RealTime: when
online processing is used).

o data_collection_strategy: Method for collecting input data (for comparison and
evaluation), predictions, and actual labels (if available) (e.g., StreaminglLogs: continuous
online capture. (e.g., BatchLogs: data collected in intervals; ShadowDeployment:
evaluates without exposing to the user; MiddlewareCapture: collects from a proxy or
wrapper).

o baseline_establishment: Reference against which current metrics are compared. It can
be a previous version or a historical average. (e.g., StaticThresholds: defined by experts;
PrelaunchModelBaseline: based on offline evaluation; Rolling7DayAverage: adaptive
and dynamic).

e threshold_definitions: Set of thresholds that trigger alerts.

o performance_thresholds: Thresholds over key model quality metrics.

o drift_detection_thresholds: Statistical thresholds for detecting changes in the
distribution (data drift, concept drift, prediction drift, etc).

o business_impact_thresholds: Business metrics that may be impacted by the model, such
as CTR, revenue, and churn.

e intervention_strategies: Defines actions to take if an anomaly or system degradation is
detected.

11

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

o alert_procedures: Specification of the channel and form of alert to the responsible team
(e.g., SendMailToMLTeam, PushToPagerDuty).

Application in the E-commerce Example: In our running example, the sentiment analysis
component can be continuously monitored to detect potential performance degradation, drift, or
business impact issues.

In the case of the DistilBERT sentiment analysis ML component, the monitoring mechanism
enables the definition of relevant performance metrics, such as Accuracy and Recall, as well as
the establishment of an appropriate evaluation frequency (e.g., daily assessments). It also allows
the configuration of data collection strategies for evaluation purposes, such as streaming logs, and
the definition of a reference baseline for comparison with current results, for instance, a seven-
day moving average. Furthermore, the mechanism supports the specification of performance
thresholds, including minimum and critical values for each metric, as well as the configuration of
drift detection parameters that cover both data drift and concept drift. In addition, it facilitates the
identification of business impact indicators, such as the number of misclassified negative
reviews, and the definition of intervention strategies, including automated email alerts sent to the
responsible team whenever an anomaly is detected. As illustrated in Figure 4, the configuration
for the monitoring component of the Sentiment Analysis ML-component has been implemented
in the VariaMos tool.

a3 P .
roperties
go] O, P
ML sentiment analysis Sentiment analysis monitor
Sentiment analysis CardiffNLP Sentiment analysis CardiffNLP °
< v Sentiment analysis DistilBERT
& <
ol
Sentiment analysis DistiBERT Sentiment analysis DistiBERT
< ol
‘ Daily
Cus&mze EvLm Eant Streaminglogs
StaticThresholds
Precision: {min: 0.94, critical: 0.89
33 Recall: {min: 0.87, critical: 0.82, wir
Traditional sentiment analysis
DataDrift: {
Sentiment analysis Rule based metric: "KL-Divergence®, warning: 0.04, critical: 0.08, window: “7d
wé)0, critica O

L[]

Cusﬁmze

Figure 4. Component Monitoring configuration for Sentiment analysis ML-component, implemented in the
VariaMos tool.

Recommendation 5: Implement Systematic ML Component Replacement Strategy.

During product configuration, an automated strategy should be established to update or replace
ML components when performance degradation is detected. This requires the definition of an
intervention mechanism that is triggered when the performance metrics of an ML component fall
below predefined thresholds. The mechanism must support replacing the underperforming
component with one of several alternatives: another ML model, a traditional software component,
or, if appropriate, the temporary exclusion of the affected functionality from the system's
execution flow.

12

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

Practical Implementation: To operationalize this recommendation, SPL engineers must define a
replacement strategy component associated with each ML-enabled domain component. This
component is responsible for responding to degradation alerts issued by the monitoring system
and executing the actions defined in the replacement policy. The structure of the replacement
strategy component can be formally specified as follows:

MLComponentReplacementStrategy = {

component_id: String,

replacement_hierarchy: {

primary_alternative: ComponentReference,
secondary_alternatives: List[ComponentReference],
fallback_strategy: FallbackApproach

}
}

This specification defines the structure required to enable resilient and automated replacement
mechanisms for ML components. The attributes are described below:

e component_id: Unique identifier of the ML component.
o replacement_hierarchy: Hierarchy of alternatives in case of model degradation.

o primary_alternative: Component directly prepared to take over the current ML model.

o secondary_alternatives: List of additional (less optimal) alternatives.

o fallback strategy: Emergency strategy to continue providing service with reduced
capabilities (e.g., AllowAll, ConservativeRuleBasedBlocking, RuleBasedBlocking,
ManualReview, GracefulShutdown).

Application in the E-commerce Example: In an online retail SPL, a replacement strategy can
be defined for the sentiment analysis component using both traditional and ML-based
alternatives. To ensure system resilience, if no alternative component satisfies the required
quality thresholds, a predefined fallback mechanism is activated, such as temporarily disabling
the sentiment analysis feature within the process flow.

In our running example, the DistiIBERTsentiment analysis component is associated with a
monitoring component that tracks its performance. The replacement strategy allows defining a
primary alternative, such as the CardiffNLPsentiment analysis component, and a secondary
alternative represented by a traditional Rule-based component. A contingency strategy is also
specified for cases in which none of the available alternatives meet the established quality
criteria. In such situations, the system may temporarily block requests using a predefined rule set,
ensuring controlled behavior in the presence of failures. The replacement strategy remains
subscribed to the events generated by the monitoring system, enabling the automatic substitution
of degraded components as soon as anomalies are detected.

In VariaMos, this mechanism ensures system resilience and operational continuity by
automatically replacing underperforming components with viable alternatives, following a
predefined hierarchy that responds to monitoring alerts and executes actions specified in the
substitution policy. Figure 5 illustrates the replacement strategy implemented in VariaMos.

13

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

g

ML sentiment analysis

Sentiment analysis CardiffNLP

[y

O,

[P
Sentiment analysis monitor

Sentiment analysis CardiffNLP

()

Sentiment analysis replacement

Sentiment analysis CardiffNLP

g %] © fo
Sentiment analysis DistiBERT Sentiment analysis DistiBERT Sentiment analysis DistiBERT
s 5] %l
| | [|
Cus(%mlze EvEnt Event AlertEvent Aleﬂgyent
Properties X
Traditional sentiment analysis
©
Sentiment analysis Rule based A
s:] Nan Sentiment analysis DistilBERT

Sentiment analysis CardiffNLP

Sentiment analysis Rule based

Cusl}mze trat RuleBasedBlocking

Figure 5. Configuration of the replacement strategy for the Sentiment analysis ML-component,
implemented in the VariaMos tool.

Recommendation 6: Implement ML Component Orchestration.

Effective orchestration—the coordinated management and execution of ML components—in
dynamic product configurations requires infrastructure that enables flexible model composition,
state management between runs, and contextual integration. For this, we recommend:

e Use of modular ML pipelines, which allow integrating, monitoring, and scaling ML
components in distributed environments.

o Intelligent orchestrators that dynamically adjust component activation according to
contextual signals, business rules, or environmental conditions. Techniques such as context-
aware scheduling can be applied.

e Functional decoupling of components, promoting a microservices-based architecture to
facilitate model replacement, enhancement, or re-trainability without altering the overall
configuration.

e Instrumentation for traceability and versioning: employ systems that record training data,
parameters, results, and decisions made by each component to facilitate audits and
optimization.

Practical Implementation: To operationalize this recommendation, SPL engineers must define a
dedicated orchestration layer that governs the lifecycle, dependencies, and interactions of ML
components. This orchestration must support declarative workflows, dynamic adaptation policies,
and seamless integration with monitoring systems. The following schema defines a formal
representation of such an orchestration-aware product configuration:

ProductConfiguration = {

configuration_id: String,

feature_binding: Map[Feature, ComponentBinding],
workflow_specification: {

component_graph: DirectedAcyclicGraph[Component, DataFlow],
execution_constraints: Set[Constraint],

quality objectives: Map[QualityAttribute, Objective],

14

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

resource_allocations: Map[Component, ResourceAllocation]
}, adaptation_policies: {
monitoring_configuration: MonitoringPolicy,
replacement_triggers: Set[ReplacementTrigger],
quality negotiation: QualityNegotiationStrategy,
performance_optimization: OptimizationPolicy
}, validation_requirements: {
functional tests: Set[TestSpecification],
performance_benchmarks: Set[BenchmarkTest],
quality assertions: Set[QualityAssertion],
compliance_checks: Set[ComplianceCheck]

}
}

This schema defines the structural and behavioral dimensions of a configurable product instance.
Its modular design supports precise, verifiable, and adaptive configuration management across a
wide range of variability. The key components are described below:

e configuration_id: A unique identifier assigned to the product configuration instance.

o feature binding: A mapping between product features and their corresponding component
implementations. This allows resolution of variability by specifying which components realize
which features in a given configuration.

o workflow_specification: Captures the operational logic of the product.

o component_graph: A directed acyclic graph (DAG) that defines the data flow and
execution dependencies among software and ML components.

o execution_constraints: A set of logical or resource-based constraints that govern
component execution (e.g., timing, sequencing).

o quality_objectives: Specifies target values for quality attributes, such as accuracy,
latency, and energy consumption.

o resource_allocations: Assigns computational resources (e.g., CPU, memory, GPU) to
each component to ensure operational feasibility.

adaptation_policies: Define the runtime behavior of the product under varying operational
conditions:

o monitoring_configuration: Indicates how system performance is monitored during
execution.

o replacement_triggers: Defines conditions under which components should be replaced.

o quality_negotiation: Specifies strategies for balancing competing quality attributes
under constraints.

o performance_optimization: Policies for dynamically optimizing performance based on
monitored feedback.

validation_requirements: Ensures that configured products meet their intended goals and
regulatory requirements:

o functional_tests: Set of specifications for functional correctness.

o performance_benchmarks: Benchmark tests that measure system performance under
predefined workloads.

15

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

o quality_assertions: Verifiable and testable statements specifying the quality attributes
that a configured product is required to meet.

o compliance checks: Formal |checks to ensure adherence to standards, certifications, or
domain-specific regulations.

Application in the E-commerce Example: In an online retail SPL, a dynamic product
configuration may include ML components for personalized recommendations, fraud detection,
and sentiment analysis. The component bindings for each product instance can vary significantly
based on factors such as the target audience, expected transaction volume, and specific regional
compliance mandates.

4.4. Dynamic Product Configuration

Incorporating ML components during product configuration adds depth to variability and
intelligence of SPL. However, configuration decisions must balance multiple competing
objectives, such as performance, cost, and reliability, often under shifting operational conditions.
Recommendation 7: Establish Multi-Objective Configuration Optimization.

To enhance the adaptability and performance of ML-enabled SPLs, it is essential to establish
multi-objective configuration optimization mechanisms. This approach enables organizations to
simultaneously evaluate and balance competing concerns, including accuracy, latency, resource
consumption, interpretability, and ethical constraints. By leveraging advanced optimization
techniques such as Pareto efficiency or evolutionary algorithms, teams can generate configuration
sets that meet diverse stakeholder requirements without compromising system integrity.
Implementing multi-objective optimization also promotes continuous improvement, enabling
dynamic reconfiguration as environments evolve or model behaviors drift over time.

Practical Implementation: To operationalize multi-objective configuration optimization, it is
first necessary to formalize a set of competing objectives, such as model accuracy, latency,
resource utilization, interpretability, and compliance with ethical standards, into quantifiable
metrics. The configuration space should encompass both system-level parameters and ML-
specific settings, including hyperparameters and pipeline structures. Exploring trade-offs across
this space can be conducted using optimization techniques such as evolutionary algorithms (e.g.,
NSGA-II), Bayesian multi-objective methods, or Pareto-based analysis. Configurations are
evaluated through simulation or benchmarking, producing Pareto-optimal sets that offer balanced
solutions. These sets can be visualized or presented through decision-support interfaces to
facilitate selection based on dynamic stakeholder priorities and preferences. Finally, integrating
optimization processes within CI/CD pipelines ensures continuous reconfiguration in response to
model drift or changing operational constraints.

4.5. Product Derivation and Validation

This phase considers the methodology for deriving specific products from a configurable
architecture, detailing how optimization criteria and stakeholder requirements guide the selection
process. It also describes the validation mechanisms employed to ensure that the resulting
products meet expected standards of functionality, performance, and reliability prior to
deployment.

16

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

Recommendation 8: Implement validation and testing strategies specifically designed for
ML-enhanced products.

Validation and testing strategies should incorporate both functional and non-functional
assessments, including unit and integration testing, model performance evaluation across diverse
datasets, fairness audits, and resource utilization benchmarking. In addition, these strategies
should extend to include ML-specific validation approaches, such as statistical performance
validation, bias detection testing, adversarial robustness assessment, and long-term stability
verification. It must also support automated validation pipelines integrated into CI/CD
workflows, enabling continuous monitoring and the rapid detection of anomalies, drift, or
compliance violations.

Practical Implementation: To implement this recommendation, the first step is to configure the
derivation. This involves selecting binary features and determining the quality distributions for
ML components. It is essential to establish optimization criteria and stakeholder requirements to
guide the automated selection of ML components. This ensures that each product is customized
to meet its use case requirements. Once a product is derived, the unit tests, integration tests, and
non-functional requirement tests must be executed. The process is further enhanced with ML-
specific validations such as bias detection, adversarial robustness assessments, and long-term
stability verification to address the unique vulnerabilities of machine learning models. The
overall goal is to ensure that the derived products meet all expected standards of functionality,
performance, and reliability prior to deployment. Finally, to ensure long-term reliability, all of
these validation strategies are integrated into automated CI/CD pipelines.

In conclusion, the proposed framework’s recommendations, which encompass the entire lifecycle
of ML-enhanced Software Product Lines (SPLs), have been demonstrated through the running
example and their implementation within the VariaMos web tool. The running example illustrates
the framework’s feasibility and applicability, showing how it supports the development of
adaptive and intelligent product lines. Furthermore, these recommendations are currently being
applied to the development of a proof-of-concept SPL for a text editor, enabling the empirical
validation of the framework’s practical effectiveness.

5. RELATED WORK

The intersection of SPL engineering and ML represents an emerging research area that builds
upon established foundations in both domains. Traditional SPL engineering, formalized through
seminal work by Clements, Mazo, and Pohl, respectively [8], [17], [18], has established
comprehensive methodologies for systematic software reuse through domain engineering and
application engineering processes. The Feature-Oriented Domain Analysis (FODA) approach
introduced by Kang [9] and subsequent advances in variability management [8], [22]provide
robust frameworks for managing product family complexity. However, these approaches
fundamentally assume component determinism and behavioral predictability, creating significant
gaps when dealing with probabilistic ML components.

Parallel developments in ML engineering have addressed the unique challenges of ML-enabled
systems through comprehensive frameworks for technical debt management [21], engineering
practices [23], and quality assurance approaches [24]. The emergence of systematic
documentation practices, as exemplified by Model Cards [19] and behavioral testing frameworks
[25], represents substantial progress in ML system engineering. Recent systematic reviews by
Martinez-Fernandez [4] and empirical studies by Nahar and Ribeiro, respectively [5], [25] have
documented collaboration challenges and the complexity of requirements engineering specific to

17

https://www.zotero.org/google-docs/?oyySKx
https://www.zotero.org/google-docs/?ahzkyv
https://www.zotero.org/google-docs/?5GkiFT
https://www.zotero.org/google-docs/?jeGr10
https://www.zotero.org/google-docs/?h5PeQf
https://www.zotero.org/google-docs/?0M8qAz
https://www.zotero.org/google-docs/?z2ogka
https://www.zotero.org/google-docs/?OfuKBQ
https://www.zotero.org/google-docs/?dRFobL
https://www.zotero.org/google-docs/?RUmHCy

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

ML systems. Nevertheless, this body of work predominantly focuses on standalone ML systems
or monolithic application contexts, with limited consideration of systematic reuse frameworks.

Architectural approaches for ML integration have evolved toward microservices-based patterns
[26] and adaptive system frameworks [13], [27], while dynamic SPL research [8], [28], [29]has
explored evolution and adaptation in product line contexts. However, existing approaches have
not systematically addressed the unique requirements of ML components within SPL
environments, including cross-product consistency management, shared component instance
coordination, and the specific adaptation patterns required for probabilistic components subject to
performance degradation and concept drift.

Current literature reveals critical limitations when applied to ML-enhanced SPL contexts.
Traditional SPL methodologies assume behavioral predictability, which is incompatible with the
probabilistic nature of ML components. In contrast, ML engineering approaches lack systematic
frameworks for ensuring cross-product consistency and shared component management. Existing
documentation frameworks do not provide mechanisms for reusability assessment required for
SPL component selection, and current adaptive system approaches do not address ML-specific
degradation patterns and monitoring requirements.

This work addresses these fundamental gaps by providing the first comprehensive framework
specifically designed to integrate ML components within SPLs, while preserving the benefits of
systematic reuse. Unlike existing approaches that treat ML components as standalone services or
apply ad-hoc integration patterns, our framework systematically extends established SPL
methodologies with ML-specific concepts, including probabilistic feature modeling, degradation-
aware component characterization, adaptive architectural patterns, and dynamic configuration
optimization. The framework proposed in this paper provides concrete specifications, including
formal orchestration languages (MCOSL), systematic monitoring frameworks, and multi-
objective optimization approaches, enabling practitioners to maintain an engineering discipline
and leverage systematic reuse advantages while effectively utilizing ML capabilities across
products derived from product lines.

6. CONCLUSIONS AND FUTURE WORK

The integration of ML components into SPLs presents new challenges that traditional modeling
techniques are not equipped to address. By addressing the variability and uncertainty inherent in
ML components, this approach lays the groundwork for bridging the gap between SPLE and Al-
based software development.

In this paper, we propose a framework that supports the inclusion of ML components in SPLs,
facilitating systematic reuse, customization, and evolution. Our contribution consists of a
specification-oriented approach that guides the integration of ML-based functionalities into
SPLs, along with a set of recommendations and practical implementations. The framework
extends existing variability management approaches to support ML-aware configuration and
reuse. The framework is structured around five interconnected phases that encompass the entire
lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive architecture design, ML-
aware domain implementation, Dynamic product configuration, and Product derivation and
validation of its resulting products. The framework’s feasibility is demonstrated through an
implementation in the VariaMos tool and a case study that validates its applicability to real-world
scenarios.Initial empirical findings, obtained by applying these recommendations to two distinct
SPLs—an e-commerce SPL and a text editor SPL—suggest that this comprehensive
documentation approach facilitates informed decision-making across the entire ML component
lifecycle. This process spans from initial model selection to deployment and ongoing monitoring.

18

https://www.zotero.org/google-docs/?7BBChl
https://www.zotero.org/google-docs/?HEziYd
https://www.zotero.org/google-docs/?Lr3LsD

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

Furthermore, Model Cards support regulatory compliance and risk management by providing
auditable documentation of model characteristics and decision rationale, which contributes to the
development of more accountable and trustworthy ML systems. Although these preliminary
results are promising, further experimentation and implementation improvements are needed to
fully assess the actual value and impact of this proposal in production environments. Future work
involves evaluating the proposed strategy in real-world industrial domains, including a detailed
cost-benefit analysis, extending the capabilities of the VariaMos tool, and exploring its
applicability to Al components beyond ML.

ACKNOWLEDGMENTS

This research was supported by the University of Antioquia, Colombia, through the Committee
for the development of research — CODI (PRV2022-52951), and the ENSTA, France.

REFERENCES

[1] N. Ahmed and N. Shakoor, “Advancing agriculture through IoT, Big Data, and Al: A review of
smart technologies enabling sustainability,” Smart Agricultural Technology, vol. 10, no. 100848,
Mar. 2025, doi: 10.1016/j.atech.2025.100848.

[2] G. Anthes, “Artificial intelligence poised to ride a new wave,” Communications of the ACM, vol.
60, no. 7, pp. 19-21, June 2017, doi: 10.1145/3088342.

[3] G. Giray, “A software engineering perspective on engineering machine learning systems: State of
the art and challenges,” Journal of Systems and Software, vol. 180, no. 111031, Oct. 2021, doi:
10.1016/.jss.2021.111031.

[4] S. Martinez-Fernandez et al., “Software Engineering for Al-Based Systems: A Survey,” ACM
Transactions on Software Engineering and Methodology, vol. 31, no. 2, pp. 1-59, Apr. 2022, doi:
10.1145/3487043.

[5] N. Nahar, S. Zhou, G. Lewis, and C. Kiéstner, “Collaboration Challenges in Building ML-Enabled
Systems: Communication, Documentation, Engineering, and Process,” in 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE), May 2022, pp. 413-425. doi:
10.1145/3510003.3510209.

[6] N. Nahar, H. Zhang, G. Lewis, S. Zhou, and C. Késtner, “A Meta-Summary of Challenges in
Building Products with ML Components — Collecting Experiences from 4758+ Practitioners,” in
2023 IEEE/ACM 2nd International Conference on Al Engineering — Software Engineering for Al
(CAIN), May 2023, pp. 171-183. doi: 10.1109/CAIN58948.2023.00034.

[7] L. Cobaleda, J. Carvajal, P. Vallejo, A. Lopez, and R. Mazo, “Enhancing Software Product Lines
With Machine Learning Components” in Computer Science & Information Technology (CS & IT),
vol. 15, no. 20, pp. 73-94, Oct. 2025,doi: 10.5121/csit.2025.152006

[8] R. Mazo, Ed.,Guia para la adopcion industrial de lineas de productos de software. Universidad
Eafit, 2018.

[9] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”. Carnegie-Mellon University, 1990.

[10] L. Dounas, R. Mazo, C. Salinesi, and O. El Beqqali, “Continuous monitoring of adaptive e-learning
systems requirements,” in 2015 IEEE/ACS 12th International Conference of Computer Systems and
Applications (AICCSA), Nov. 2015, pp. 1-8. doi: 10.1109/AICCSA.2015.7507210.

[11] A. Achtaich, N. Souissi, C. Salinesi, R. Mazo, and O. Roudies, “A Constraint-based Approach to
Deal with Self-Adaptation: The Case of Smart Irrigation Systems,” IJACSA, vol. 10, no. 7, 2019,
doi: 10.14569/1JACSA.2019.0100727.

[12] A. Achtaich, N. Souissi, R. Mazo, O. Roudies, and C. Salinesi, “A DSPL Design Framework for
SASs: A Smart Building Example,” EAI Endorsed Transactions on Smart Cities, vol. 3, no. 8, June
2018.

[13] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz, “Dynamic adaptation of service
compositions with variability models,” Journal of Systems and Software, vol. 91, pp. 24—47, May
2014, doi: 10.1016/j.jss.2013.06.034.

19

https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

[26]
(27]

(28]

[29]

C. Dumitrescu, R. Mazo, C. Salinesi, and A. Dauron, “Bridging the gap between product lines and
systems engineering: an experience in variability management for automotive model based systems
engineering,” in Proceedings of the 17th International Software Product Line Conference, in SPLC
’13. New York, NY, USA: Association for Computing Machinery, Aug. 2013, pp. 254-263. doi:
10.1145/2491627.2491655.

R. Mazo, S. Assar, C. Salinesi, and N. Ben Hassen, “Using software product line to improve ERP
engineering : literature review and analysis,” Latin-American Journal of Computing, vol. 1, no. 1, p.
., Oct. 2014.

V. Indykov, “Component-based Approach to Software Engineering of Machine Learning-enabled
Systems,” in Proceedings of the IEEE/ACM 3rd International Conference on Al Engineering -
Software Engineering for Al, in CAIN ’24. New York, NY, USA: Association for Computing
Machinery, June 2024, pp. 250-252. doi: 10.1145/3644815.3644976.

P. Clements and L. M. Northrop, Software Product Lines: Practices and Patterns. Boston: Addison-
Wesley, 2001.

K. Pohl, G. Bockle, and F. Van Der Linden, Software Product Line Engineering. Berlin,
Heidelberg: Springer, 2005. doi: 10.1007/3-540-28901-1.

M. Mitchell et al., “Model Cards for Model Reporting,” in Proceedings of the Conference on
Fairness, Accountability, and Transparency, in FAT* *19. New York, NY, USA: Association for
Computing Machinery, Jan. 2019, pp. 220-229. doi: 10.1145/3287560.3287596.

T. R. Toma, B. Grewal, and C.-P. Bezemer, “Answering User Questions About Machine Learning
Models Through Standardized Model Cards,” in 2025 I[EEE/ACM 47th International Conference on
Software Engineering (ICSE), 2025, pp. 1488—1500. doi: 10.1109/ICSE55347.2025.00066.

D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, “Hidden Technical Debt in Machine
Learning Systems,” in Advances in Neural Information Processing Systems, Curran Associates, Inc.,
2015.

C. Kistner, S. Apel, and M. Kuhlemann, “Granularity in software product lines,” in Proceedings of
the 30th international conference on Software engineering, in ICSE *08. New York, NY, USA:
Association for Computing Machinery, May 2008, pp. 311-320. doi: 10.1145/1368088.1368131.

S. Amershiet al., “Software Engineering for Machine Learning: A Case Study,” in 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), Montreal, QC, Canada: IEEE, May 2019, pp. 291-300. doi: 10.1109/ICSE-
SEIP.2019.00042.

E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ML test score: A rubric for ML
production readiness and technical debt reduction,” in 2017 IEEE International Conference on Big
Data (Big Data), Dec. 2017, pp. 1123—-1132. doi: 10.1109/BigData.2017.8258038.

M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond Accuracy: Behavioral Testing of NLP
Models with CheckList,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, July 2020, pp. 4902—4912. doi: 10.18653/v1/2020.acl-main.442.

S. Newman, Building microservices: designing fine-grained systems. O'Reilly Media, Inc., 2021.

D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow: architecture-based
self-adaptation with reusable infrastructure,” Computer, vol. 37, no. 10, pp. 4654, Oct. 2004, doi:
10.1109/MC.2004.175.

S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic Software Product Lines,”
Computer, vol. 41, no. 4, pp. 93-95, Apr. 2008, doi: 10.1109/MC.2008.123.

P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes, “Constraint Programming as a Means to
Manage Configurations in Self-Adaptive Systems,” Special Issue in IEEE Computer Dynamic
Software Product Lines, pp. 1-12, Dec. 2012.

20

https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025
AUTHORS

Luz-Viviana Cobaleda is an Associate Professor at the University of Antioquia
(Colombia). She holds a Ph.D., M.Sc., and B.Sc. in Engineering from the same
university, and a Specialization in Software Engineering from EAFIT University. Her
research focuses on software engineering, with publications in international venues and
participation in collaborative projects.

Andrés Lépez is a systems engineer. He graduated in 2013 with a degree in Systems
Engineering from the University of Antioquia (Colombia) and in 2018 obtained a
Master’s in Engineering from EAFIT University (Colombia). He is currently pursuing
a joint Ph.D. in Sciences pour I’ingénieur et le numérique a I' Ecole Nationale
Supérieure de Techniques Avancées — ENSTA (France) and in Electronic and
Computer Engineering at the University of Antioquia.

Paola Vallejo is a Systems Engineer who graduated from Universidad EAFIT in 2012.
She got her Master’s degree (Human Computer Centered Systems) at Ecole
Nationaled’Ingénieurs de Brest - France in 2012. She received the Ph.D. degree in
Computer Science from Université de Bretagne Occidentale, France, in 2015. She is
currently a full professor at Universidad EAFIT.

Raiil Mazo is a Franco-Colombian engineer who received his Engineering degree in
Informatics from the University of Antioquia (Colombia) in 2005, and later earned an
M.S. in Information Systems, a Ph.D. in Computer Science, and the Habilitation a
Diriger des Recherches (HDR) from the University Panthéon-Sorbonne (France) in
2008, 2011, and 2018, respectively. He is currently a Full Professor at the Ecole
Nationale Supérieure de Techniques Avancées (ENSTA).

Julian Carvajal is a Colombian software engineer in training and a Systems
Engineering student at the University of Antioquia (Colombia). He has professional
experience as a software developer, with a particular focus on building educational
video games for preschool children and contributing to research-driven software
projects.

21

