
International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

DOI: 10.5121/ijsea.2025.16601 1

INTELLIGENCE AS A FEATURE: MODELING ML IN

SOFTWARE PRODUCT LINES

Luz-Viviana Cobaleda 1, Andrés López 1,2, Paola Vallejo 3, Raúl Mazo 2, Julián

Carvajal 1

1 Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.
2 Lab-STICC, ENSTA, Brest, Francia.

3 Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Medellín, Colombia.

ABSTRACT

The integration of Machine Learning (ML) components into modern software systems enhances data-

driven decision-making but introduces new challenges for Software Product Line (SPL) engineering.

Variability modeling, configuration, and reuse become increasingly complex when adaptive ML

components are involved. Although previous studies have addressed variability in traditional SPLs and ML

integration in standalone systems, limited work has systematically explored the intersection of these two

domains. This paper presents a structured framework that extends SPL engineering to support ML-aware

variability management. The framework enables the systematic modeling and configuration of ML

components and has been implemented in the VariaMos web tool. A case study demonstrates the

framework’s feasibility and applicability, illustrating how it supports the development of adaptive and

intelligent product lines.

KEYWORDS

Machine Learning (ML), Software Product Lines (SPL), ML-based systems, variability modeling.

1. INTRODUCTION

The rapid evolution of artificial intelligence (AI) over the last decade stems from advances in

computational power, the availability of massive datasets, and increasingly sophisticated

algorithms. As a result, AI has become a transformative technological force, empowering

software-intensive systems with new capabilities across diverse domains [1], [2], [3], [4]. AI-

based systems are essentially software systems whose functionalities are enabled by at least one

AI component (e.g., for image and speech recognition or autonomous driving) [4]. However,

incorporating AI components into software products introduces new software engineering

challenges and amplifies existing ones. The situation becomes even more critical when these

components are integrated not only into a single product but into a family of software products or

a Software Product Line (SPL). Thus, the integration of Machine Learning (ML) components into

SPLs introduces new dimensions of variability that traditional modeling techniques are not

prepared to handle. This raises fundamental questions: How can an AI/ML component be

modeled within an SPL? How can architects effectively integrate ML components into their

SPLs? What information about the model is necessary to enable a successful SPL configuration

process? The inability of current modeling approaches to address these questions reveals a

significant research gap. Additionally, the integration of ML components into software systems

introduces unique challenges that have given rise to the field of Software Engineering for AI

(SE4AI). Recent literature has systematically identified the issues that emerge across the software

lifecycle, impacting areas such as requirements engineering, architecture, testing, deployment,

https://airccse.org/journal/ijsea/vol16.html
https://doi.org/10.5121/ijsea.2025.16601
https://www.zotero.org/google-docs/?SoGxCk
https://www.zotero.org/google-docs/?lbcQSH

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

2

and maintenance [3], [4], [5], [6]. While these challenges are broad, this paper focuses on those

most relevant to the design of SPL.

Most research in SE4AI has focused on the challenges of integrating ML components into

individual software systems. In the context of SPLs, where systematic reuse is central, these

challenges persist but evolve into variability management problems. For instance, defining

performance metrics for a single product is an engineering task, whereas managing multiple

components with diverse performance profiles across products becomes a variability challenge.

However, literature explicitly addressing this transformation of ML-related challenges in SPLs

remains scarce, revealing a significant research gap. Among the documented issues in individual

systems, requirements engineering is particularly critical: both customers[3] and development

teams [6] often overestimate ML capabilities, leading to unrealistic expectations such as perfect

accuracy or zero false positives[4]. This gap between business goals and technical specifications

is compounded by the dynamic nature of ML components, which introduces new and still poorly

understood quality attributes—such as freshness and robustness[3], [4] —and trade-offs,

including fairness versus accuracy [3], [4].

Although these challenges are significant for individual systems, their impact is amplified in

SPLs, where systematic reuse and variability management are essential. The inclusion of ML

components introduces additional variability concerns—such as defining performance metrics at

the product line level, aligning stakeholder understanding, and specifying monitoring policies—

that extend beyond individual products. Despite extensive research on AI-related software

components, the literature still lacks approaches that explicitly address their distinctive

characteristics within SPLs[3], [4].

In this paper, we propose a framework for enhancing SPLs by considering intelligence as a first-

class feature and enabling the seamless integration of ML components. The main contribution

lies in a specification-oriented approach that systematically guides the integration of ML-based

functionalities into SPLs, addressing key aspects such as variability management, probabilistic

feature modeling, ML component characterization, continuous monitoring, component

replacement, and product derivation with ML components. This framework promotes consistent

reuse, customization, and traceability of intelligent features across product configurations within

the SPL context.

This proposal builds upon and improves the version presented initially in [7] by providing an

enhanced demonstration of the framework’s feasibility and applicability through a running

example and its implementation in the VariaMos web tool (www.variamos.com). As part of an

ongoing effort to operationalize and validate its practical use, this web-based tool leverages a

microservices architecture to support the specification of product lines through a multi-language

modeling approach, as well as reasoning over products and product lines.

The remainder of the paper is structured as follows: Section 2 provides background information

on SPL engineering and ML components documentation. Section 3 introduces the running

example in the virtual store domain, which will be referenced throughout the remainder of the

paper. Section 4 presents the proposed framework for designing SPLs with ML components and

discusses the implications of this approach. Section 5 reviews related work. Finally, Section 6

concludes the paper and outlines directions for future research.

https://www.zotero.org/google-docs/?698EFP
https://www.zotero.org/google-docs/?HhWZIQ
https://www.zotero.org/google-docs/?TueeWw
https://www.zotero.org/google-docs/?tyt5fa
https://www.zotero.org/google-docs/?qlvPCZ
https://www.zotero.org/google-docs/?wi8QPN
https://www.zotero.org/google-docs/?7lrCpW
https://www.zotero.org/google-docs/?PoOwTk
http://www.variamos.com/

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

3

2. BACKGROUND

The design and development of SPLs rely on systematic approaches to manage variability and

promote reuse across families of related software systems. To provide the necessary foundation

for the proposed framework, this section outlines the core concepts of SPL engineering and the

integration of ML components.

2.1. SPL and Variability Management

A SPL represents a systematic approach to developing families of related applications within a

specific domain through strategic reuse of common assets [8]. This paradigm leverages shared

components and systematic variability management to achieve significant reductions in

development time and costs while improving product quality through the incorporation of proven,

reusable artifacts.

Software Product Line Engineering (SPLE) operationalizes this approach through two

fundamental processes, as presented in Figure 1: (1) Domain engineering, which establishes

reusable assets and variability models, and (2) Application engineering, which derives specific

products from these shared resources[8]. Variability—the capacity of a system to be adapted or

configured for specific contexts—serves as the core mechanism enabling this systematic reuse

across diverse product requirements.

1) Domain engineering establishes the foundation of reusable assets through two sequential

phases. A) Domain analysis identifies and specifies SPL variability using formal models such as

feature models [9], which define variation points, available alternatives, and constraint

relationships. This phase encompasses: domain requirements definition to capture stakeholder

needs and scope constraints, reference architecture specification aligned with domain

requirements, and variability model quality assurance through systematic verification, diagnosis,

and validation activities. B) Domain implementation transforms abstract specifications into

concrete, reusable components. Key activities include requirements engineering for domain

components, architectural design specification, domain component implementation,

comprehensive unit testing, and explicit linkage between components and variability model

elements. This phase produces the core asset base comprising domain components, architectural

models, and associated test suites.

2) Application engineering derives specific products through the systematic configuration and

instantiation of domain assets across two phases. A) Configuration and customization

management captures customer-specific requirements and configures variability models

accordingly, encompassing application requirements engineering, variability model

configuration, application architecture definition, and component customization to meet specific

product needs. B) Derivation constructs final products from configured domain assets through

requirements engineering for the derivation process, assembly architecture definition, systematic

product implementation from domain components, and comprehensive system integrity testing,

including performance, validation, and audit verification.

This dual-process framework ensures systematic reuse while maintaining the flexibility necessary

to address diverse product requirements within the target domain. The SPLE framework applies

to various domains, including, but not limited to, education [10], agricultural systems [11], smart

buildings [12], e-commerce [13], automotive manufacturing [14], and information systems [15].

Our running example belongs to the e-commerce domain.

https://www.zotero.org/google-docs/?iN4iu9
https://www.zotero.org/google-docs/?MbPFhe
https://www.zotero.org/google-docs/?g5WZk5
https://www.zotero.org/google-docs/?YTLVuI
https://www.zotero.org/google-docs/?ST77A9
https://www.zotero.org/google-docs/?iKHRHR
https://www.zotero.org/google-docs/?Tw7eYA
https://www.zotero.org/google-docs/?mTsJwC
https://www.zotero.org/google-docs/?iMg3rk

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

4

Figure 1. SPLE framework implemented in the VariaMos web tool, from [8]

2.2. ML Components

An ML component is a special type of software component that encapsulates ML models along

with their associated data processing, inference logic, and system integration capabilities [6],

[16]. These components constitute the primary means of integrating ML capabilities into complex

software systems, acting as a bridge between the underlying ML models and the overall system

architecture. Component reuse is a foundational principle that enables the efficient development

of multiple products from a shared, common core.

3. RUNNING EXAMPLE: E-COMMERCE

To illustrate the applicability of the proposed Framework for ML-Aware Variability, we present a

running example in the virtual store domain. Virtual stores constitute a representative and

relevant domain for SPLs. These platforms enable the online exchange of goods and services,

allowing businesses to publish product catalogs and customers to perform transactions. Although

they may operate in diverse markets, such as fashion, electronics, or digital services, their

primary goal is to facilitate efficient and secure commercial transactions among multiple users.

Virtual stores thus represent a cornerstone of modern e-commerce systems.

Our SPL for virtual stores captures a set of core components common to most instances,

including a Product catalog (for listing and managing items), a Shopping cart (to collect selected

products before purchase), a Payment module (for processing transactions via various methods),

and a Delivery system (to coordinate product shipment or digital access). Beyond these shared

functionalities, the SPL supports a wide range of variability points. For instance, products may

differ in terms of user authentication mechanisms, catalog presentation styles, supported payment

gateways, shipping logistics, or user interface customization. In addition to these structural

variations, ML components introduce a new layer of variability that enhances user experience

and system efficiency. Examples include a semantic search engine (trained to interpret the

https://www.zotero.org/google-docs/?OaEE2r
https://www.zotero.org/google-docs/?HtoXE6
https://www.zotero.org/google-docs/?HtoXE6

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

5

context of user queries), a sentiment analysis module (applied to customer reviews), and a

content moderation system (which classifies and filters inappropriate content).

These ML-based components add complex dimensions of variability related to model

architecture, inference thresholds, latency, and human-in-the-loop decision-making. For example,

the content moderation module can be instantiated in two configurations: (i) a human-assisted

moderation system, where a toxicity classification model flags suspicious comments for manual

review, and (ii) an automated moderation system, where the same model flags comments for

automatic censorship using a higher confidence threshold. Choosing between these

configurations entails trade-offs. The automated system requires higher model precision to

minimize false positives (i.e., unjustified censorship). In contrast, the human-assisted

configuration can operate with a lighter, lower-latency model, as human moderators make the

final decisions. To implement such ML functionalities, the SPL can rely on pre-trained models

(e.g., text classifiers or Sentence Transformers) obtained from public repositories, such as

Hugging Face. Within the SPL context, these models can be encapsulated as reusable

components, enabling developers to integrate intelligent behavior without having to redesign

models from scratch for each product instance. This running example will be referenced

throughout the paper to demonstrate the modeling of variability, the configuration of intelligent

components, and the systematic reuse of ML assets in SPL.

4. A FRAMEWORK FOR ML-AWARE VARIABILITY

The integration of ML components into SPL represents a fundamental paradigm shift that

challenges the traditional assumptions underlying systematic software reuse. While conventional

SPL approaches have proven effective for deterministic software components with predictable

behavior and stable interfaces [17], [18], ML components introduce unprecedented complexity

through their inherent stochasticity, data dependency, continuous evolution requirements, and

non-functional characteristics that defy traditional software engineering practices [3], [4].

The proposed framework is organized into five interconnected phases that collectively address

the complete lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive

architecture design, ML-aware domainimplementation, Dynamic product configuration,

and Product derivation and validation of its resulting products. Each phase builds upon

established SPL theory while introducing novel concepts and recommended practices specifically

designed to handle the probabilistic nature, performance variability, and operational complexity

inherent in ML systems.

4.1. ML-Aware Domain Analysis

The domain analysis phase requires significant adaptations when ML components are involved,

particularly in feature modeling and architectural decision [8]. Traditional Boolean feature

satisfaction proves inadequate for ML components whose capabilities vary across contexts and

exhibit probabilistic behavior [6]. A key distinction of ML-based features lies in their reliance

on training data properties. The performance and capabilities of these features are susceptible

to the characteristics of the training data, including its quality, representativeness, and intrinsic

attributes. Additionally, implementing ML-based features can introduce risks associated with

sensitive data, particularly regarding privacy, security, and information governance, due to the

implications of data use and storage for model training and inference.

https://www.zotero.org/google-docs/?i9uARZ
https://www.zotero.org/google-docs/?rCX3Do
https://www.zotero.org/google-docs/?UFcOVe
https://www.zotero.org/google-docs/?P5KOAG

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

6

Recommendation 1: Implement Probabilistic Feature Modeling.

SPL engineers should extend conventional feature models to capture the uncertainty in ML

component capabilities [9]. Rather than relying on binary feature satisfaction, engineers should

model features with quality distributions that reflect variability in ML component performance.

Practical Implementation: For each feature that will be satisfied by an ML component, SPL

engineers should identify it as an “ML-based feature” and define the following Feature Quality

Profile:

FeatureQualityProfile = {
feature_id: String,
feature_type: type,
ml_component_id: String,
quality_distribution: {

accuracy_range: [min_accuracy, max_accuracy],
context_sensitivity: Map[Context, AccuracyLevel],
confidence_intervals: Map[Scenario, ConfidenceRange]

}}

Application in the E-commerce Example: In our running example, the fraud detection feature

is defined with an accuracy ranging between 0.88 and 0.95. This metric is influenced by

context—decreasing to 0.75 for international transactions during weekends, but reaching 0.98 for

transactions originating from suspicious IP addresses. Additionally, the confidence intervals are

established to classify the level of certainty of the machine learning model; for example, values

below 0.70 can be considered low confidence, values between 0.70 and 0.84 are considered

medium confidence, and values equal to or above 0.85 are considered high confidence. Figure 2

shows the implementation of the Probabilistic Feature Modeling in the VariaMos tool; this

representation enables the management of the inherent uncertainty in ML-based features,

supporting more accurate reasoning mechanisms and better-informed, adaptive, and reliable

product configurations.

Figure 2. Probabilistic feature modeling implemented in the VariaMos web tool.

https://www.zotero.org/google-docs/?M3Xrzc

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

7

4.2. Adaptive Architecture Design

The reference architecture must explicitly address the dynamic and context-sensitive nature of

ML components. ML models often evolve, depend on external data sources, and exhibit

probabilistic behavior that affects system reliability and performance. Therefore, architectural

decisions must incorporate design strategies that manage adaptability and traceability, ensure

periodic updates, and maintain the long-term stability and performance of integrated ML

functionalities. These strategies should align feature variability, model capabilities, and

operational constraints, which is paramount for ensuring the robustness, adaptability, scalability,

and maintainability of the ML-based SPL.

Recommendation 2: Design ML-Aware Reference Architecture.

The reference architecture must account for several key aspects.

• It must provide for a clear separation of concerns between the core SPL framework, the

ML model development cycle, the deployment pipeline, and model monitoring.

• It must support various deployment strategies, including on-device (edge computing), on-

premises, or cloud-based, depending on the specific product requirements and

constraints.

• It must ensure data privacy, security, and compliance, while facilitating seamless

integration with robust ML engineering practices, such as MLOps.

Practical Implementation: SPL engineers should be able to:

• Use microservice-based architecture, where ML components are deployed as decoupled

services accessible through well-defined APIs.

• Use of containerization (e.g., Docker) to package models and their dependencies,

ensuring environmental consistency and portability.

4.3. ML-aware Domain Implementation

The domain implementation phase requires a structured approach to documenting, versioning,

and managing ML components. This approach should be complemented by a formal monitoring

process that can detect performance degradation and automatically trigger component

replacement procedures. Effectively characterizing and selecting suitable ML components is

essential to understanding their capabilities, limitations, and performance profiles. This enables

successful integration and reduces associated risks. The monitoring system is designed to address

the dynamic and non-deterministic nature of ML components by identifying potential degradation

in the production environment and issuing alerts. Additionally, careful consideration is required

for some aspects. For example, orchestrating ML components across products involves managing

dependencies, activation conditions, and contextual adaptation. Furthermore, replacing ML

components systematically requires mechanisms to evaluate, decouple, and reintegrate new

versions with minimal disruption.

Recommendation 3: Adopt Intelligent Component Characterization.

To ensure the precise and systematic characterization of pre-trained ML components, it is

proposed that Model Cards be mandatorily adopted. Model Cards, introduced by Mitchell [19]

and further extended by Toma [20], provide a standardized framework for documenting ML

models in a transparent and structured manner. This approach recommends customizing specific

https://www.zotero.org/google-docs/?aXV651
https://www.zotero.org/google-docs/?3wMk7z

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

8

sections of the standard Model Card, such as Model Details, Intended Use, SPL reusability

Profile, Model Usage, Operational Requirements, Performance Metrics, and Caveats. These cards

are tailored for domain experts who, while not data scientists, are responsible for selecting and

integrating third-party components.

Practical Implementation: For each ML component in the SPL, a standardized model card is

proposed, capturing the following essential information:

ModelCard= {

model_details: {

 model_id: String, version: ModelVersion,

developed_by: String, model_type: MLModelType,

license: LicenseSpecification

}, intended_use: {

primary_use: String, out-of-scope_use: String

}, spl_reusability_profile: {

supported_domains: Set[Domain],

integration_complexity: String, (e.g., “Low”)

}, model_usage: {

api_endpoint: String,

deployment_guidance: String

}, performance_metrics: Map[clave, valor],

 operational_requirements: {

cpu: CPUSpecification, ram: RAMSize, gpu: String, notes: String

 },

 caveats: [String]

}

The SPL-aware Model Card specification defines the essential attributes for characterizing an

ML component. The purpose and content of each key attribute are detailed below:

• model_details: Provides technical specifications—covering developer information, version

control, model architecture, training methodology, and licensing terms that define

commercial use rights, current license type, and redistribution permissions.

o model_id: A unique identifier for the model, such as its name in a public repository.

o version: The specific version of the model, following semantic versioning where

possible, to track changes and dependencies.

o developed_by: The organization, team, or individual responsible for the model's

development.

o model_type: Specifies the model's task category (e.g., Text Classification, Object

Detection), informing its functional role.

o license: The legal specification governing the use, modification, and distribution of the

model, crucial for commercial product derivation.

• intended_use: Defines appropriate use cases, target applications, and intended user

populations by outlining usage scenarios, specifying primary and out-of-scope applications,

detailing the model’s adaptability, and highlighting its limitations and potential biases.

o primary_use: A concise description of the model's main purpose and the scenarios

where it is designed to be applied (e.g., real-time fraud detection).

o out-of-scope_use: Explicitly states the limitations and use cases for which the model has

not been designed or validated, preventing misuse.

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

9

• spl_reusability_profile: A section dedicated to evaluating the ML component's fitness as a

reusable asset within the SPL context. This is a key input for variability modeling.

o supported_domains: A set of application domains where the model has demonstrated

reliable performance, highlighting potential domain biases.

o integration_complexity: A categorical rating (e.g., "Low", "Medium", "High") that

estimates the engineering effort needed to integrate the component, based on its

dependencies and API.

• Model_usage: Offers guidance on model consumption through various interfaces (e.g., UI,

API) and outlines its compatibility with different deployment platforms and operating

systems. It also provides guidance on optimizing performance and outlines deployment

strategies for different environments, including local setups and cloud platforms.

o api_endpoint: The URL or interface for sending inference requests.

o deployment_guidance: A summary of instructions and best practices for deploying the

model in different environments (e.g., cloud, edge).

• performance_metrics: Comprehensive performance evaluation including accuracy measures,

uncertainty quantification, and decision thresholds.

• operational_requirements: Provides system requirements and hardware recommendations to

help users prepare for deploying or fine-tuning the model in their computing environment.

o cpu: The recommended minimum specification for the CPU. This is critical for overall

system performance and serves as the primary compute resource when no GPU is used.

o ram: The recommended minimum system RAM. This memory is required to hold the

operating system, host application, model dependencies, and the model itself before

being loaded into specialized hardware.

o gpu: Specify whether a GPU is required, as well as its minimum specifications.

o notes: Provides additional qualitative context or performance tips.

• caveats and recommendations: Presents caveats and recommendations by assessing

potential societal impacts, fairness considerations, and bias mitigation strategies, while also

outlining behavioral limitations related to “Not Safe For Work” (NSFW) content, including

explicit material, violence, or hate speech.

This information empowers the SPL architect to make a reasoned configuration decision: either

accept a component with known limitations and plan for specific monitoring, or select an

alternative component whose characteristics better align with the product being built. In addition,

the systematic adoption of Model Cards represents a crucial step toward responsible ML

deployment by enhancing transparency around model behavior and operational boundaries. By

standardizing technical and ethical documentation practices, Model Cards enable stakeholders to

evaluate and compare models using multidimensional criteria that extend beyond traditional

performance metrics to encompass fairness, inclusivity, and equity considerations.

Application in the E-commerce Example: In the sentiment analysis case of our running

example, we defined a domain component that integrates two ML components: the

DistilBERTmodel from the Hugging Face repository (https://huggingface.co/distilbert) and the

CardiffNLPmodel also from Hugging Face (https://huggingface.co/cardiffnlp).

https://huggingface.co/cardiffnlp

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

10

For each ML component, we specified the recommended information. For example, for the

DistilBERTmodel, we defined the following elements: the model identifier (e.g.,

distilbert/distilbert-base-uncased-finetuned-sst-2-english), version (e.g., 1), model developer,

model type (in this case, text classification), primary use (classification), application domains

(e.g., products, music, among others), performance metrics (e.g., Accuracy), required

computational resources (e.g., 4-24GB of vRAM for GPU), microservice API endpoint (e.g.,

http://localhost:5001), and interface type (REST API). Figure 3 shows an excerpt of the model

card implementation for the ML-based Sentiment analysis component in VariaMos.

The information in the model card enables the selection of the most suitable machine learning

model during product configuration, based on functional needs and the defined architecture,

promoting effective reuse and traceability of models across different contexts.

Figure 3. Excerpt from the model card for the sentiment analysis component, implemented in the VariaMos

tool.

Recommendation 4: Implement Systematic ML Component Monitoring.

Given the inherently non-deterministic and data-dependent behavior of ML components, SPL

engineers must design robust monitoring mechanisms capable of detecting performance

degradation [21]. Operating at runtime, these mechanisms should continuously observe both

model performance and business-critical signals, while being seamlessly integrated with drift

detection and alerting processes to ensure resilient and self-adaptive system behavior.

Practical Implementation: To effectively implement this recommendation, SPL engineers

should define a dedicated ML monitoring component for each domain component that

incorporates ML capabilities. This component must specify the following attributes:

MLComponentMonitor: {
component_id: String,
monitoring_configuration: {

https://www.zotero.org/google-docs/?RqyqI2

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

11

 metrics: Set[MonitoringMetric],
 frequency: TemporalSpecification,
data_collection_strategy: DataCollectionApproach,
baseline_establishment: BaselineDefinition
 },
threshold_definitions: {
performance_thresholds: Map[Metric, ThresholdSpec],
drift_detection_thresholds: Map[DriftType, ThresholdSpec],
business_impact_thresholds: Map[BusinessMetric, ThresholdSpec]
 },
intervention_strategies: {
alert_procedures: AlertSpecification
 }
}

The specification defines the structural requirements needed to establish consistent, interpretable,

and actionable monitoring configurations. The key attributes of the monitoring specification are

detailed below:

• component_id: Unique identifier of the monitored ML component. Used to record events,

logs, and monitoring metrics.

• monitoring_configuration: Parameters that define what, how, and when monitoring is

performed.

o metrics: Set of key metrics for monitoring model performance. These metrics depend on

the type of ML model (e.g., classification [F1 Score, AUC, Accuracy], regression [RMSE,

MAE], and recommendation [Precision, Recall]).

o frequency: Frequency at which the model's status is evaluated. It may depend on the

traffic rate or importance of the model (e.g., Hourly: useful for high-volume production;

Daily: balanced for general use; EveryBatch: suitable for batch systems; RealTime: when

online processing is used).

o data_collection_strategy: Method for collecting input data (for comparison and

evaluation), predictions, and actual labels (if available) (e.g., StreamingLogs: continuous

online capture. (e.g., BatchLogs: data collected in intervals; ShadowDeployment:

evaluates without exposing to the user; MiddlewareCapture: collects from a proxy or

wrapper).

o baseline_establishment: Reference against which current metrics are compared. It can

be a previous version or a historical average. (e.g., StaticThresholds: defined by experts;

PrelaunchModelBaseline: based on offline evaluation; Rolling7DayAverage: adaptive

and dynamic).

• threshold_definitions: Set of thresholds that trigger alerts.

o performance_thresholds: Thresholds over key model quality metrics.

o drift_detection_thresholds: Statistical thresholds for detecting changes in the

distribution (data drift, concept drift, prediction drift, etc).

o business_impact_thresholds: Business metrics that may be impacted by the model, such

as CTR, revenue, and churn.

• intervention_strategies: Defines actions to take if an anomaly or system degradation is

detected.

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

12

o alert_procedures: Specification of the channel and form of alert to the responsible team

(e.g., SendMailToMLTeam, PushToPagerDuty).

Application in the E-commerce Example: In our running example, the sentiment analysis

component can be continuously monitored to detect potential performance degradation, drift, or

business impact issues.

In the case of the DistilBERT sentiment analysis ML component, the monitoring mechanism

enables the definition of relevant performance metrics, such as Accuracy and Recall, as well as

the establishment of an appropriate evaluation frequency (e.g., daily assessments). It also allows

the configuration of data collection strategies for evaluation purposes, such as streaming logs, and

the definition of a reference baseline for comparison with current results, for instance, a seven-

day moving average. Furthermore, the mechanism supports the specification of performance

thresholds, including minimum and critical values for each metric, as well as the configuration of

drift detection parameters that cover both data drift and concept drift. In addition, it facilitates the

identification of business impact indicators, such as the number of misclassified negative

reviews, and the definition of intervention strategies, including automated email alerts sent to the

responsible team whenever an anomaly is detected. As illustrated in Figure 4, the configuration

for the monitoring component of the Sentiment Analysis ML-component has been implemented

in the VariaMos tool.

Figure 4. Component Monitoring configuration for Sentiment analysis ML-component, implemented in the

VariaMos tool.

Recommendation 5: Implement Systematic ML Component Replacement Strategy.

During product configuration, an automated strategy should be established to update or replace

ML components when performance degradation is detected. This requires the definition of an

intervention mechanism that is triggered when the performance metrics of an ML component fall

below predefined thresholds. The mechanism must support replacing the underperforming

component with one of several alternatives: another ML model, a traditional software component,

or, if appropriate, the temporary exclusion of the affected functionality from the system's

execution flow.

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

13

Practical Implementation: To operationalize this recommendation, SPL engineers must define a

replacement strategy component associated with each ML-enabled domain component. This

component is responsible for responding to degradation alerts issued by the monitoring system

and executing the actions defined in the replacement policy. The structure of the replacement

strategy component can be formally specified as follows:

MLComponentReplacementStrategy = {
component_id: String,
replacement_hierarchy: {
primary_alternative: ComponentReference,
secondary_alternatives: List[ComponentReference],
fallback_strategy: FallbackApproach
 }
}

This specification defines the structure required to enable resilient and automated replacement

mechanisms for ML components. The attributes are described below:

• component_id: Unique identifier of the ML component.

• replacement_hierarchy: Hierarchy of alternatives in case of model degradation.

o primary_alternative: Component directly prepared to take over the current ML model.

o secondary_alternatives: List of additional (less optimal) alternatives.

o fallback_strategy: Emergency strategy to continue providing service with reduced

capabilities (e.g., AllowAll, ConservativeRuleBasedBlocking, RuleBasedBlocking,

ManualReview, GracefulShutdown).

Application in the E-commerce Example: In an online retail SPL, a replacement strategy can

be defined for the sentiment analysis component using both traditional and ML-based

alternatives. To ensure system resilience, if no alternative component satisfies the required

quality thresholds, a predefined fallback mechanism is activated, such as temporarily disabling

the sentiment analysis feature within the process flow.

In our running example, the DistilBERTsentiment analysis component is associated with a

monitoring component that tracks its performance. The replacement strategy allows defining a

primary alternative, such as the CardiffNLPsentiment analysis component, and a secondary

alternative represented by a traditional Rule-based component. A contingency strategy is also

specified for cases in which none of the available alternatives meet the established quality

criteria. In such situations, the system may temporarily block requests using a predefined rule set,

ensuring controlled behavior in the presence of failures. The replacement strategy remains

subscribed to the events generated by the monitoring system, enabling the automatic substitution

of degraded components as soon as anomalies are detected.

In VariaMos, this mechanism ensures system resilience and operational continuity by

automatically replacing underperforming components with viable alternatives, following a

predefined hierarchy that responds to monitoring alerts and executes actions specified in the

substitution policy. Figure 5 illustrates the replacement strategy implemented in VariaMos.

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

14

Figure 5. Configuration of the replacement strategy for the Sentiment analysis ML-component,

implemented in the VariaMos tool.

Recommendation 6: Implement ML Component Orchestration.

Effective orchestration—the coordinated management and execution of ML components—in

dynamic product configurations requires infrastructure that enables flexible model composition,

state management between runs, and contextual integration. For this, we recommend:

• Use of modular ML pipelines, which allow integrating, monitoring, and scaling ML

components in distributed environments.

• Intelligent orchestrators that dynamically adjust component activation according to

contextual signals, business rules, or environmental conditions. Techniques such as context-

aware scheduling can be applied.

• Functional decoupling of components, promoting a microservices-based architecture to

facilitate model replacement, enhancement, or re-trainability without altering the overall

configuration.

• Instrumentation for traceability and versioning: employ systems that record training data,

parameters, results, and decisions made by each component to facilitate audits and

optimization.

Practical Implementation: To operationalize this recommendation, SPL engineers must define a

dedicated orchestration layer that governs the lifecycle, dependencies, and interactions of ML

components. This orchestration must support declarative workflows, dynamic adaptation policies,

and seamless integration with monitoring systems. The following schema defines a formal

representation of such an orchestration-aware product configuration:

ProductConfiguration = {
configuration_id: String,
feature_binding: Map[Feature, ComponentBinding],
workflow_specification: {
component_graph: DirectedAcyclicGraph[Component, DataFlow],
execution_constraints: Set[Constraint],
quality_objectives: Map[QualityAttribute, Objective],

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

15

resource_allocations: Map[Component, ResourceAllocation]
 }, adaptation_policies: {
monitoring_configuration: MonitoringPolicy,
replacement_triggers: Set[ReplacementTrigger],
quality_negotiation: QualityNegotiationStrategy,
performance_optimization: OptimizationPolicy
 }, validation_requirements: {
functional_tests: Set[TestSpecification],
performance_benchmarks: Set[BenchmarkTest],
quality_assertions: Set[QualityAssertion],
compliance_checks: Set[ComplianceCheck]
 }
}

This schema defines the structural and behavioral dimensions of a configurable product instance.

Its modular design supports precise, verifiable, and adaptive configuration management across a

wide range of variability. The key components are described below:

• configuration_id: A unique identifier assigned to the product configuration instance.

• feature_binding: A mapping between product features and their corresponding component

implementations. This allows resolution of variability by specifying which components realize

which features in a given configuration.

• workflow_specification: Captures the operational logic of the product.

o component_graph: A directed acyclic graph (DAG) that defines the data flow and

execution dependencies among software and ML components.

o execution_constraints: A set of logical or resource-based constraints that govern

component execution (e.g., timing, sequencing).

o quality_objectives: Specifies target values for quality attributes, such as accuracy,

latency, and energy consumption.

o resource_allocations: Assigns computational resources (e.g., CPU, memory, GPU) to

each component to ensure operational feasibility.

• adaptation_policies: Define the runtime behavior of the product under varying operational

conditions:

o monitoring_configuration: Indicates how system performance is monitored during

execution.

o replacement_triggers: Defines conditions under which components should be replaced.

o quality_negotiation: Specifies strategies for balancing competing quality attributes

under constraints.

o performance_optimization: Policies for dynamically optimizing performance based on

monitored feedback.

• validation_requirements: Ensures that configured products meet their intended goals and

regulatory requirements:

o functional_tests: Set of specifications for functional correctness.

o performance_benchmarks: Benchmark tests that measure system performance under

predefined workloads.

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

16

o quality_assertions: Verifiable and testable statements specifying the quality attributes

that a configured product is required to meet.

o compliance_checks: Formal |checks to ensure adherence to standards, certifications, or

domain-specific regulations.

Application in the E-commerce Example: In an online retail SPL, a dynamic product

configuration may include ML components for personalized recommendations, fraud detection,

and sentiment analysis. The component bindings for each product instance can vary significantly

based on factors such as the target audience, expected transaction volume, and specific regional

compliance mandates.

4.4. Dynamic Product Configuration

Incorporating ML components during product configuration adds depth to variability and

intelligence of SPL. However, configuration decisions must balance multiple competing

objectives, such as performance, cost, and reliability, often under shifting operational conditions.

Recommendation 7: Establish Multi-Objective Configuration Optimization.

To enhance the adaptability and performance of ML-enabled SPLs, it is essential to establish

multi-objective configuration optimization mechanisms. This approach enables organizations to

simultaneously evaluate and balance competing concerns, including accuracy, latency, resource

consumption, interpretability, and ethical constraints. By leveraging advanced optimization

techniques such as Pareto efficiency or evolutionary algorithms, teams can generate configuration

sets that meet diverse stakeholder requirements without compromising system integrity.

Implementing multi-objective optimization also promotes continuous improvement, enabling

dynamic reconfiguration as environments evolve or model behaviors drift over time.

Practical Implementation: To operationalize multi-objective configuration optimization, it is

first necessary to formalize a set of competing objectives, such as model accuracy, latency,

resource utilization, interpretability, and compliance with ethical standards, into quantifiable

metrics. The configuration space should encompass both system-level parameters and ML-

specific settings, including hyperparameters and pipeline structures. Exploring trade-offs across

this space can be conducted using optimization techniques such as evolutionary algorithms (e.g.,

NSGA-II), Bayesian multi-objective methods, or Pareto-based analysis. Configurations are

evaluated through simulation or benchmarking, producing Pareto-optimal sets that offer balanced

solutions. These sets can be visualized or presented through decision-support interfaces to

facilitate selection based on dynamic stakeholder priorities and preferences. Finally, integrating

optimization processes within CI/CD pipelines ensures continuous reconfiguration in response to

model drift or changing operational constraints.

4.5. Product Derivation and Validation

This phase considers the methodology for deriving specific products from a configurable

architecture, detailing how optimization criteria and stakeholder requirements guide the selection

process. It also describes the validation mechanisms employed to ensure that the resulting

products meet expected standards of functionality, performance, and reliability prior to

deployment.

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

17

Recommendation 8: Implement validation and testing strategies specifically designed for

ML-enhanced products.

Validation and testing strategies should incorporate both functional and non-functional

assessments, including unit and integration testing, model performance evaluation across diverse

datasets, fairness audits, and resource utilization benchmarking. In addition, these strategies

should extend to include ML-specific validation approaches, such as statistical performance

validation, bias detection testing, adversarial robustness assessment, and long-term stability

verification. It must also support automated validation pipelines integrated into CI/CD

workflows, enabling continuous monitoring and the rapid detection of anomalies, drift, or

compliance violations.

Practical Implementation: To implement this recommendation, the first step is to configure the

derivation. This involves selecting binary features and determining the quality distributions for

ML components. It is essential to establish optimization criteria and stakeholder requirements to

guide the automated selection of ML components. This ensures that each product is customized

to meet its use case requirements. Once a product is derived, the unit tests, integration tests, and

non-functional requirement tests must be executed. The process is further enhanced with ML-

specific validations such as bias detection, adversarial robustness assessments, and long-term

stability verification to address the unique vulnerabilities of machine learning models. The

overall goal is to ensure that the derived products meet all expected standards of functionality,

performance, and reliability prior to deployment. Finally, to ensure long-term reliability, all of

these validation strategies are integrated into automated CI/CD pipelines.

In conclusion, the proposed framework’s recommendations, which encompass the entire lifecycle

of ML-enhanced Software Product Lines (SPLs), have been demonstrated through the running

example and their implementation within the VariaMos web tool. The running example illustrates

the framework’s feasibility and applicability, showing how it supports the development of

adaptive and intelligent product lines. Furthermore, these recommendations are currently being

applied to the development of a proof-of-concept SPL for a text editor, enabling the empirical

validation of the framework’s practical effectiveness.

5. RELATED WORK

The intersection of SPL engineering and ML represents an emerging research area that builds

upon established foundations in both domains. Traditional SPL engineering, formalized through

seminal work by Clements, Mazo, and Pohl, respectively [8], [17], [18], has established

comprehensive methodologies for systematic software reuse through domain engineering and

application engineering processes. The Feature-Oriented Domain Analysis (FODA) approach

introduced by Kang [9] and subsequent advances in variability management [8], [22]provide

robust frameworks for managing product family complexity. However, these approaches

fundamentally assume component determinism and behavioral predictability, creating significant

gaps when dealing with probabilistic ML components.

Parallel developments in ML engineering have addressed the unique challenges of ML-enabled

systems through comprehensive frameworks for technical debt management [21], engineering

practices [23], and quality assurance approaches [24]. The emergence of systematic

documentation practices, as exemplified by Model Cards [19] and behavioral testing frameworks

[25], represents substantial progress in ML system engineering. Recent systematic reviews by

Martínez-Fernández [4] and empirical studies by Nahar and Ribeiro, respectively [5], [25] have

documented collaboration challenges and the complexity of requirements engineering specific to

https://www.zotero.org/google-docs/?oyySKx
https://www.zotero.org/google-docs/?ahzkyv
https://www.zotero.org/google-docs/?5GkiFT
https://www.zotero.org/google-docs/?jeGr10
https://www.zotero.org/google-docs/?h5PeQf
https://www.zotero.org/google-docs/?0M8qAz
https://www.zotero.org/google-docs/?z2ogka
https://www.zotero.org/google-docs/?OfuKBQ
https://www.zotero.org/google-docs/?dRFobL
https://www.zotero.org/google-docs/?RUmHCy

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

18

ML systems. Nevertheless, this body of work predominantly focuses on standalone ML systems

or monolithic application contexts, with limited consideration of systematic reuse frameworks.

Architectural approaches for ML integration have evolved toward microservices-based patterns

[26] and adaptive system frameworks [13], [27], while dynamic SPL research [8], [28], [29]has

explored evolution and adaptation in product line contexts. However, existing approaches have

not systematically addressed the unique requirements of ML components within SPL

environments, including cross-product consistency management, shared component instance

coordination, and the specific adaptation patterns required for probabilistic components subject to

performance degradation and concept drift.

Current literature reveals critical limitations when applied to ML-enhanced SPL contexts.

Traditional SPL methodologies assume behavioral predictability, which is incompatible with the

probabilistic nature of ML components. In contrast, ML engineering approaches lack systematic

frameworks for ensuring cross-product consistency and shared component management. Existing

documentation frameworks do not provide mechanisms for reusability assessment required for

SPL component selection, and current adaptive system approaches do not address ML-specific

degradation patterns and monitoring requirements.

This work addresses these fundamental gaps by providing the first comprehensive framework

specifically designed to integrate ML components within SPLs, while preserving the benefits of

systematic reuse. Unlike existing approaches that treat ML components as standalone services or

apply ad-hoc integration patterns, our framework systematically extends established SPL

methodologies with ML-specific concepts, including probabilistic feature modeling, degradation-

aware component characterization, adaptive architectural patterns, and dynamic configuration

optimization. The framework proposed in this paper provides concrete specifications, including

formal orchestration languages (MCOSL), systematic monitoring frameworks, and multi-

objective optimization approaches, enabling practitioners to maintain an engineering discipline

and leverage systematic reuse advantages while effectively utilizing ML capabilities across

products derived from product lines.

6. CONCLUSIONS AND FUTURE WORK

The integration of ML components into SPLs presents new challenges that traditional modeling

techniques are not equipped to address. By addressing the variability and uncertainty inherent in

ML components, this approach lays the groundwork for bridging the gap between SPLE and AI-

based software development.

In this paper, we propose a framework that supports the inclusion of ML components in SPLs,

facilitating systematic reuse, customization, and evolution. Our contribution consists of a

specification-oriented approach that guides the integration of ML-based functionalities into

SPLs, along with a set of recommendations and practical implementations. The framework

extends existing variability management approaches to support ML-aware configuration and

reuse. The framework is structured around five interconnected phases that encompass the entire

lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive architecture design, ML-

aware domain implementation, Dynamic product configuration, and Product derivation and

validation of its resulting products. The framework’s feasibility is demonstrated through an

implementation in the VariaMos tool and a case study that validates its applicability to real-world

scenarios.Initial empirical findings, obtained by applying these recommendations to two distinct

SPLs—an e-commerce SPL and a text editor SPL—suggest that this comprehensive

documentation approach facilitates informed decision-making across the entire ML component

lifecycle. This process spans from initial model selection to deployment and ongoing monitoring.

https://www.zotero.org/google-docs/?7BBChl
https://www.zotero.org/google-docs/?HEziYd
https://www.zotero.org/google-docs/?Lr3LsD

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

19

Furthermore, Model Cards support regulatory compliance and risk management by providing

auditable documentation of model characteristics and decision rationale, which contributes to the

development of more accountable and trustworthy ML systems. Although these preliminary

results are promising, further experimentation and implementation improvements are needed to

fully assess the actual value and impact of this proposal in production environments. Future work

involves evaluating the proposed strategy in real-world industrial domains, including a detailed

cost-benefit analysis, extending the capabilities of the VariaMos tool, and exploring its

applicability to AI components beyond ML.

ACKNOWLEDGMENTS

This research was supported by the University of Antioquia, Colombia, through the Committee

for the development of research – CODI (PRV2022-52951), and the ENSTA, France.

REFERENCES

[1] N. Ahmed and N. Shakoor, “Advancing agriculture through IoT, Big Data, and AI: A review of

smart technologies enabling sustainability,” Smart Agricultural Technology, vol. 10, no. 100848,

Mar. 2025, doi: 10.1016/j.atech.2025.100848.

[2] G. Anthes, “Artificial intelligence poised to ride a new wave,” Communications of the ACM, vol.

60, no. 7, pp. 19–21, June 2017, doi: 10.1145/3088342.

[3] G. Giray, “A software engineering perspective on engineering machine learning systems: State of

the art and challenges,” Journal of Systems and Software, vol. 180, no. 111031, Oct. 2021, doi:

10.1016/j.jss.2021.111031.

[4] S. Martínez-Fernández et al., “Software Engineering for AI-Based Systems: A Survey,” ACM

Transactions on Software Engineering and Methodology, vol. 31, no. 2, pp. 1–59, Apr. 2022, doi:

10.1145/3487043.

[5] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration Challenges in Building ML-Enabled

Systems: Communication, Documentation, Engineering, and Process,” in 2022 IEEE/ACM 44th

International Conference on Software Engineering (ICSE), May 2022, pp. 413–425. doi:

10.1145/3510003.3510209.

[6] N. Nahar, H. Zhang, G. Lewis, S. Zhou, and C. Kästner, “A Meta-Summary of Challenges in

Building Products with ML Components – Collecting Experiences from 4758+ Practitioners,” in

2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI

(CAIN), May 2023, pp. 171–183. doi: 10.1109/CAIN58948.2023.00034.

[7] L. Cobaleda, J. Carvajal, P. Vallejo, A. López, and R. Mazo, “Enhancing Software Product Lines

With Machine Learning Components” in Computer Science & Information Technology (CS & IT),

vol. 15, no. 20, pp. 73-94, Oct. 2025,doi: 10.5121/csit.2025.152006

[8] R. Mazo, Ed.,Guía para la adopción industrial de líneas de productos de software. Universidad

Eafit, 2018.

[9] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, “Feature-Oriented Domain Analysis (FODA)

Feasibility Study”. Carnegie-Mellon University, 1990.

[10] L. Dounas, R. Mazo, C. Salinesi, and O. El Beqqali, “Continuous monitoring of adaptive e-learning

systems requirements,” in 2015 IEEE/ACS 12th International Conference of Computer Systems and

Applications (AICCSA), Nov. 2015, pp. 1–8. doi: 10.1109/AICCSA.2015.7507210.

[11] A. Achtaich, N. Souissi, C. Salinesi, R. Mazo, and O. Roudies, “A Constraint-based Approach to

Deal with Self-Adaptation: The Case of Smart Irrigation Systems,” IJACSA, vol. 10, no. 7, 2019,

doi: 10.14569/IJACSA.2019.0100727.

[12] A. Achtaich, N. Souissi, R. Mazo, O. Roudies, and C. Salinesi, “A DSPL Design Framework for

SASs: A Smart Building Example,” EAI Endorsed Transactions on Smart Cities, vol. 3, no. 8, June

2018.

[13] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz, “Dynamic adaptation of service

compositions with variability models,” Journal of Systems and Software, vol. 91, pp. 24–47, May

2014, doi: 10.1016/j.jss.2013.06.034.

https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

20

[14] C. Dumitrescu, R. Mazo, C. Salinesi, and A. Dauron, “Bridging the gap between product lines and

systems engineering: an experience in variability management for automotive model based systems

engineering,” in Proceedings of the 17th International Software Product Line Conference, in SPLC

’13. New York, NY, USA: Association for Computing Machinery, Aug. 2013, pp. 254–263. doi:

10.1145/2491627.2491655.

[15] R. Mazo, S. Assar, C. Salinesi, and N. Ben Hassen, “Using software product line to improve ERP

engineering : literature review and analysis,” Latin-American Journal of Computing, vol. 1, no. 1, p.

., Oct. 2014.

[16] V. Indykov, “Component-based Approach to Software Engineering of Machine Learning-enabled

Systems,” in Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering -

Software Engineering for AI, in CAIN ’24. New York, NY, USA: Association for Computing

Machinery, June 2024, pp. 250–252. doi: 10.1145/3644815.3644976.

[17] P. Clements and L. M. Northrop, Software Product Lines: Practices and Patterns. Boston: Addison-

Wesley, 2001.

[18] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line Engineering. Berlin,

Heidelberg: Springer, 2005. doi: 10.1007/3-540-28901-1.

[19] M. Mitchell et al., “Model Cards for Model Reporting,” in Proceedings of the Conference on

Fairness, Accountability, and Transparency, in FAT* ’19. New York, NY, USA: Association for

Computing Machinery, Jan. 2019, pp. 220–229. doi: 10.1145/3287560.3287596.

[20] T. R. Toma, B. Grewal, and C.-P. Bezemer, “Answering User Questions About Machine Learning

Models Through Standardized Model Cards,” in 2025 IEEE/ACM 47th International Conference on

Software Engineering (ICSE), 2025, pp. 1488–1500. doi: 10.1109/ICSE55347.2025.00066.

[21] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, “Hidden Technical Debt in Machine

Learning Systems,” in Advances in Neural Information Processing Systems, Curran Associates, Inc.,

2015.

[22] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software product lines,” in Proceedings of

the 30th international conference on Software engineering, in ICSE ’08. New York, NY, USA:

Association for Computing Machinery, May 2008, pp. 311–320. doi: 10.1145/1368088.1368131.

[23] S. Amershiet al., “Software Engineering for Machine Learning: A Case Study,” in 2019 IEEE/ACM

41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-

SEIP), Montreal, QC, Canada: IEEE, May 2019, pp. 291–300. doi: 10.1109/ICSE-

SEIP.2019.00042.

[24] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ML test score: A rubric for ML

production readiness and technical debt reduction,” in 2017 IEEE International Conference on Big

Data (Big Data), Dec. 2017, pp. 1123–1132. doi: 10.1109/BigData.2017.8258038.

[25] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond Accuracy: Behavioral Testing of NLP

Models with CheckList,” in Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, July 2020, pp. 4902–4912. doi: 10.18653/v1/2020.acl-main.442.

[26] S. Newman, Building microservices: designing fine-grained systems. O'Reilly Media, Inc., 2021.

[27] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow: architecture-based

self-adaptation with reusable infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, Oct. 2004, doi:

10.1109/MC.2004.175.

[28] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic Software Product Lines,”

Computer, vol. 41, no. 4, pp. 93–95, Apr. 2008, doi: 10.1109/MC.2008.123.

[29] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes, “Constraint Programming as a Means to

Manage Configurations in Self-Adaptive Systems,” Special Issue in IEEE Computer Dynamic

Software Product Lines, pp. 1–12, Dec. 2012.

https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi
https://www.zotero.org/google-docs/?C5Ithi

International Journal of Software Engineering & Applications (IJSEA), Vol.16, No.6, November 2025

21

AUTHORS

Luz-Viviana Cobaleda is an Associate Professor at the University of Antioquia

(Colombia). She holds a Ph.D., M.Sc., and B.Sc. in Engineering from the same

university, and a Specialization in Software Engineering from EAFIT University. Her

research focuses on software engineering, with publications in international venues and

participation in collaborative projects.

Andrés López is a systems engineer. He graduated in 2013 with a degree in Systems

Engineering from the University of Antioquia (Colombia) and in 2018 obtained a

Master’s in Engineering from EAFIT University (Colombia). He is currently pursuing

a joint Ph.D. in Sciences pour l’ingénieur et le numérique à l' École Nationale

Supérieure de Techniques Avancées – ENSTA (France) and in Electronic and

Computer Engineering at the University of Antioquia.

Paola Vallejo is a Systems Engineer who graduated from Universidad EAFIT in 2012.

She got her Master’s degree (Human Computer Centered Systems) at École

Nationaled’Ingénieurs de Brest - France in 2012. She received the Ph.D. degree in

Computer Science from Université de Bretagne Occidentale, France, in 2015. She is

currently a full professor at Universidad EAFIT.

Raúl Mazo is a Franco-Colombian engineer who received his Engineering degree in

Informatics from the University of Antioquia (Colombia) in 2005, and later earned an

M.S. in Information Systems, a Ph.D. in Computer Science, and the Habilitation à

Diriger des Recherches (HDR) from the University Panthéon-Sorbonne (France) in

2008, 2011, and 2018, respectively. He is currently a Full Professor at the École

Nationale Supérieure de Techniques Avancées (ENSTA).

Julian Carvajal is a Colombian software engineer in training and a Systems

Engineering student at the University of Antioquia (Colombia). He has professional

experience as a software developer, with a particular focus on building educational

video games for preschool children and contributing to research-driven software

projects.

