
International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

DOI : 10.5121/ijsea.2016.7605 65

EFFICIENCY OF SOFTWARE DEVELOPMENT AFTER

IMPROVEMENTS IN REQUIREMENTS ENGINEERING

David Kuhlen
1
 and Andreas Speck

2

1
Datenlotsen Informationssysteme GmbH, Technical Consultant, Beim Strohhause27,

20095 Hamburg, Germany.
2
Christian Albrechts Universität zu Kiel, Head of the Business Information

Technology Group, Hermann-Rodewald-Straße 3, 24098 Kiel, Germany

ABSTRACT

In the past decade multiple challenges arose from the method of software development [4, 4]. As described

by Davenport, the development process needs an overhaul [4, 4]. Different disciplines, like project

management, requirements engineering, the development of code or quality assurance have been

investigated intensively, in order to improve the productivity of development. To obtain valid results, the

overhaul needs to start with the refactoring of the right process at first. Often, it is sensible to start with

such processes, which operate at the interface to the customer, because they are perhaps the most critical

to an organization’s success [3, 270 – 271]. Mainly, software development consists of four sub processes:

requirements engineering, development, quality assurance and delivery. Requirements engineering and

delivery operate on the interface to the customers. Because of the fact that the analysis of requirements is

groundbreaking, we select this process as the starting point of a process innovation initiative. We analyse

the impact of requirements engineering in KANBAN development processes. Special emphasis is put on the

productivity of the overall development process, after a refactoring of requirements engineering.

KEYWORDS

Software development, Requirements engineering, Operating efficiency.

1. INTRODUCTION

Software development is criticized as being too slow, too expensive and too error-prone [1],

[4, 4]. This requires an overhaul of the process [4, 4]. Quality and cost problems emerge from the

way how software is usually developed [4, 4].

In agile projects, developers may decide to skip (or shorten) a comprehensive requirements

engineering [13]. Unfortunately, in many cases requirements are incomplete and the projects lack

of specification. Software producers speculate to save effort in order to finish projects faster by

reducing requirements engineering [5]. This reduction is often justified by the fact that

requirements are changing continuously. [5] Explains that one to three percent requirements

change per month! ”Embrace the Change” leads to requirements that are only as far as necessary

analysed - and important details are missing to deliver the right quality.

However, requirements engineering is a long-term goal. It is not attractive, particularly in short

iterations! Nevertheless, good requirements engineering methods help to reduce the error rate of a

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

66

Software system from 0,23 to 0,08 per function point [5]. Early investments in good quality

prevent rework - this stops the emerge of waste in (lean development) [12, 143]. Lean approaches

like KANBAN require a reliable quality, in order to behave [6, 186]

.

Lean production principles seek to eliminate all kinds of waste from the development [7, 1].

Ikonen et al. declared the adaption of lean methods in software industries to be one of the newest

fashions in 2010! The adaption of lean techniques by software manufacturers is economically

reasonable. Compared with others, KANBAN leads to an economic ratio of costs to earned

function points [9, 11].

However if details are missing about the impact, requirements engineering has on the profitability

in KANBAN. We try to investigate the advantages of a comprehensive requirements engineering

in iterative development.

2. THEORY

Requirements analysis should provide a basic understanding about customers needs [2]. In order

to analyse requirements state diagrams and activity diagrams will be created [5]. The creation of

such artefacts could be meaningful - however, it requires some effort.

Stutzke distuniguishes three steps of analysis: (1) logical design describes the problem,(2)

physical design adds the description of implementation details and (3) the production process

produces the software [15]. The aim of contemporary requirements nearly corresponds to these

logical design, described by Stutzke[15].

KANBAN is a pull-system, used in production to organize the sequence and communication of

the procedure model in manufacturing [6, 169]. Mathematically, KANBAN consists of a stock in

combination with policy rules (Q; r) [6, 186]. Especially in repetitive environments, KANBAN

offers simplicity to control the production effectively [6, 169]. Software development operates in

a repetitive environment [8, 2]. In general, the productivity of KANBAN is remarkable [7, 1],

[9, 11], [6, 169]! To enhance the productivity, requirements specifications have to be qualitative

[11, 1]. The quality of requirements influences the progression of development.

3. METHODS

In order to investigate the profitability of requirements engineering, we need to analyse its impact

on the process model. The model of KANBAN consists of a few different activities. In practice,

development can be organized by using a pinboard. On this pinboard, companies distinguish

phases like requirements engineering, development, quality assurance. Requirements are written

on notepads and shifted among these phases. They are put from left to right until quality

assurance is finished. The number of requirements which could be performed in the different

activities is limited [6, 169, 173].

Figure 1 illustrates a common version of the KANBAN development process. The embedded

check if it is possible to move an instance forward is important in the process model. It is possible

that requirements have to stay in their current activity, until the load factor of the next activity

allows the handling of a new requirement. This stabilizes the workload!

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

67

To answer the above mentioned question, we need to consider quality expectations during the

development. Software development is an iterative process. As Speck et al. explained, it is very

desirable to identify errors and problems in an early state [14, 75–82]. It is strongly required, to

identify problems before software is deployed to the customer [16, 6].

The cycles in software development are necessary, because often quality lacks after first iteration.

Sometimes, it is necessary to repeat a few cycles, in order to arrive at an effective

Figure 1: Kanban process model

Design of (target-) processes [3, 158]. During each cycle, we assume that activities which handle

a requirement, improve its quality. Furthermore, we add a compliance rule which controls the

transition of a requirement from one activity to another. Only if requirements quality fulfils the

rule, it is possible to start the next activity. If quality is insufficient, the requirement has to repeat

parts of the process.

Requirements analysis takes place mostly at the beginning of an iteration. Often, it does not result

in a fully formulated specification. Thus, the risk of a never ending evelopment process rises!

Moreover, a lack of clear specifications may lead to further customer requests and higher costs.

The cyclic repetitions particularize the requirements specification [2]. In order to determine the

impact of requirements engineering, we performed multiple experiments. Each experiment was

performed on the basis of a KANBAN development process. Sole difference between the

experiments is the impact requirements engineering has on the quality of specifications.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

68

4. DATA

Each experiment consists of multiple simulations. A simulation describes the development of a

team, during six months. Therefore, a progression has 57.601 (one minute in reality conforms to

one round). After each progression, key performance indicators were calculated. Process

innovation initiatives (like an investment in requirements engineering) needs to improve the

financial performance [3, 4]. Therefore, such an improvement of the process has to be

economically sensible!

At the beginning of each simulation, a generator creates random requirements. These

requirements have any quality. The quality is described as a percentage value which expresses

how well the object (requirement, software, etc...) fulfils the wish of the customer. Higher

percentage values express better performance. Furthermore, each requirement has an individual

size. The size is described as a number of function points. The size determines how long the

performance takes in an activity.

Different activities were executed by different employees during the process. The activity

combines the requirements (which have a duration) and the employees (which have a salary).

This combination (allocation of resources to activities) facilitates to describe the economic

performance, for example, by the calculation of process costs [10, 1781].

Figure 2: Produced function points, influenced by requirements engineering’s impact

Diagram 2 illustrates the relation of requirements engineering efficiency and the produced

function points. Multiple simulations belong to the same class. A class bundles different

simulations with an equal improvement of requirements engineering. Nine different classes could

be distinguished. The impact of requirements engineering is increased from class to class about 5

%. The produced function points of each class are compared by the use of box plot charts. In

diagram 2, the correlation of requirements engineering efficiency to realized function points is

remarkable. Greater efficiency of requirements engineering increases the number of produced

function points. By comparing the median of different classes, it shows the positive correlation.

Our assumption seems to be confirmed.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

69

5. RESULTS

In order to investigate our leading question, we calculated a regression analysis. We compared the

impact of requirements engineering (axis of abscissas) to the produced function points (ordinate).

Both characteristics belong to a cardinal scale (ratio scale). We performed 522 simulations. After

each simulation a key performance indicator was calculated. Our calculations base on 520

degrees of freedom. We used an α probability of 5%.

n = 522; p = 2; dfx = 520; dfy = 520

Expectable about 37, 88 function points could be produced during each simulation (arithmetic

average). The median of developments output is about 31,64 finished function points. Its 25.-

quantile is 13,49 fp and its 75.-quantile is 56,59 fp.

The variance of produced function points is about 914; 68fp2. This is in accordance with a

standard deviation of 30,24 function points. The standard error of produced function points

(leaving out degrees of freedom) amounts to 1,32. With a probability of 90% no more than

115,91 function points will be produced during each simulation (confidence interval). It is

expactable that in the population w the variance of finished function points conforms to 916;

44fp2

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

70

The application of the Cauchy-Schwarz inequality shows that the covariance is less than 389,64

(formula: | cxy |≤ sx.sy -> |cxy|≤ 389; 64). The covariance amounts to 259,31. With about 0,67 the

correlation coefficient is more than of medium height. This positive correlation coefficient

indicates an equal tendency between the characteristics.

Our model fits to an univariate linear regression. We used the method of the least squares to

calculate the best fitting regression line. Our function has a slop of about 1,56 and a y-intercept of

about 6,84. Theoretically, the function has a simple zero at -4; 38% which isn’t reachable in

practice.

The reliability (ration of explained variance to total variance) amounts to about 0,443. Adjusted

by the number of parameters, it amounts to 0,441. Based on this reliability, the quality of the

regression is moderate. Further tests are necessary.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

71

The adjusted reliability suggests that the analysis of the regression should be intensified. In order

to determine whether the regression is significant, we calculated the f-test. The f-test allows to

check if the correlation of two parameters is also significant also in the basic population w. Based

on the above mentioned α probability, we determined the critical value of the F-distribution to be

about 1,16. We calculated a check sum f, of about 5,51. This check sum exceeds the critical value

of the F distribution. Therefore, a significant correlation exists in the basic-population.

We seek determine, if the independent variable (impact of requirements engineering) influences

the dependent variable (finished function points) significant. Within a t-test, we compared the

hypothesis that the slop of our regression line is zero, in reality. The variance of the residues is

about 511,53. Adjusted under consideration of the degrees of freedom, a standard error of about

0,992 could be estimated in the basic population. This leads to a variance of the slop of about

0,077. The calculation of the t-statistic-value amount to about 20,29. The t-statistic-value exceeds

the critical value of the T-distribution (about 1,96, considering a two sided interval).

Requirements engineering has a significant impact in the model on the finished function points.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

72

The positive contribution of requirements engineering to the productivity is proven by the

regression analysis. Next, we need to analyse the workload of the development progression. If the

improvement increases the workload, negative cost effects could emerge. We expected the

workload to be stable, because of the positive levelling effect of KANBAN.

Figure 3: Workload influenced by the impact of requirements engineering

In figure 3 the relation between requirements engineering efficiency to the workload is displayed.

More or less the workload is stable in different classes of efficiency improvement.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

73

6. CONCLUSION

Unfortunately, the implementation details determine the productivity. Techniques of the

requirements engineering are necessary in development projects. The lack of formal

specifications is a challenge in projects [2]. Software producers could increase its output by

enhancing the efficiency of requirements engineering. Enhancements of requirements engineering

lead to increased numbers of finished function points. It can be expected that the productivity of

requirements could not be improved beyond an upper bound. We restricted this upper bound to be

40 %.Furthermore, an upper bound of requirements quality exists (in our model 100 %).In further

investigations it could be sensible to determine the maximum limit until an improvement is

economically meaningful. This analysis has to consider the unique costs of process innovation,

necessary for the improvement of requirements engineering.

7. REFERENCES

[1] P. G. Armour. The business of software estimation is not evil. COMMUNICATIONS OF THE ACM,

57(1):42–43, 2014.

[2] Lan Cao and Balasubramaniam Ramesh. Agile requirements engineering practices:An empirical

study. Software, IEEE, 08(1):60–67, February 2008.

[3] Thomas H Davenport. Process Innovation - Reengineering Work through Information Technology.

Havard Business School Press, Boston, Massachusetts, 1993. Ernst & Young Center for Information

Technology and Strategy.

[4] Thomas H Davenport. The coming commoditization of processes. Harvard business review,

83(6):100–108, 2005.

[5] Dr. Peter Hruschka. Business Analysis und Requirements Engineering. Carl Hanser Verlag München,

2014.

[6] Chun-Che Huang and Andrew Kusiak. Overview of kanban systems. INT. J. COMPUTER

INTEGRATED MANUFACTURING, Vol. 9(No. 3):169–189, 1996.

[7] Marko Ikonen, Petri Kettunen, Nilay Oza, and Pekka Abrahamsson. Exploring the sources of waste in

kanban software development projects. In 2010 36th EUROMICRO Conference on Software

Engineering and Advanced Applications, pages 376–381. IEEE, 2010.

[8] David Kuhlen and Andreas Speck. Business process analysis by model checking. In 5th International

Symposium on Data-Driven Process Discovery and Analysis SIMPDA 2015, pages 154–170, Vienna,

Austria, December 2015. Ceravolo, Paolo and Rinderle-Ma, Stefanie.

[9] David Kuhlen and Andreas Speck. Magnitude effect of requirements in the development process.

May 2016.

[10] Huiping Lin, Yushun Fan, and Stephen T Newman. Manufacturing process analysis with support of

workflow modelling and simulation. International Journal of Production Research, 47(7):1773–1790,

2009.

[11] Carlos Monsalve. Business process modeling with levels of abstraction. IEEE COLCOM 2015, (978-

1-4799-8834-1), 2015.

[12] Hans-Jürgen Plewan and Benjamin Poensgen. Produktive Softwareentwicklung: Bewertung und

Verbesserung von Produktivität und Qualität in der Praxis, volume 1. Auflage. dpunkt. verlag,

Heidelberg, Germany, Juli 2011.

[13] J. Schwaber, K.; Sutherland. Der scrum guide der gültige leitfaden für scrum: Die spielregeln, July

2013. Zuletzt Abgerufen am 06.09.2014.

[14] Andreas Speck, Elke Pulvermüller, and Dirk Heuzeroth. Validation of business process models. In

Proceedings of ECOOP 2003 Workshop Correctness of Model-based Software Composition (CMC),

pages 75–83, 2003.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.6, November 2016

74

[15] Richard D Stutzke. Possible uml-based size measures. In Presented at the Thirteenth International

Forum on COCOMO and Software Cost Modeling, Los Angeles, 6-8 October 1998., 1998.

[16] Wil MP Van Der Aalst, Arthur HM Ter Hofstede, and Mathias Weske. Business process

management: A survey. In Wil M.P. van der Aalst, Arthur ter Hofstede, Mathias Weske, Gerhard

Goos, Juris Hartmanis, and Jan van Leeuwen, editors, Business process management, Lecture Notes

in Computer Science, pages 1–12, Einhoven, The Netherlands, 2003. Interational Conference BPM,

Springer.

[17] Thomas Zink. Class for aircc journal submissions, 2012. This is an unofficial Latex class for Authors

of AIRCC Papers. Access timestamp: 2016-10-19.

