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ABSTRACT 
 
The integration of Machine Learning (ML) components into modern software systems enhances data-

driven decision-making but introduces new challenges for Software Product Line (SPL) engineering. 

Variability modeling, configuration, and reuse become increasingly complex when adaptive ML 

components are involved. Although previous studies have addressed variability in traditional SPLs and ML 

integration in standalone systems, limited work has systematically explored the intersection of these two 

domains. This paper presents a structured framework that extends SPL engineering to support ML-aware 

variability management. The framework enables the systematic modeling and configuration of ML 

components and has been implemented in the VariaMos web tool. A case study demonstrates the 

framework’s feasibility and applicability, illustrating how it supports the development of adaptive and 

intelligent product lines. 
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1. INTRODUCTION 
 

The rapid evolution of artificial intelligence (AI) over the last decade stems from advances in 

computational power, the availability of massive datasets, and increasingly sophisticated 

algorithms. As a result, AI has become a transformative technological force, empowering 

software-intensive systems with new capabilities across diverse domains [1], [2], [3], [4]. AI-

based systems are essentially software systems whose functionalities are enabled by at least one 

AI component (e.g., for image and speech recognition or autonomous driving) [4]. However, 

incorporating AI components into software products introduces new software engineering 

challenges and amplifies existing ones. The situation becomes even more critical when these 

components are integrated not only into a single product but into a family of software products or 

a Software Product Line (SPL). Thus, the integration of Machine Learning (ML) components into 

SPLs introduces new dimensions of variability that traditional modeling techniques are not 

prepared to handle. This raises fundamental questions: How can an AI/ML component be 

modeled within an SPL? How can architects effectively integrate ML components into their 

SPLs? What information about the model is necessary to enable a successful SPL configuration 

process? The inability of current modeling approaches to address these questions reveals a 

significant research gap. Additionally, the integration of ML components into software systems 

introduces unique challenges that have given rise to the field of Software Engineering for AI 

(SE4AI). Recent literature has systematically identified the issues that emerge across the software 

lifecycle, impacting areas such as requirements engineering, architecture, testing, deployment, 
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and maintenance [3], [4], [5], [6]. While these challenges are broad, this paper focuses on those 

most relevant to the design of SPL. 

 

Most research in SE4AI has focused on the challenges of integrating ML components into 

individual software systems. In the context of SPLs, where systematic reuse is central, these 

challenges persist but evolve into variability management problems. For instance, defining 

performance metrics for a single product is an engineering task, whereas managing multiple 

components with diverse performance profiles across products becomes a variability challenge. 

However, literature explicitly addressing this transformation of ML-related challenges in SPLs 

remains scarce, revealing a significant research gap. Among the documented issues in individual 

systems, requirements engineering is particularly critical: both customers[3] and development 

teams [6] often overestimate ML capabilities, leading to unrealistic expectations such as perfect 

accuracy or zero false positives[4]. This gap between business goals and technical specifications 

is compounded by the dynamic nature of ML components, which introduces new and still poorly 

understood quality attributes—such as freshness and robustness[3], [4] —and trade-offs, 

including fairness versus accuracy [3], [4].  

 

Although these challenges are significant for individual systems, their impact is amplified in 

SPLs, where systematic reuse and variability management are essential. The inclusion of ML 

components introduces additional variability concerns—such as defining performance metrics at 

the product line level, aligning stakeholder understanding, and specifying monitoring policies—

that extend beyond individual products. Despite extensive research on AI-related software 

components, the literature still lacks approaches that explicitly address their distinctive 

characteristics within SPLs[3], [4]. 

 

In this paper, we propose a framework for enhancing SPLs by considering intelligence as a first-

class feature and enabling the seamless integration of ML components. The main contribution 

lies in a specification-oriented approach that systematically guides the integration of ML-based 

functionalities into SPLs, addressing key aspects such as variability management, probabilistic 

feature modeling, ML component characterization, continuous monitoring, component 

replacement, and product derivation with ML components. This framework promotes consistent 

reuse, customization, and traceability of intelligent features across product configurations within 

the SPL context.  

 

This proposal builds upon and improves the version presented initially in [7] by providing an 

enhanced demonstration of the framework’s feasibility and applicability through a running 

example and its implementation in the VariaMos web tool (www.variamos.com). As part of an 

ongoing effort to operationalize and validate its practical use, this web-based tool leverages a 

microservices architecture to support the specification of product lines through a multi-language 

modeling approach, as well as reasoning over products and product lines. 

 

The remainder of the paper is structured as follows: Section 2 provides background information 

on SPL engineering and ML components documentation. Section 3 introduces the running 

example in the virtual store domain, which will be referenced throughout the remainder of the 

paper. Section 4 presents the proposed framework for designing SPLs with ML components and 

discusses the implications of this approach. Section 5 reviews related work. Finally, Section 6 

concludes the paper and outlines directions for future research. 
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2. BACKGROUND 
 

The design and development of SPLs rely on systematic approaches to manage variability and 

promote reuse across families of related software systems. To provide the necessary foundation 

for the proposed framework, this section outlines the core concepts of SPL engineering and the 

integration of ML components. 

 

2.1. SPL and Variability Management  
 

A SPL represents a systematic approach to developing families of related applications within a 

specific domain through strategic reuse of common assets [8]. This paradigm leverages shared 

components and systematic variability management to achieve significant reductions in 

development time and costs while improving product quality through the incorporation of proven, 

reusable artifacts. 

 

Software Product Line Engineering (SPLE) operationalizes this approach through two 

fundamental processes, as presented in Figure 1: (1) Domain engineering, which establishes 

reusable assets and variability models, and (2) Application engineering, which derives specific 

products from these shared resources[8]. Variability—the capacity of a system to be adapted or 

configured for specific contexts—serves as the core mechanism enabling this systematic reuse 

across diverse product requirements. 

 

1) Domain engineering establishes the foundation of reusable assets through two sequential 

phases. A) Domain analysis identifies and specifies SPL variability using formal models such as 

feature models [9], which define variation points, available alternatives, and constraint 

relationships. This phase encompasses: domain requirements definition to capture stakeholder 

needs and scope constraints, reference architecture specification aligned with domain 

requirements, and variability model quality assurance through systematic verification, diagnosis, 

and validation activities. B) Domain implementation transforms abstract specifications into 

concrete, reusable components. Key activities include requirements engineering for domain 

components, architectural design specification, domain component implementation, 

comprehensive unit testing, and explicit linkage between components and variability model 

elements. This phase produces the core asset base comprising domain components, architectural 

models, and associated test suites. 

 

2) Application engineering derives specific products through the systematic configuration and 

instantiation of domain assets across two phases. A) Configuration and customization 

management captures customer-specific requirements and configures variability models 

accordingly, encompassing application requirements engineering, variability model 

configuration, application architecture definition, and component customization to meet specific 

product needs. B) Derivation constructs final products from configured domain assets through 

requirements engineering for the derivation process, assembly architecture definition, systematic 

product implementation from domain components, and comprehensive system integrity testing, 

including performance, validation, and audit verification. 

 

This dual-process framework ensures systematic reuse while maintaining the flexibility necessary 

to address diverse product requirements within the target domain. The SPLE framework applies 

to various domains, including, but not limited to, education [10], agricultural systems [11], smart 

buildings [12], e-commerce [13], automotive manufacturing [14], and information systems [15]. 

Our running example belongs to the e-commerce domain. 

https://www.zotero.org/google-docs/?iN4iu9
https://www.zotero.org/google-docs/?MbPFhe
https://www.zotero.org/google-docs/?g5WZk5
https://www.zotero.org/google-docs/?YTLVuI
https://www.zotero.org/google-docs/?ST77A9
https://www.zotero.org/google-docs/?iKHRHR
https://www.zotero.org/google-docs/?Tw7eYA
https://www.zotero.org/google-docs/?mTsJwC
https://www.zotero.org/google-docs/?iMg3rk
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Figure 1. SPLE framework implemented in the VariaMos web tool, from [8] 

 

2.2. ML Components 
 

An ML component is a special type of software component that encapsulates ML models along 

with their associated data processing, inference logic, and system integration capabilities [6], 

[16]. These components constitute the primary means of integrating ML capabilities into complex 

software systems, acting as a bridge between the underlying ML models and the overall system 

architecture. Component reuse is a foundational principle that enables the efficient development 

of multiple products from a shared, common core. 

 

3. RUNNING EXAMPLE: E-COMMERCE 
 

To illustrate the applicability of the proposed Framework for ML-Aware Variability, we present a 

running example in the virtual store domain. Virtual stores constitute a representative and 

relevant domain for SPLs. These platforms enable the online exchange of goods and services, 

allowing businesses to publish product catalogs and customers to perform transactions. Although 

they may operate in diverse markets, such as fashion, electronics, or digital services, their 

primary goal is to facilitate efficient and secure commercial transactions among multiple users. 

Virtual stores thus represent a cornerstone of modern e-commerce systems. 

 

Our SPL for virtual stores captures a set of core components common to most instances, 

including a Product catalog (for listing and managing items), a Shopping cart (to collect selected 

products before purchase), a Payment module (for processing transactions via various methods), 

and a Delivery system (to coordinate product shipment or digital access). Beyond these shared 

functionalities, the SPL supports a wide range of variability points. For instance, products may 

differ in terms of user authentication mechanisms, catalog presentation styles, supported payment 

gateways, shipping logistics, or user interface customization. In addition to these structural 

variations, ML components introduce a new layer of variability that enhances user experience 

and system efficiency. Examples include a semantic search engine (trained to interpret the 

https://www.zotero.org/google-docs/?OaEE2r
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context of user queries), a sentiment analysis module (applied to customer reviews), and a 

content moderation system (which classifies and filters inappropriate content). 

 

These ML-based components add complex dimensions of variability related to model 

architecture, inference thresholds, latency, and human-in-the-loop decision-making. For example, 

the content moderation module can be instantiated in two configurations: (i) a human-assisted 

moderation system, where a toxicity classification model flags suspicious comments for manual 

review, and (ii) an automated moderation system, where the same model flags comments for 

automatic censorship using a higher confidence threshold. Choosing between these 

configurations entails trade-offs. The automated system requires higher model precision to 

minimize false positives (i.e., unjustified censorship). In contrast, the human-assisted 

configuration can operate with a lighter, lower-latency model, as human moderators make the 

final decisions. To implement such ML functionalities, the SPL can rely on pre-trained models 

(e.g., text classifiers or Sentence Transformers) obtained from public repositories, such as 

Hugging Face. Within the SPL context, these models can be encapsulated as reusable 

components, enabling developers to integrate intelligent behavior without having to redesign 

models from scratch for each product instance. This running example will be referenced 

throughout the paper to demonstrate the modeling of variability, the configuration of intelligent 

components, and the systematic reuse of ML assets in SPL. 

 

4. A FRAMEWORK FOR ML-AWARE VARIABILITY 
 

The integration of ML components into SPL represents a fundamental paradigm shift that 

challenges the traditional assumptions underlying systematic software reuse. While conventional 

SPL approaches have proven effective for deterministic software components with predictable 

behavior and stable interfaces [17], [18], ML components introduce unprecedented complexity 

through their inherent stochasticity, data dependency, continuous evolution requirements, and 

non-functional characteristics that defy traditional software engineering practices [3], [4]. 

 

The proposed framework is organized into five interconnected phases that collectively address 

the complete lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive 

architecture design, ML-aware domainimplementation, Dynamic product configuration, 

and Product derivation and validation of its resulting products. Each phase builds upon 

established SPL theory while introducing novel concepts and recommended practices specifically 

designed to handle the probabilistic nature, performance variability, and operational complexity 

inherent in ML systems. 

 

4.1. ML-Aware Domain Analysis 
 

The domain analysis phase requires significant adaptations when ML components are involved, 

particularly in feature modeling and architectural decision [8]. Traditional Boolean feature 

satisfaction proves inadequate for ML components whose capabilities vary across contexts and 

exhibit probabilistic behavior [6]. A key distinction of ML-based features lies in their reliance 

on training data properties. The performance and capabilities of these features are susceptible 

to the characteristics of the training data, including its quality, representativeness, and intrinsic 

attributes. Additionally, implementing ML-based features can introduce risks associated with 

sensitive data, particularly regarding privacy, security, and information governance, due to the 

implications of data use and storage for model training and inference. 

 

 

 

https://www.zotero.org/google-docs/?i9uARZ
https://www.zotero.org/google-docs/?rCX3Do
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Recommendation 1: Implement Probabilistic Feature Modeling. 

 

SPL engineers should extend conventional feature models to capture the uncertainty in ML 

component capabilities [9]. Rather than relying on binary feature satisfaction, engineers should 

model features with quality distributions that reflect variability in ML component performance. 

 

Practical Implementation: For each feature that will be satisfied by an ML component, SPL 

engineers should identify it as an “ML-based feature” and define the following Feature Quality 

Profile: 

 
FeatureQualityProfile = { 
feature_id: String, 
feature_type: type, 
ml_component_id: String, 
quality_distribution: { 

accuracy_range: [min_accuracy, max_accuracy], 
context_sensitivity: Map[Context, AccuracyLevel], 
confidence_intervals: Map[Scenario, ConfidenceRange] 

}} 

 

Application in the E-commerce Example: In our running example, the fraud detection feature 

is defined with an accuracy ranging between 0.88 and 0.95. This metric is influenced by 

context—decreasing to 0.75 for international transactions during weekends, but reaching 0.98 for 

transactions originating from suspicious IP addresses. Additionally, the confidence intervals are 

established to classify the level of certainty of the machine learning model; for example, values 

below 0.70 can be considered low confidence, values between 0.70 and 0.84 are considered 

medium confidence, and values equal to or above 0.85 are considered high confidence. Figure 2 

shows the implementation of the Probabilistic Feature Modeling in the VariaMos tool; this 

representation enables the management of the inherent uncertainty in ML-based features, 

supporting more accurate reasoning mechanisms and better-informed, adaptive, and reliable 

product configurations. 

 

 
 

Figure 2. Probabilistic feature modeling implemented in the VariaMos web tool. 

 

https://www.zotero.org/google-docs/?M3Xrzc
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4.2. Adaptive Architecture Design 
 

The reference architecture must explicitly address the dynamic and context-sensitive nature of 

ML components. ML models often evolve, depend on external data sources, and exhibit 

probabilistic behavior that affects system reliability and performance. Therefore, architectural 

decisions must incorporate design strategies that manage adaptability and traceability, ensure 

periodic updates, and maintain the long-term stability and performance of integrated ML 

functionalities. These strategies should align feature variability, model capabilities, and 

operational constraints, which is paramount for ensuring the robustness, adaptability, scalability, 

and maintainability of the ML-based SPL. 

 

Recommendation 2: Design ML-Aware Reference Architecture. 

 

The reference architecture must account for several key aspects.  

 

• It must provide for a clear separation of concerns between the core SPL framework, the 

ML model development cycle, the deployment pipeline, and model monitoring.  

• It must support various deployment strategies, including on-device (edge computing), on-

premises, or cloud-based, depending on the specific product requirements and 

constraints. 

• It must ensure data privacy, security, and compliance, while facilitating seamless 

integration with robust ML engineering practices, such as MLOps. 

 

Practical Implementation: SPL engineers should be able to: 

 

• Use microservice-based architecture, where ML components are deployed as decoupled 

services accessible through well-defined APIs. 

• Use of containerization (e.g., Docker) to package models and their dependencies, 

ensuring environmental consistency and portability. 

 

4.3. ML-aware Domain Implementation 
 

The domain implementation phase requires a structured approach to documenting, versioning, 

and managing ML components. This approach should be complemented by a formal monitoring 

process that can detect performance degradation and automatically trigger component 

replacement procedures. Effectively characterizing and selecting suitable ML components is 

essential to understanding their capabilities, limitations, and performance profiles. This enables 

successful integration and reduces associated risks. The monitoring system is designed to address 

the dynamic and non-deterministic nature of ML components by identifying potential degradation 

in the production environment and issuing alerts. Additionally, careful consideration is required 

for some aspects. For example, orchestrating ML components across products involves managing 

dependencies, activation conditions, and contextual adaptation. Furthermore, replacing ML 

components systematically requires mechanisms to evaluate, decouple, and reintegrate new 

versions with minimal disruption. 

 

Recommendation 3: Adopt Intelligent Component Characterization. 

 

To ensure the precise and systematic characterization of pre-trained ML components, it is 

proposed that Model Cards be mandatorily adopted. Model Cards, introduced by Mitchell [19] 

and further extended by Toma [20], provide a standardized framework for documenting ML 

models in a transparent and structured manner. This approach recommends customizing specific 

https://www.zotero.org/google-docs/?aXV651
https://www.zotero.org/google-docs/?3wMk7z
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sections of the standard Model Card, such as Model Details, Intended Use, SPL reusability 

Profile, Model Usage, Operational Requirements, Performance Metrics, and Caveats. These cards 

are tailored for domain experts who, while not data scientists, are responsible for selecting and 

integrating third-party components.  

 

Practical Implementation: For each ML component in the SPL, a standardized model card is 

proposed, capturing the following essential information: 

 
ModelCard= { 

model_details: { 

 model_id: String, version: ModelVersion, 

developed_by: String, model_type: MLModelType, 

license: LicenseSpecification 

}, intended_use: { 

primary_use: String, out-of-scope_use: String 

}, spl_reusability_profile: { 

supported_domains: Set[Domain], 

integration_complexity: String, (e.g., “Low”) 

}, model_usage: { 

api_endpoint: String,  

deployment_guidance: String 

}, performance_metrics: Map[clave, valor], 

   operational_requirements: { 

cpu: CPUSpecification, ram: RAMSize, gpu: String, notes: String 

   },  

   caveats: [String] 

} 
 

The SPL-aware Model Card specification defines the essential attributes for characterizing an 

ML component. The purpose and content of each key attribute are detailed below: 

 

• model_details: Provides technical specifications—covering developer information, version 

control, model architecture, training methodology, and licensing terms that define 

commercial use rights, current license type, and redistribution permissions. 

 

o model_id: A unique identifier for the model, such as its name in a public repository. 

o version: The specific version of the model, following semantic versioning where 

possible, to track changes and dependencies. 

o developed_by: The organization, team, or individual responsible for the model's 

development. 

o model_type: Specifies the model's task category (e.g., Text Classification, Object 

Detection), informing its functional role. 

o license: The legal specification governing the use, modification, and distribution of the 

model, crucial for commercial product derivation. 

 

• intended_use: Defines appropriate use cases, target applications, and intended user 

populations by outlining usage scenarios, specifying primary and out-of-scope applications, 

detailing the model’s adaptability, and highlighting its limitations and potential biases. 

 

o primary_use: A concise description of the model's main purpose and the scenarios 

where it is designed to be applied (e.g., real-time fraud detection). 

o out-of-scope_use: Explicitly states the limitations and use cases for which the model has 

not been designed or validated, preventing misuse. 
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• spl_reusability_profile: A section dedicated to evaluating the ML component's fitness as a 

reusable asset within the SPL context. This is a key input for variability modeling. 

 

o supported_domains: A set of application domains where the model has demonstrated 

reliable performance, highlighting potential domain biases. 

o integration_complexity: A categorical rating (e.g., "Low", "Medium", "High") that 

estimates the engineering effort needed to integrate the component, based on its 

dependencies and API. 

 

• Model_usage: Offers guidance on model consumption through various interfaces (e.g., UI, 

API) and outlines its compatibility with different deployment platforms and operating 

systems. It also provides guidance on optimizing performance and outlines deployment 

strategies for different environments, including local setups and cloud platforms. 

 

o api_endpoint: The URL or interface for sending inference requests. 

o deployment_guidance: A summary of instructions and best practices for deploying the 

model in different environments (e.g., cloud, edge). 

 

• performance_metrics: Comprehensive performance evaluation including accuracy measures, 

uncertainty quantification, and decision thresholds. 

 

• operational_requirements: Provides system requirements and hardware recommendations to 

help users prepare for deploying or fine-tuning the model in their computing environment. 

 

o cpu: The recommended minimum specification for the CPU. This is critical for overall 

system performance and serves as the primary compute resource when no GPU is used. 

o ram: The recommended minimum system RAM. This memory is required to hold the 

operating system, host application, model dependencies, and the model itself before 

being loaded into specialized hardware. 

o gpu: Specify whether a GPU is required, as well as its minimum specifications. 

o notes: Provides additional qualitative context or performance tips. 

 

• caveats and recommendations: Presents caveats and recommendations by assessing 

potential societal impacts, fairness considerations, and bias mitigation strategies, while also 

outlining behavioral limitations related to “Not Safe For Work” (NSFW) content, including 

explicit material, violence, or hate speech.  

 

This information empowers the SPL architect to make a reasoned configuration decision: either 

accept a component with known limitations and plan for specific monitoring, or select an 

alternative component whose characteristics better align with the product being built. In addition, 

the systematic adoption of Model Cards represents a crucial step toward responsible ML 

deployment by enhancing transparency around model behavior and operational boundaries. By 

standardizing technical and ethical documentation practices, Model Cards enable stakeholders to 

evaluate and compare models using multidimensional criteria that extend beyond traditional 

performance metrics to encompass fairness, inclusivity, and equity considerations. 

 

Application in the E-commerce Example: In the sentiment analysis case of our running 

example, we defined a domain component that integrates two ML components: the 

DistilBERTmodel from the Hugging Face repository (https://huggingface.co/distilbert)  and the 

CardiffNLPmodel also from Hugging Face (https://huggingface.co/cardiffnlp). 

 

https://huggingface.co/cardiffnlp
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For each ML component, we specified the recommended information. For example, for the 

DistilBERTmodel, we defined the following elements: the model identifier (e.g., 

distilbert/distilbert-base-uncased-finetuned-sst-2-english), version (e.g., 1), model developer, 

model type (in this case, text classification), primary use (classification), application domains 

(e.g., products, music, among others), performance metrics (e.g., Accuracy), required 

computational resources (e.g., 4-24GB of vRAM for GPU), microservice API endpoint (e.g., 

http://localhost:5001), and interface type (REST API). Figure 3 shows an excerpt of the model 

card implementation for the ML-based Sentiment analysis component in VariaMos. 

 

The information in the model card enables the selection of the most suitable machine learning 

model during product configuration, based on functional needs and the defined architecture, 

promoting effective reuse and traceability of models across different contexts. 

 

 
 

Figure 3. Excerpt from the model card for the sentiment analysis component, implemented in the VariaMos 

tool. 

 

Recommendation 4: Implement Systematic ML Component Monitoring. 

 

Given the inherently non-deterministic and data-dependent behavior of ML components, SPL 

engineers must design robust monitoring mechanisms capable of detecting performance 

degradation [21]. Operating at runtime, these mechanisms should continuously observe both 

model performance and business-critical signals, while being seamlessly integrated with drift 

detection and alerting processes to ensure resilient and self-adaptive system behavior. 

 

Practical Implementation: To effectively implement this recommendation, SPL engineers 

should define a dedicated ML monitoring component for each domain component that 

incorporates ML capabilities. This component must specify the following attributes: 

 
MLComponentMonitor: { 
component_id: String, 
monitoring_configuration: { 

https://www.zotero.org/google-docs/?RqyqI2
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      metrics: Set[MonitoringMetric], 
      frequency: TemporalSpecification, 
data_collection_strategy: DataCollectionApproach, 
baseline_establishment: BaselineDefinition 
    },  
threshold_definitions: { 
performance_thresholds: Map[Metric, ThresholdSpec], 
drift_detection_thresholds: Map[DriftType, ThresholdSpec], 
business_impact_thresholds: Map[BusinessMetric, ThresholdSpec] 
    },  
intervention_strategies: { 
alert_procedures: AlertSpecification 
    } 
}  

 

The specification defines the structural requirements needed to establish consistent, interpretable, 

and actionable monitoring configurations. The key attributes of the monitoring specification are 

detailed below: 

 

• component_id: Unique identifier of the monitored ML component. Used to record events, 

logs, and monitoring metrics.  

• monitoring_configuration: Parameters that define what, how, and when monitoring is 

performed. 

 

o metrics: Set of key metrics for monitoring model performance. These metrics depend on 

the type of ML model (e.g., classification [F1 Score, AUC, Accuracy], regression [RMSE, 

MAE], and recommendation [Precision, Recall]). 

o frequency: Frequency at which the model's status is evaluated. It may depend on the 

traffic rate or importance of the model (e.g., Hourly: useful for high-volume production; 

Daily: balanced for general use; EveryBatch: suitable for batch systems; RealTime: when 

online processing is used). 

o data_collection_strategy: Method for collecting input data (for comparison and 

evaluation), predictions, and actual labels (if available) (e.g., StreamingLogs: continuous 

online capture. (e.g., BatchLogs: data collected in intervals; ShadowDeployment: 

evaluates without exposing to the user; MiddlewareCapture: collects from a proxy or 

wrapper). 

o baseline_establishment: Reference against which current metrics are compared. It can 

be a previous version or a historical average. (e.g., StaticThresholds: defined by experts; 

PrelaunchModelBaseline: based on offline evaluation; Rolling7DayAverage: adaptive 

and dynamic). 

 

• threshold_definitions: Set of thresholds that trigger alerts. 

 

o performance_thresholds: Thresholds over key model quality metrics. 

o drift_detection_thresholds: Statistical thresholds for detecting changes in the 

distribution (data drift, concept drift, prediction drift, etc). 

o business_impact_thresholds: Business metrics that may be impacted by the model, such 

as CTR, revenue, and churn. 

 

• intervention_strategies: Defines actions to take if an anomaly or system degradation is 

detected. 
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o alert_procedures: Specification of the channel and form of alert to the responsible team 

(e.g., SendMailToMLTeam, PushToPagerDuty). 

 

Application in the E-commerce Example: In our running example, the sentiment analysis 

component can be continuously monitored to detect potential performance degradation, drift, or 

business impact issues.  

 

In the case of the DistilBERT sentiment analysis ML component, the monitoring mechanism 

enables the definition of relevant performance metrics, such as Accuracy and Recall, as well as 

the establishment of an appropriate evaluation frequency (e.g., daily assessments). It also allows 

the configuration of data collection strategies for evaluation purposes, such as streaming logs, and 

the definition of a reference baseline for comparison with current results, for instance, a seven-

day moving average. Furthermore, the mechanism supports the specification of performance 

thresholds, including minimum and critical values for each metric, as well as  the configuration of 

drift detection parameters that cover both data drift and concept drift. In addition, it facilitates the 

identification of business impact indicators, such as the number of misclassified negative 

reviews, and the definition of intervention strategies, including automated email alerts sent to the 

responsible team whenever an anomaly is detected. As illustrated in Figure 4, the configuration 

for the monitoring component of the Sentiment Analysis ML-component has been implemented 

in the VariaMos tool. 

 

 
 

Figure 4. Component Monitoring configuration for Sentiment analysis ML-component, implemented in the 

VariaMos tool. 

 

Recommendation 5: Implement Systematic ML Component Replacement Strategy. 

 

During product configuration, an automated strategy should be established to update or replace 

ML components when performance degradation is detected. This requires the definition of an 

intervention mechanism that is triggered when the performance metrics of an ML component fall 

below predefined thresholds. The mechanism must support replacing the underperforming 

component with one of several alternatives: another ML model, a traditional software component, 

or, if appropriate, the temporary exclusion of the affected functionality from the system's 

execution flow. 
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Practical Implementation: To operationalize this recommendation, SPL engineers must define a 

replacement strategy component associated with each ML-enabled domain component. This 

component is responsible for responding to degradation alerts issued by the monitoring system 

and executing the actions defined in the replacement policy. The structure of the replacement 

strategy component can be formally specified as follows: 

 
MLComponentReplacementStrategy = { 
component_id: String, 
replacement_hierarchy: { 
primary_alternative: ComponentReference, 
secondary_alternatives: List[ComponentReference], 
fallback_strategy: FallbackApproach 
  } 
} 

 

This specification defines the structure required to enable resilient and automated replacement 

mechanisms for ML components. The attributes are described below: 
 

• component_id: Unique identifier of the ML component.  

 

• replacement_hierarchy: Hierarchy of alternatives in case of model degradation. 

 

o primary_alternative: Component directly prepared to take over the current ML model. 

o secondary_alternatives: List of additional (less optimal) alternatives. 

o fallback_strategy: Emergency strategy to continue providing service with reduced 

capabilities (e.g., AllowAll, ConservativeRuleBasedBlocking, RuleBasedBlocking, 

ManualReview, GracefulShutdown). 

 

Application in the E-commerce Example: In an online retail SPL, a replacement strategy can 

be defined for the sentiment analysis component using both traditional and ML-based 

alternatives. To ensure system resilience, if no alternative component satisfies the required 

quality thresholds, a predefined fallback mechanism is activated, such as temporarily disabling 

the sentiment analysis feature within the process flow. 

 

In our running example, the DistilBERTsentiment analysis component is associated with a  

monitoring component that tracks its performance. The replacement strategy allows defining a 

primary alternative, such as the CardiffNLPsentiment analysis component, and a secondary 

alternative represented by a traditional Rule-based component. A contingency strategy is also 

specified for cases in which none of the available alternatives meet the established quality 

criteria. In such situations, the system may temporarily block requests using a predefined rule set, 

ensuring controlled behavior in the presence of failures. The replacement strategy remains 

subscribed to the events generated by the monitoring system, enabling the automatic substitution 

of degraded components as soon as anomalies are detected.  

 

In VariaMos, this mechanism ensures system resilience and operational continuity by 

automatically replacing underperforming components with viable alternatives, following a 

predefined hierarchy that responds to monitoring alerts and executes actions specified in the 

substitution policy. Figure 5 illustrates the replacement strategy implemented in VariaMos. 
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Figure 5. Configuration of the replacement strategy for the Sentiment analysis ML-component, 

implemented in the VariaMos tool. 

 

Recommendation 6: Implement ML Component Orchestration. 

 

Effective orchestration—the coordinated management and execution of ML components—in 

dynamic product configurations requires infrastructure that enables flexible model composition, 

state management between runs, and contextual integration. For this, we recommend: 

 

• Use of modular ML pipelines, which allow integrating, monitoring, and scaling ML 

components in distributed environments. 

• Intelligent orchestrators that dynamically adjust component activation according to 

contextual signals, business rules, or environmental conditions. Techniques such as context-

aware scheduling can be applied. 

• Functional decoupling of components, promoting a microservices-based architecture to 

facilitate model replacement, enhancement, or re-trainability without altering the overall 

configuration. 

• Instrumentation for traceability and versioning: employ systems that record training data, 

parameters, results, and decisions made by each component to facilitate audits and 

optimization. 

 

Practical Implementation: To operationalize this recommendation, SPL engineers must define a 

dedicated orchestration layer that governs the lifecycle, dependencies, and interactions of ML 

components. This orchestration must support declarative workflows, dynamic adaptation policies, 

and seamless integration with monitoring systems. The following schema defines a formal 

representation of such an orchestration-aware product configuration: 

 
ProductConfiguration = { 
configuration_id: String, 
feature_binding: Map[Feature, ComponentBinding], 
workflow_specification: { 
component_graph: DirectedAcyclicGraph[Component, DataFlow], 
execution_constraints: Set[Constraint], 
quality_objectives: Map[QualityAttribute, Objective], 
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resource_allocations: Map[Component, ResourceAllocation] 
  }, adaptation_policies: { 
monitoring_configuration: MonitoringPolicy, 
replacement_triggers: Set[ReplacementTrigger], 
quality_negotiation: QualityNegotiationStrategy, 
performance_optimization: OptimizationPolicy 
  }, validation_requirements: { 
functional_tests: Set[TestSpecification],  
performance_benchmarks: Set[BenchmarkTest], 
quality_assertions: Set[QualityAssertion],  
compliance_checks: Set[ComplianceCheck] 
  } 
} 

 

This schema defines the structural and behavioral dimensions of a configurable product instance. 

Its modular design supports precise, verifiable, and adaptive configuration management across a 

wide range of variability. The key components are described below: 

 

• configuration_id: A unique identifier assigned to the product configuration instance. 

 

• feature_binding: A mapping between product features and their corresponding component 

implementations. This allows resolution of variability by specifying which components realize 

which features in a given configuration. 

 

• workflow_specification: Captures the operational logic of the product. 

 

o component_graph: A directed acyclic graph (DAG) that defines the data flow and 

execution dependencies among software and ML components. 

o execution_constraints: A set of logical or resource-based constraints that govern 

component execution (e.g., timing, sequencing). 

o quality_objectives: Specifies target values for quality attributes, such as accuracy, 

latency, and energy consumption. 

o resource_allocations: Assigns computational resources (e.g., CPU, memory, GPU) to 

each component to ensure operational feasibility. 

 

• adaptation_policies: Define the runtime behavior of the product under varying operational 

conditions: 

 

o monitoring_configuration: Indicates how system performance is monitored during 

execution. 

o replacement_triggers: Defines conditions under which components should be replaced. 

o quality_negotiation: Specifies strategies for balancing competing quality attributes 

under constraints. 

o performance_optimization: Policies for dynamically optimizing performance based on 

monitored feedback. 

 

• validation_requirements: Ensures that configured products meet their intended goals and 

regulatory requirements: 

 

o functional_tests: Set of specifications for functional correctness. 

o performance_benchmarks: Benchmark tests that measure system performance under 

predefined workloads. 
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o quality_assertions: Verifiable and testable statements specifying the quality attributes 

that a configured product is required to meet. 

o compliance_checks: Formal |checks to ensure adherence to standards, certifications, or 

domain-specific regulations. 

 

Application in the E-commerce Example: In an online retail SPL, a dynamic product 

configuration may include ML components for personalized recommendations, fraud detection, 

and sentiment analysis. The component bindings for each product instance can vary significantly 

based on factors such as the target audience, expected transaction volume, and specific regional 

compliance mandates. 

 

4.4. Dynamic Product Configuration 
 

Incorporating ML components during product configuration adds depth to variability and 

intelligence of SPL. However, configuration decisions must balance multiple competing 

objectives, such as performance, cost, and reliability, often under shifting operational conditions. 

Recommendation 7: Establish Multi-Objective Configuration Optimization. 

 

To enhance the adaptability and performance of ML-enabled SPLs, it is essential to establish 

multi-objective configuration optimization mechanisms. This approach enables organizations to 

simultaneously evaluate and balance competing concerns, including accuracy, latency, resource 

consumption, interpretability, and ethical constraints. By leveraging advanced optimization 

techniques such as Pareto efficiency or evolutionary algorithms, teams can generate configuration 

sets that meet diverse stakeholder requirements without compromising system integrity. 

Implementing multi-objective optimization also promotes continuous improvement, enabling 

dynamic reconfiguration as environments evolve or model behaviors drift over time. 

 

Practical Implementation: To operationalize multi-objective configuration optimization, it is 

first necessary to formalize a set of competing objectives, such as model accuracy, latency, 

resource utilization, interpretability, and compliance with ethical standards, into quantifiable 

metrics. The configuration space should encompass both system-level parameters and ML-

specific settings, including hyperparameters and pipeline structures. Exploring trade-offs across 

this space can be conducted using optimization techniques such as evolutionary algorithms (e.g., 

NSGA-II), Bayesian multi-objective methods, or Pareto-based analysis. Configurations are 

evaluated through simulation or benchmarking, producing Pareto-optimal sets that offer balanced 

solutions. These sets can be visualized or presented through decision-support interfaces to 

facilitate selection based on dynamic stakeholder priorities and preferences. Finally, integrating 

optimization processes within CI/CD pipelines ensures continuous reconfiguration in response to 

model drift or changing operational constraints. 

 

4.5. Product Derivation and Validation 
 

This phase considers the methodology for deriving specific products from a configurable 

architecture, detailing how optimization criteria and stakeholder requirements guide the selection 

process. It also describes the validation mechanisms employed to ensure that the resulting 

products meet expected standards of functionality, performance, and reliability prior to 

deployment. 
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Recommendation 8: Implement validation and testing strategies specifically designed for 

ML-enhanced products. 

 

Validation and testing strategies should incorporate both functional and non-functional 

assessments, including unit and integration testing, model performance evaluation across diverse 

datasets, fairness audits, and resource utilization benchmarking. In addition, these strategies 

should extend to include ML-specific validation approaches, such as statistical performance 

validation, bias detection testing, adversarial robustness assessment, and long-term stability 

verification. It must also support automated validation pipelines integrated into CI/CD 

workflows, enabling continuous monitoring and the rapid detection of anomalies, drift, or 

compliance violations. 

 

Practical Implementation: To implement this recommendation, the first step is to configure the 

derivation. This involves selecting binary features and determining the quality distributions for 

ML components. It is essential to establish optimization criteria and stakeholder requirements to 

guide the automated selection of ML components. This ensures that each product is customized 

to meet its use case requirements. Once a product is derived, the unit tests, integration tests, and 

non-functional requirement tests must be executed. The process is further enhanced with ML-

specific validations such as bias detection, adversarial robustness assessments, and long-term 

stability verification to address the unique vulnerabilities of machine learning models. The 

overall goal is to ensure that the derived products meet all expected standards of functionality, 

performance, and reliability prior to deployment. Finally, to ensure long-term reliability, all of 

these validation strategies are integrated into automated CI/CD pipelines.  

 

In conclusion, the proposed framework’s recommendations, which encompass the entire lifecycle 

of ML-enhanced Software Product Lines (SPLs), have been demonstrated through the running 

example and their implementation within the VariaMos web tool. The running example illustrates 

the framework’s feasibility and applicability, showing how it supports the development of 

adaptive and intelligent product lines. Furthermore, these recommendations are currently being 

applied to the development of a proof-of-concept SPL for a text editor, enabling the empirical 

validation of the framework’s practical effectiveness. 

 

5. RELATED WORK 
 

The intersection of SPL engineering and ML represents an emerging research area that builds 

upon established foundations in both domains. Traditional SPL engineering, formalized through 

seminal work by Clements, Mazo, and Pohl, respectively [8], [17], [18], has established 

comprehensive methodologies for systematic software reuse through domain engineering and 

application engineering processes. The Feature-Oriented Domain Analysis (FODA) approach 

introduced by Kang [9] and subsequent advances in variability management [8], [22]provide 

robust frameworks for managing product family complexity. However, these approaches 

fundamentally assume component determinism and behavioral predictability, creating significant 

gaps when dealing with probabilistic ML components. 

 

Parallel developments in ML engineering have addressed the unique challenges of ML-enabled 

systems through comprehensive frameworks for technical debt management [21], engineering 

practices [23], and quality assurance approaches [24]. The emergence of systematic 

documentation practices, as exemplified by  Model Cards [19] and behavioral testing frameworks 

[25], represents substantial progress in ML system engineering. Recent systematic reviews by 

Martínez-Fernández [4] and empirical studies by Nahar and Ribeiro, respectively [5], [25] have 

documented collaboration challenges and the complexity of requirements engineering specific to 

https://www.zotero.org/google-docs/?oyySKx
https://www.zotero.org/google-docs/?ahzkyv
https://www.zotero.org/google-docs/?5GkiFT
https://www.zotero.org/google-docs/?jeGr10
https://www.zotero.org/google-docs/?h5PeQf
https://www.zotero.org/google-docs/?0M8qAz
https://www.zotero.org/google-docs/?z2ogka
https://www.zotero.org/google-docs/?OfuKBQ
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https://www.zotero.org/google-docs/?RUmHCy
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ML systems. Nevertheless, this body of work predominantly focuses on standalone ML systems 

or monolithic application contexts, with limited consideration of systematic reuse frameworks. 

 

Architectural approaches for ML integration have evolved toward microservices-based patterns 

[26]  and adaptive system frameworks [13], [27], while dynamic SPL research [8], [28], [29]has 

explored evolution and adaptation in product line contexts. However, existing approaches have 

not systematically addressed the unique requirements of ML components within SPL 

environments, including cross-product consistency management, shared component instance 

coordination, and the specific adaptation patterns required for probabilistic components subject to 

performance degradation and concept drift. 

 

Current literature reveals critical limitations when applied to ML-enhanced SPL contexts. 

Traditional SPL methodologies assume behavioral predictability, which is incompatible with the 

probabilistic nature of ML components. In contrast, ML engineering approaches lack systematic 

frameworks for ensuring cross-product consistency and shared component management. Existing 

documentation frameworks do not provide mechanisms for reusability assessment required for 

SPL component selection, and current adaptive system approaches do not address ML-specific 

degradation patterns and monitoring requirements. 

 

This work addresses these fundamental gaps by providing the first comprehensive framework 

specifically designed to integrate ML components within SPLs, while preserving the benefits of 

systematic reuse. Unlike existing approaches that treat ML components as standalone services or 

apply ad-hoc integration patterns, our framework systematically extends established SPL 

methodologies with ML-specific concepts, including probabilistic feature modeling, degradation-

aware component characterization, adaptive architectural patterns, and dynamic configuration 

optimization. The framework proposed in this paper provides concrete specifications, including 

formal orchestration languages (MCOSL), systematic monitoring frameworks, and multi-

objective optimization approaches, enabling practitioners to maintain an engineering discipline 

and leverage systematic reuse advantages while effectively utilizing ML capabilities across 

products derived from product lines. 

 

6. CONCLUSIONS AND FUTURE WORK 
 

The integration of ML components into SPLs presents new challenges that traditional modeling 

techniques are not equipped to address. By addressing the variability and uncertainty inherent in 

ML components, this approach lays the groundwork for bridging the gap between SPLE and AI-

based software development.  

 

In this paper, we propose a framework that supports the inclusion of ML components in SPLs, 

facilitating systematic reuse, customization, and evolution. Our contribution consists of a 

specification-oriented approach that guides the integration of ML-based functionalities into 

SPLs, along with a set of recommendations and practical implementations. The framework 

extends existing variability management approaches to support ML-aware configuration and 

reuse. The framework is structured around five interconnected phases that encompass the entire 

lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive architecture design, ML-

aware domain implementation, Dynamic product configuration, and Product derivation and 

validation of its resulting products. The framework’s feasibility is demonstrated through an 

implementation in the VariaMos tool and a case study that validates its applicability to real-world 

scenarios.Initial empirical findings, obtained by applying these recommendations to two distinct 

SPLs—an e-commerce SPL and a text editor SPL—suggest that this comprehensive 

documentation approach facilitates informed decision-making across the entire ML component 

lifecycle. This process spans from initial model selection to deployment and ongoing monitoring. 

https://www.zotero.org/google-docs/?7BBChl
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Furthermore, Model Cards support regulatory compliance and risk management by providing 

auditable documentation of model characteristics and decision rationale, which contributes to the 

development of more accountable and trustworthy ML systems. Although these preliminary 

results are promising, further experimentation and implementation improvements are needed to 

fully assess the actual value and impact of this proposal in production environments. Future work 

involves evaluating the proposed strategy in real-world industrial domains, including a detailed 

cost-benefit analysis, extending the capabilities of the VariaMos tool, and exploring its 

applicability to AI components beyond ML. 
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