
International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

DOI: 10.5121/ijsea.2017.8602 19

PATTERN-BASED AND REUSE-DRIVEN

ARCHITECTING OF MOBILE CLOUD SOFTWARE

Aakash Ahmad1, Ahmed B. Altamimi1, Abdulrahman Alreshidi1, Mohammad T.

Alshammari1, Numra Saeed2
,
 Jamal M. Aqib1

1College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia

2School

of Electrical Engineering and Computer Science, NUST, Pakistan

ABSTRACT

Context: Mobile Cloud Computing (MCC) represents the state-of-the-art technology that unifies mobile

computing and cloud computing to develop systems that are portable yet resource sufficient. Mobile

computing allows portable communication and context-aware computation, however, due to the energy and

resource constraints mobile computing lacks performance for computationally intensive tasks. Cloud

computing model uses the ‘as a service’ model - providing hardware and software services - to offer

virtually unlimited storage and processing resources. The integration of mobile and cloud computing has

given rise to the MCC systems that are portable, context-aware and resource sufficient.

Challenges and Solution: To develop the MCC systems, some recurring challenges such as connectivity,

context-awareness, portability and security must be addressed during the system design and architecting

process. One way to address these challenges is to use the best practices and repeatable solutions to design

and architect the MCC systems. In this research, we aim to utilise the empirically discovered patterns that

support reusable design knowledge for architecture-driven development of the MCC systems. We follow a

three-step process to empirically discover, document and apply patterns for architecting mobile cloud

systems. Specifically, we have discovered three patterns as generic and reusable solutions for MCC

systems. We demonstrate the applicability of the patterns based on a case study for architecture-centric

development of the MCC patterns. The propose research aims to advance the state-of-the-art on reusable

and knowledge-driven architecting of the MCC systems.

KEYWORDS

Software Engineering, Software Architecture, Software Patterns, Mobile Cloud Computing, Software Reuse

1. INTRODUCTION

Mobile Cloud Computing (MCC) has recently emerged as an innovative technology that unifies

mobile computing and cloud computing systems to provide portable and resource sufficient

solutions [1]. Mobile computing as a pervasive technology allows its users to exploit portability,

connectivity and context-aware computation to perform as variety of tasks such as conducting

mobile commerce, acquiring location services, and monitoring personal health [2]. However, due

to its portable nature, mobile computing lacks the energy, computation and memory resources to

perform computationally intensive tasks [2, 3]. Cloud computing technology has successfully

promoted the ‘as a service’ model that offers pay-per-use and virtually unlimited processing and

storage hardware and software services [4]. The unification of mobile and cloud computing as

MCC systems can integrate the context-aware and portable computation (from mobile

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

20

computing) with processing and storage services (of cloud computing) to support systems that are

portable, yet resource sufficient [3]. Specifically, in the MCC systems, a mobile device can act as

a portable and context-sensitive user interface that relies on the backend cloud server to perform

complex tasks such as real-time image processing, context sensing, and human decision support

[5]. Despite these benefits, MCC systems entail a number of challenges that relate to the

scalability, performance, and availability of the system in a dynamic environment.

To engineer and develop the MCC systems, there is a need to replace the ad-hoc and once-off

solutions with reuse-driven and knowledge-based practices for system design. Also, with the

growing demands for the adoption of the MCC systems, knowledgeable and experienced

systems’ designers/architects of MCC systems are needed who are not widely available as MCC

has just started to emerge as an innovative technology [1, 5]. In this situation, software patterns

and styles can provide reusable solutions and best practices to develop MCC systems.

Specifically, software patterns focused on designing or architecting MCC can provide

documented and well understood software design solutions to both the experienced and novice

architects [6, 7, 8]. Software patterns have been proven successful in providing reusable packages

of generic and repeatable solutions to recurring problems of software and system design [9]. This

means that patterns capture the concentrated wisdom of practitioners and consolidated design

rationale from multiple systems to develop software effectively and efficiently [10]. However,

pattern-based architecting is faced with the challenge of empirically discovered patterns that must

be systematically documented and recurrently applied to the systems under design [11].

In this research, we aim to exploit patterns to design and architect mobile cloud systems by

incorporating pattern-driven reusability and efficiency in the software design process. To do so,

we have followed a three-step process that includes (i) pattern discovery, (ii) pattern

documentation, and (iii) pattern application to architect a MCC system. An overview of the

proposed solution is illustrated in Figure 1. In the proposed solution, as in Figure 1, first the

pattern sources are investigated to empirically discover patterns and maintain a repository that

acts as a collection of the documented patterns. Finally, the discovered patterns can be selected

and applied to support pattern-based software architecture for the MCC system. This means that

patterns as generic and reusable solutions create the software architecture – providing the system

blueprint – that acts as a bridge between system requirements and system implementation as in

Figure 1. It is vital to mention that, while architecting the MCC systems, one exploits

dynamically composed services to develop systems that are portable, context-sensitive and

efficient [7, 8]. In comparison to the more traditional (object-oriented, component-based and

service-driven) systems [10], patterns for mobile MCC architectures are characterized by specific

requirements such as mobility, context-sensitivity for (front-end) mobile computing with service

composition, and scalability of (back-end) cloud services [12].

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

21

Figure 1. An Overview of the Proposed Solution.

Assumptions and Contributions The proposed research aims to exploit the traditional concepts of

software patterns and apply them to architect innovative solutions such as MCC software. We

aim to support pattern-based architecting that can accelerate the process of gaining design or

architectural knowledge and applying it for architecture-centric software development. The

research aims to advance the research state-of-the-art on MCC systems by focusing on

empirically discovered patterns and their applications. The research assumes the existence of the

pattern sources that can be investigated to discover new patterns. We also assume pattern

discovery and document as a continuous process that involves frequent discovery of existing and

new sources to discover innovative patterns. This paper provides a significant extension to our

research in [6]. In contrast to the catalogue of MCC architectural patterns in [6], in this research

we provide case study based demonstration of the applicability of the patterns. Moreover, we also

evaluate pattern-based reusability and efficiency of architectural design process. The primary

contributions of this research are to:

 – Support a three-step process to discover, document, and apply patterns as reusable solutions

to guide the system design and architecting phases.

 – Apply the discovered patterns to recurring problems of software design and architecture.

Pattern applicability demonstrates reusability and efficiency of tasks involved in the system

designing and architecting phases.

The rest of the paper is organised as follows. Section 2 presents background details. Section 3

presents the related research. Section 4 discusses the research methodology. Section 5 presents

the discovered patterns. Section 6 demonstrates case study based application of the patterns.

Section 7 concludes the paper.

2. MCC ARCHITECTURES AND THEIR QUALITY CHARACTERISTICS

In this section, we introduce the software architecture for the MCC systems in Section 2.1. We

also present the characteristics for the quality of the architectures in Section 2.2. The terms and

concepts introduced in this section are used throughout the paper.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

22

2.1. A LAYERED REFERENCE ARCHITECTURE FOR THE MCC SOFTWARE SYSTEMS

In Figure 2 we have presented a generic architectural view of the MCC systems. Specifically,

Figure 2 a) illustrate a reference architecture for the MCC systems that comprises of two layers,

(i) Cloud Computing Layer (Back-end), and (ii) Mobile Computing Layer (Front-end) [13].

Figure 2 b) presents the component and connector architectural view of the system [14]. We

discuss about the layered architecture view (Figure 2 a)) and the component and connector

architectural view (Figure 2 b)) detailed as below. Both the architectural views presented in

Figure 2 a) and Figure 2 b) are complementary to each other. The reference architecture in Figure

2 a) provides a generic reference to the system under consideration, whereas, the component and

connector view highlights the required components and their interactions in developed system

[13].

A) Reference Architecture for the Layering of the MCC Systems

A reference architecture represents the documentation or the structure of a system - as a

collection of best practices - that can be referred to during system design to derive advanced

architectural solutions [13]. The extended details about the reference architectures and their usage

are provided in [7, 9, 11]. In Figure 2 a), the reference architecture illustrates two layers of the

system each of which deals with a specific aspect/functionality of the system. The presentation of

the reference architecture helps us illustrate pattern-based architecting process, later in the paper.

- Front-end - Mobile Computing Layer provides the users with an interface to utilize and

interact with the data and exploit the context-based and location information of the mobile device.

In addition to the context sensitivity, mobile computing layer enables mobility and computation

on the go. However, due to the increased mobility, an inherent issue with this layers is that mobile

device(s) lacks computation and storage-intensive resources. Moreover, issues like performance

and data security and privacy must also be addressed.

- Back-end - Cloud Computing Layer helps a mobile device to off-load the computationally

intensive tasks and data to scalable and virtually unlimited storage and processing resources

offered by the server [1, 5]. Specifically, the cloud-based servers utilise the pay-per-use and

virtually unlimited ‘as a service’ model that provides hardware and software services to be used

by other systems/entities. In Figure 2, the unification of the mobile and cloud computing as

mobile-cloud computing enables the users to utilize the features of a mobile device such as

context-sensitivity, location-awareness and mobility, while enjoying the virtually unlimited
computation and storage resources of cloud computing. In order to support such unification, i.e.,

integration of the mobile and cloud computing, a continuous network connectivity is required.

Network connectivity may involve latency along with security and privacy of data that

communicates between mobile and cloud.

A) Component and Connector Architectural View

In Figure 2 b), we present the component and connector architectural view for the system [14].

The component and connector architectural view is composed of architectural components that

act as the elements of computation and data stores for the system. The connectors enable the

interaction between various components.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

23

The component and connector architectural view is beneficial as it helps to decomposes a system

into its building blocks, i.e., architectural components. For example, Figure 2 b) that represents a

simplified component and connector-based architecture of the system that invokes location-based

services. The getLocationService component (running on a mobile device) invokes the location

providing service. The location-based service computes the current location coordinates of the

user with calculateLocationCoord service. Assuming that calculateLocationCoord is

computation intensive, therefore it is executed on the cloud-based server. Both the components

are interconnected using locSrv connector.

Figure 2. Overview of a Generic Architecture for MCC Systems.

2.2. QUALITY CHARACTERISTICS FOR MCC ARCHITECTURES

The quality characteristics or non-functional properties (NFRs) represents the attributes of extra

functional qualities that a system needs to operate effectively and efficiently. In the MCC

systems, in addition to supporting the core functionality, the characteristics of software quality

are vital for both the mobile computing and cloud computing layers. For the mobile computing

layer of the MCC systems, the main characteristics of the quality include but not limited to:

- Context-awareness that refers to the system’s ability to exploit the contextual information to

support context-aware computing.

- Mobility aims to support the computation and system level operations in a portable and on

the go fashion.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

24

- Efficiency means that system is able to operate and produce results efficiently and

effectively.

In contrast to mobile computing layer, cloud based systems rely on the principle of service-

orientation that allows service composition to implement cloud-based applications [4, 7].

Therefore, the quality of services being composed or provided are central to the performance of

the cloud architectures. This means that cloud-based services must satisfy the desired quality

characteristics. These characteristics include but not limited to

- Elasticity refers to the systems that are elastic (i.e., addition or removal of system resources)

to accommodate the variations in system’s operational environments.

- Multi-tenancy means that the system must support multiple tenants for the same services

provided by cloud-based systems to the potential requesters.

- Virtualization means that systems’ resources (i.e., hardware and software services) must be

virtualised for their effective usage.

The quality attributes for the MCC architectures are distinct from traditional software
architectures. This means that the patterns for traditional software development and architecture

[9, 10, 11] cannot easily be applied to mobile cloud systems unless they support the above-

mentioned characteristics specific to mobile cloud architectures [7, 8]. For example, a pattern that

exploits context sensing for recommendations and decision support is only applicable to context-

aware computing architectures. It is vital to mention that an individual pattern may not ensure all

these characteristics highlighted above, however, a collection of patterns should ensure to address

them all. For example, unlike the traditional architectures, mobile cloud based architectures are

expected to serve context-aware multiple-tenants with each tenant having its own specific context

and QoS requirement that can vary from performance and reliability to security aspects. Context-

aware multi-tenant capabilities of MCC systems need to be considered not only at service but also

at the platform and infrastructure [7, 8] level not addressed in existing patterns.

3. RELATED RESEARCH

We now present the related research that overviews the research state-of-the-art for the

architecting of MCC systems. First, we discuss the existing patterns for mobile and cloud

computing architectures in Section 3.1. We then present the related reference architecture and

patterns for mobile cloud based systems. The presentation of the related research and solutions

helps us to define the scope and contributions of the proposed solution.

3.1. PATTERNS-BASED ARCHITECTING OF MOBILE AND CLOUD COMPUTING SYSTEMS

 - Patterns for Cloud-based Architectures: In [15], the authors have presented a

comprehensive catalogue of architectural patterns for cloud-based systems. The patterns

presented in this work promote recurring solutions and best practices for cloud-based Platform as

a Service (PaaS). The patterns address the architectural issues relating to the scalability, big data,

fault handling and distributed services on the Windows Azure platform. Patterns in [13] provide

guidelines and practical solutions to address the scalability and elasticity in cloud-native

applications for Windows Azure platform. The work presented in [16] provides a collection of

patterns for the development as well as the deployment of the services for cloud-based systems.

Specifically, the patterns provide solutions for the (i) development of service models for cloud

computing (i.e., Software as a Service, Platform as a Service, and Infrastructure as a Service),

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

25

and (ii) deployment of the services (using private, public, hybrid, or community clouds). In [16],

the authors have organized the presented patterns as a pattern language that allows the

architects/developers to select and apply these patterns.

It is vital to mention the role of the research communities to provide a common platform or

repositories of newly discovered patterns that are published and made available publicly. Pattern

communities can provide concentrated wisdom and knowledge for system architecting that can be

reused to tackle the emerging challenges of system design. In the context of community-driven

pattern repositories, the work presented in [17, 18] represents repositories of architectural patterns

for cloud-based systems. The Cloud Computing Design Patterns in [17] presents a catalogue of

patterns that address the challenges of scalability, reliability, security and monitoring based

solutions for cloud applications. In a similar solution [18], referred to as Cloud Design Patterns

[16] present a catalogue of patterns that is created by architects based on the type of system

design challenges, and their generic solution(s) as design patterns.

 - Patterns for Mobile Computing Systems: In contrast to the research and development
on cloud computing patterns, there is a lack of research patterns and pattern-based architecting of

the mobile computing systems. In a recent research in [8], some architectural patterns are

presented to support the operations of resource constrained mobile devices. Specifically, three

architectural patterns namely data source integration, group-context awareness, and cyber

foraging are presented for mobile computing systems in the context of tactical-edge resource-

constrained environments. These pattern-based solutions support first responders and military

personnel that operating in edge environments that are driven by flexibility, resource efficiency,

and usability, which are key quality attributes for systems at the tactical edge. The patterns enable

the architects to reuse best practices for system design and architecture while considering both the

functional and quality requirements of the system. In [19], the authors have presented a collection

of architectural solutions that are referred to as mobility patterns. Mobility patterns have been

discovered by analysing the successful development of various mobile applications. Mobility

patterns can empower the designers/architects to reuse design rationale and elements as building

blocks to engineer and develop new mobile applications.

In comparison to the research state-of-the-art on pattern-based architecting of the cloud [13, 15,

16, 17, 18] and mobile computing systems [8, 19], the proposed patterns support architecture-

based engineering and development of the MCC systems. Our research aims to establish a

catalogue of architectural patterns - as a continuously evolving repository of patterns - based on

discovery and specification of new architectural patterns guided by [16, 20]. We also demonstrate

the usefulness of patterns in terms of reusability and efficiency of the architectural design

process.

3.2. PATTERNS FOR MOBILE CLOUD COMPUTING SYSTEMS

In recent years, some reference architectures and pattern-based solution have emerged to support

service oriented architecture (SOA) for mobile computing [7, 21, 22]. In the following, we

discuss both the reference architectures and patterns for MCC systems, whereas the technical

details and the distinction between the two can be found in [23].

- Reference Architectures for MCC Systems: In the MCC systems, off-loading

computationally intensive tasks from a mobile device to the cloud-based server is a challenging

task. To support the off-loading, [7] presents a reference architecture that supports the off-

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

26

loading of computational/memory-intensive tasks to cloud-based servers for the mobile devices

that operate in hostile environments. The proposed reference architecture in [7] is used to

demonstrate some implementations scenarios as well as the architectural trade-offs for the

development of MCC systems. Another reference architecture is proposed in [21] that aims to

support the first responder teams and their coordination. The reference architecture aims to

support the development of group-context-aware mobile applications that exploits contextual

information from individuals and their team members to enable context-aware computing and

team coordination.

- Patterns for Mobile SOAs: To support software services or specifically SOAs for mobile

computing six architectural patterns are presented in [12]. These patterns are named as,

standalone, full offloading, partial offloading, SaaS-based, CaaS-based, and offloaded CaaS-

based is presented. These patterns support both the functional and quality requirements for the

mobile-based SOAs. The patterns aims to support the quality attributes that include but are not

limited to the performance, efficiency and energy consumption for mobile applications.

Figure 3. Overview of the Research State-of-the-Art and Proposed Contributions.

Figure 3 illustrates a high-level overview of different research domains and their overlaps. Based

on Figure 3, we can conclude that our research proposes to contribute towards promoting pattern-

based architecting for the MCC systems that currently lacks in the existing research. The research

and solution presented in [7, 22, 21] on reference architecture and patterns [23] is relevant to our

proposal. However, by considering the scope of existing research and the recent challenges for

mobile computing [1, 2, 5, 12], we claim that the proposed solution aims to advance the research

state-of-the-art on patterns and architectures that can be applied to MCC systems.

4. RESEARCH METHOD AND PROPOSED SOLUTION

We now present the research method the details the methodological steps to conduct this

research based on the proposed solution in Figure 4. We use Figure 4 to detail the

methodology and proposed solution.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

27

Figure 4. Research Methodology and Solution Overview.

As illustrated in Figure 4, the methodology for pattern-based architectural development

comprises of three main processes namely pattern discovery, pattern documentation and

pattern application. We also highlight the required inputs and outputs for each of the

process. We discuss the first process of pattern discovery here, while the other two

processes are detailed in subsequent sections of the paper.

Pattern Discovery Process – As presented in Figure 4, pattern discovery is the initial

process that involves investigating the sources of patterns (i.e., logs and pattern files) to

discover the recurring solutions as architectural patterns [20]. Specifically, we applied

the design review method [24] to discover patterns, i.e., by reviewing recurring design

solutions to frequent problems of architecting MCC systems. Our design review team

was comprised of 3 members with an extensive experience of (a) conducting the

systematic review, (b) pattern mining, and (c) development of mobile and cloud systems.

The design review team followed the following steps to discover the patterns.

Step I – Review of Architecture Based Challenges and Solutions for MCC Systems: The design

review was conducted to investigate the recurring challenges, design problems and existing

solutions to develop mobile cloud architectures [25]. A systematic review of the existing

solutions follows evidence based software engineering method [22] to minimize the bias and

threats in the review. To conduct the design review objectively, we outlined a number of

Research Questions (RQs), detailed below. Based on the research questions and available data we

selected 85 solutions (problem-solution map) as the primary sources of pattern discovery.

RQ1 – What methods/techniques/frameworks/solutions are provided in existing (research and

practices) to model/develop/evolve MCC system architectures?

Objective(s): The objectives of this RQ was to identify and understand the recurring challenges

and their architectural solutions for the design and development of the MCC systems.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

28

RQ2 – What are the patterns/styles/frameworks to support reusable design knowledge for

architecting MCC systems?

Objective(s): The objectives of this RQ goes beyond analysis of architectural solution to focus

primarily on the discovery of reusable design knowledge that can be used frequently as

architectural patterns.

Step II – Identification of Pattern Data Sets: Once we have identified and reviewed the

architectural solution based on the RQs, we extracted the relevant data from the solutions as in

Table 1. The datasets here refer to existing architectural challenges, solutions, and their

validations. Table 1 acts as a structured template to capture and maintain pattern related data in a

systematic manner. Based on the design review process [24], we derived 7 data items that are

listed in Table 1 (I1 to I7 – the collection of data items is referred to as datasets) by following the

guidelines in [24] and our experience with the discovery of architectural pattern mining [18] The

data items in Table 1 helped the team to objectively review and systematically extract the

problem (P) and solution (S) mapping, the attributes (A) that affect the solution and the

occurrence frequency (T) of the repeatable solution by analyzing the pattern datasets. Once a

decision (D) is reached, the results are documented as pattern elements (E) for a peer-review

before finalization.

Table 1. Dataset Items for Pattern Discovery Process

ID Items Description
I1 Design Space (C) All the available architectural design (C = 85 studies).
I2 Recurring Problem (P) Repeatable problems existing in the design space (P ∈	C).
I3 Frequent Solution (S) Solutions to repeatable problems in the design space (S ∈

	C).
I4 Frequency Threshold

(T)
Threshold for occurrence of S to be discovered as a pattern

I5

Design Attributes (A)

Attributes affecting S (A = 08)
Context Awareness, Mobility, Computational Efficiency,

Energy Efficiency, Service Reliability, Service Availability,

Data Storage, Data Processing
I6 Discovered Pattern (N) 2 = Yes, 1 = Not sure (consensus required), 0 = No

I7

Pattern Elements (E)

Elements of Pattern Description (E = 9)
Name, Intent, Problem (P), Solution (S), Impact, Origin,

Uses, Reference Diagram, Architecture Elements,

Constraints

Step III - Thematic Analysis based Investigation of the Datasets: After identification of the

datasets, and extraction of the data items, finally thematic analysis is performed. Thematic

analysis aims to ‘identify, analyse and report’ recurring solutions as potential patterns from

datasets. A theme is a frequent solution or a method that aims to address recurring issues.

(A) Data Analysis process comprises of (a) analysing datasets, (b) to extract design attributes

from problem-solution mapping (I5 in Table 1).

(B) Pattern Discovery process involves (a) searching of the recurring themes based on data

analysis, and (b) reviewing the identified themes. To discover patterns, we reviewed studies

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

29

and aimed at discovering design problems (I2) and their relate solutions (I3). We consider a

recurring theme as a discovered pattern (I6).

(C) Pattern Documentation is the last process that includes (a) classification of related

themes based on design attributes (I5) and documented them in a template (I7).

5. TEMPLATE-BASED DOCUMENTATION OF ARCHITECTURE PATTERNS

After the discovery of the patterns, pattern documented is required to maintain the details of the

patterns that can be looked-up whenever required to understand and utilise a pattern. Pattern

template represents a structured document that provides the necessary elements to capture and

represent the individual patterns in a systematic way to support pattern understanding and usage

[9, 11]. In this section, first we introduce the pattern template and then demonstrate template-

based documentation of the discovered patterns. In the following, we present the necessary

elements of pattern template as per the guidelines from [9, 11] to document software patterns in a

template. The pattern template and its individual elements are presented in Table 2.

Table 2. Overview of the Elements of Pattern Template

Template Item Description
Pattern Name It provides a unique and self-explanatory name for the

pattern.

Pattern Intent It describes the motivation or the known uses of the given

pattern

Design Problem and

Solution

These provides a mapping of the problem-solution view

that the patterns aim to address.

Architecture Elements Represent the component and connectors or the artefacts

of the system to which a pattern can be applied.

Reuse Design Knowledge The reusable design rationale that is supported by the

pattern and can be frequently reused.

Quality Characteristics These are the attributes of the quality (non-functional

properties) that are affected by the pattern.

Reference Diagram It provides overview of the pattern also known as pattern

thumbnail.

Based on the details in Section 4, we now discuss three patterns that we discovered. These

patterns are named as (i) Adaptive Mobile-Cloud Offloading, (ii) Mobile Cloudlets, (iii) Mobile

Sensing and Cloud Analytics. We detail the patterns based on the elements of the pattern

template. Before presenting the pattern details, we must distinguish between two important

concepts of pattern abstraction and pattern instantiation.

5.1. PATTERN ABSTRACTION AND PATTERN INSTANTIATION

We use an example of one of the discovered patterns named Adaptive Mobile-Cloud Offloading to

distinguish abstraction and instantiation of the pattern as in Figure 3.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

30

(1). Pattern Abstraction – Modeling the Pattern

Abstraction aims to promote patterns as generic and high-level solution by abstracting out the

complex and implementation specific details of the pattern as illustrated in Figure 5 (a). In Figure

5 (a), an abstract representation of the Adaptive Mobile-Cloud Offloading helps the pattern users’

(designers/architects) to view and analyze a high-level solution to support the off-loading of

computational and storage intensive data to the cloud-based servers. Pattern abstraction can be

helpful to analyze the impacts of a pattern on the architecture model before pattern application

(preconditions), architectural view when pattern is applied (post-conditions). The pre and post

version of pattern-based architectural views also promote patterns as design rationale to support

an incremental process of pattern-based architecting.

(2). Pattern Instantiation – Applying the Pattern

In contrast to the abstraction, pattern instantiation provides details with concrete architectural

elements to instantiate a pattern as illustrated in Figure 5 (b). Pattern instantiation is also known

as pattern application that refines the abstract elements of a pattern with concrete architectural

elements, i.e., extending the abstract box and arrows with architectural components and

connectors from Figure 5 (a) – to pattern abstraction in Figure 5 (b) [8, 10]. For example, as

detailed in Figure 5 (b), the instantiated pattern of Adaptive Mobile-Cloud Offloading utilizes the Data

Access Bus to bind services (in Service Pool) to data collection (in Data Source) component.

Table 3. Pattern 1 – Adaptive Mobile-Cloud Offloading

Pattern I - Adaptive Mobile-Cloud Offloading
A) Pattern Intent: To enable a mobile device to dynamically determine what, how and

where to off-load its data to enhance efficiency and of mobile computing.
B) Design Problem: How to enable a (resource-constrained) mobile device to delegate

its memory and computational-intensive data and tasks to (resource-sufficient)

computers?
C) Solution: Integrate the off-loading logic between Mobile Computing and Cloud

Computing Layers. Such an integrated logic enables a mobile device to exploit dynamic

parameters – such as energy efficiency, computational overhead and storage

requirements – to determine and off-load data and tasks to cloud computing servers.

D) Architecture Elements: Mobile Computing Layer with (resource constrained)

mobile devices, Cloud Computing Layer (resource Sufficient) server are integrated with

off-loading knowledge.
E) Reuse Design Knowledge: Integration of Off-loading logic/knowledge to delegate

mobile computing data and tasks to cloud-based servers.
F) Quality Characteristics:
 - Elasticity of cloud services (acquiring and releasing resources) based on dynamically

determined off-loading.
 - QoS-driven Offloading to ensure that dynamic parameters such as energy, storage and

computational efficiency.

G) Reference Diagram: Figure 3 b) represents a concrete instance of the abstract pattern

representation in 3 a). Specifically, Figure 3 b) illustrates a scenario of pattern

application where mobiles devices are used as portable computers to capture contextual

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

31

images that needs analytics and processing to gather information. The image processing

must be delegated to the cloud servers that have image databases to match and process

the image. The offloading logic is integrated between the mobile device and cloud server

to enable a mobile device to selectively and dynamically off-load the images to the

appropriate cloud-based server based on energy, computational or storage efficiency.

Figure 5. Adaptive Mobile Cloud Offloading Pattern

(Pattern Abstraction and Pattern Instantiation)

Table 4. Pattern 2 – Mobile Cloudlets

Pattern II – Mobile Cloudlets
A) Pattern Intent: To enable a mobile device in a hostile environment to frequently off-

load data to servers that are in close proximity of mobile devices that they serve.
B) Design Problem: How to minimise the off-loading latency (on remote server) to a

single-hop network while maximising the performance and QoS for mobile computing

tasks?
C) Solution: The proposed architecture integrates an intermediate layer (based on

localised cloud known as cloudlets) between the enterprise cloud and the mobile device.

The solution assumes that connectivity to the main cloud (enterprise) cloud is either not

reliable or commonly un-available.
D) Reference Diagram: This architecture inserts an intermediate layer between the

central core (i.e., enterprise cloud) and the mobile devices. At the heart of this

architecture is a large centralized core that could be implemented as one of Amazon’s

data centers or a private enterprise cloud. At the edges of this architecture are offload

elements for mobile devices. These elements, or cloudlets, are dispersed and located

close to the mobile devices they serve [23].

This architecture decreases latency by using a single-hop network and potentially lowers

battery consumption by using WiFi or short-range radio instead of broadband wireless

which typically consumes more energy [24] [25].

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

32

Figure 6. Mobile Cloudlets Pattern

Table 5. Pattern 3 – Mobile Sensing and Cloud Analytics

Pattern III – Mobile Sensing and Cloud Analytics
A) Pattern Intent To exploit the context-sensitive mobile device to capture contextual

data that is sent to the cloud-server for data processing and analytics.
B) Design Problem How to gather the contextual information that can be processed and

analysed to perform decisions?
C) Solution The proposed architecture presents a two layered architecture namely the

mobile sensing and cloud analytics layer. Specifically, the mobile layers enables the

capturing of the contextual information (e.g.; environmental condition, traffic congestion)

and send it to the cloud based server. The cloud server runs the algorithms to analyse data

and provide decision support based on processed data.
D) Reference Diagram: This architecture inserts an intermediate layer between the

central core (i.e., enterprise cloud) and the mobile devices. At the heart of this architecture

is a large centralized core that could be implemented as one of Amazon’s data centers or a

private enterprise cloud. At the edges of this architecture are offload elements for mobile

devices. These elements, or cloudlets, are dispersed and located close to the mobile

devices they serve [23]. This architecture decreases latency by using a single-hop network

and potentially lowers battery consumption by using WiFi or short-range radio instead of

broadband wireless which typically consumes more energy [24] [25].

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

33

E) Reference Diagram

Figure 7. Mobile Sensing and Cloud Analytics.

6. CASE STUDY ON PATTERN APPLICATION

In this section, first we demonstrate the case study based architecting in Section 6.1. We also

discuss some threats to the validity of the research in Section 6.2.

6.1 ARCHITECTING SAFE CAMPUS SYSTEM

After presenting the discovered patterns, we now demonstrate the pattern applicability to an

architectural case study. The case study is based on an ongoing project names ‘Safe Campus’,

that aims to provide student and staff safety at the campus.

Figure 8. A Partial Architectural Overview of the Safe Campus System

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

34

A partial architectural view of the system is presented in Figure 8, that illustrates an incident on

the campus. In Figure 8, we have presented the component and connector architectural view of

the system. For example, the component named IncidentSensor at the mobile computing layer

senses an incident and reports it to the component IncidetReport using the connector

sendIncidentData on the server layer. The incident can be captured (normally an image, textual

details, location of the incident etc.) with a mobile device that runs the Safe Campus. The incident

captured by any individual using their mobile device can be communicated with the incident

reporting server that manages the incident reports and their processing. The server is a cloud

hosted machine that stores, retrieves and processes the incident details.

We utilise one of the discovered patterns to architect the above-mentioned scenario. For

demonstration purposes, we have selected and presented the scenario that has an associated

pattern available. There are various scenarios where a relevant architectural pattern is not

available. In such case, the designer/architect must develop the architecture without any patterns.

Patterns only provide a packaged and reusable design rationale for architecting the systems. We

illustrate the pattern application based on Figure 9.

Figure 9. An Overview of the Pattern-based Architecting Process.

As illustrated in Figure 9, architectural requirements are the foundation for designing the desired

architecture. The designer/architect, based on the requirements selects the most appropriate

pattern from the catalogue and apply it to achieve reusability in the architectural design process to

achieve the architecture [26]. In Figure 9, the Mobile Sensing and Cloud Analytics pattern has been

applied (cf. Table 4). The pattern enables the integration of the mobile computing layer that

senses the incident and send the details to the cloud server. The cloud-based layer manages the

processing and analytics of the incident.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

35

6.2 EVALUATING THE EFFICIENCY OF PATTERN-BASED ARCHITECTING

After discussing the pattern-based architectural design (cf. Figure 9), we also present the

evaluation for the efficiency of pattern-based architecting. In comparison to patterns, primitives

are regarded as individual operations that add or remove architectural elements. For example, to

accommodate a new component named IncidentSensor in the architecture a primitive operation

named add a component is executed. A comparison between the pattern and primitive based

operations for architecting is illustrated in Figure 10. To evaluate pattern based architectural

changes, we compare patterns with primitives and patterns with following parameters. These

parameters are adopted from [28] and used for evaluating pattern efficiency.

Total Change Operations To quantify the required efforts for adding, removing or modifying

the architectural elements, we count the number of change operators required for implementing a

change and call this Total Change Operations (TCO) as illustrated in Figure 10. In [28], TCO is

regarded as the total number of architecture change operations required add, remove or modify

the architectural elements.

Ratio of Change Operationalization (Primitive vs Pattern) represents the ratio of change

operators from pattern to primitive changes expressed as: 1 − (NTCO/ETCO). NTCO denotes the

number of change operations required by the patterns (N), whereas ETCO denotes the number of

change operations required by the primitive (E). The ratio is calculated as the sum of the total

operations as: 1 − (11/41), i.e.; 74% approx.

Figure 10. Overview of Pattern vs Primitive based Architecting Steps

Based on an overview in Figure 10, we conclude that in comparison to patterns, primitive

changes require between 8 and 15 change operations (steps) to add/remove/modify an

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

36

architectural element. Also, patterns when compared to the ad-hoc steps of primitives are

regarded as process-based steps for architecting. The evaluation results based on evaluating three

patterns suggests that: Pattern-based changes can reuse up to 74% of change operations compared

to primitive changes to increase reusability of changes in the architecture-centric software

evolution. However, pattern-based change does not support a fine-granular change representation.

6.3 THREATS TO THE VALIDITY OF RESEARCH

We have presented the proposed solution with preliminary application and evaluation of the

patterns. The discovered patterns are less in number, however; we have proposed pattern

discovery as an incremental process. This means as the new sources of patterns become available,

new patterns can be discovered and maintained in the catalogue. In this section, we highlight

some threats to the validity of the research. These threats, if not tackled as ongoing or future

research can limit applicability of the results.

(1) Threat I - Applicability of Patterns - We have presented a limited demonstration of the

patterns. There is a need for more practical cases and different systems to realise the usefulness of

the patterns along with their limitations and potential improvements. Ideally, we aim to analyse

the increased reusability and decreased efforts with pattern-based architecting. Above all, the

feedback of the pattern users (i.e., designers and architects) is needed to assess the usability of the

patterns.

(2) Threat II - Continuous Discovery of Patterns – It is well established that patterns as generic,

reusable best practices cannot be invented, therefore, patterns must be empirically discovered.

One of the primary threats to the validity of the research is the limited number of patterns that

have been discovered. We have outlined a process that uses empirical approaches to discover new

patterns by mining new datasets. In comparison to the traditional software systems, mobile cloud

systems are new and therefore need innovative patterns to-support their reusability.

7. CONCLUSIONS

Mobile cloud computing represents state-of-the-art mobile computing technology to support

context-aware, portable and resource sufficient systems. The mobile cloud systems exploit

mobility along with dynamically available software as services to achieve context-awareness,

elasticity and scalability etc. that can be best sup-ported by applying reusable practices and

solutions. We proposed a 3-step; pattern-driven architecting process that exploits empirically

discovered patterns to guide architectural design for MCC systems. A collection of patterns

enhances reusability by abstracting (design primitives). Pattern discovery is a continuous process

and provides a systemic approach to investigate emerging design problems and their recurring

solutions.

We have highlighted some validity threats that include an objective assessment of the

applicability, reusability and efficiency of the patterns based on more complex case studies. In

addition, to support the vision of pattern-based architecting for MCC, new patterns must be

continuously discovered and also validated by the pattern users/designers.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

37

REFERENCES

[1] Dinh, H. T., Lee, C., Niyato, D., and Wang, P. (2013). A Survey of Mobile Cloud Computing:

Architecture, Applications, and Approaches. Wireless Communications and Mobile Computing,

13(18), 1587-1611, Wiley.

[2] M. Satyanarayanan (2011). Mobile Computing: the Next Decade. ACM SIGMOBILE Mobile

Computing and Communications Review. vol 15, no 2, pp: 2-10, 2011, ACM.

[3] Baccarelli, Enzo, Nicola Cordeschi, Alessandro Mei, Massimo Panella, Mohammad Shojafar, and

Julinda Stefa. "Energy-efficient dynamic traffic offloading and reconfiguration of networked data

centers for big data stream mobile computing: review, challenges, and a case study." IEEE Network

30, no. 2 (2016): 54-61.

[4] Armbrust, Michael, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski,

Gunho Lee et al. "A View of Cloud Computing." Communications of the ACM 53, no. 4 (2010): 50-

58, ACM.

[5] Fernando, N., Loke, S.W. and Rahayu, W., 2013. Mobile Cloud Computing: A Survey. Future

Generation Computer Systems, 29(1), pp.84-106.

[6] A. Ahmad, A. Altamimi, A. Alreshidi.: Towards Establishing a Catalogue of Patterns for Architecting

Mobile Cloud Software. In 9th International Conference on Software Engineering and Application

(SEAS), 2017.

[7] S. Simanta, K. Ha, G. Lewis, E. Morris, and M. Satyanarayanan. A Reference Architecture for

Mobile Code Offload in Hostile Environments. In Fourth International Conference on Mobile

Computing, Applications and Services (MobiCASE), pp: 274–293, 2013.

[8] G. Lewis, S. Simanta, M. Novakouski, G. Cahill, J. Boleng, E. J. Morris, J. Root. Architecture

Patterns for Mobile Systems in Resource-Constrained Environments. In Military Communications

Conference (MILCOM), pp: 680–685, 2013.

[9] F. Buschmann, K. Henney, D. C. Schmidt. Pattern Oriented Software Architecture vol 5: On Patterns

and Pattern Languages. Wiley and Sons, ISBN-13: 978-0471486480, 2007.

[10] C. Pahl, S. Giesecke, W. Hasselbring. Ontology-based Modelling of Architectural Styles. In

Information and Software Technology. vol. 51, no. 12, pp: 1739–1749, 2009.

[11] N. B. Harrison, P. Avgeriou, U. Zdun. Using Patterns to Capture Architectural Decisions. In IEEE

Software, vol. 24, no. 4, pp: 38-45, 2007.

[12] IBM Developers Work. Mobile Cloud Computing Devices, Trends, Issues, and the Enabling

Technologies. [Online:] http://www.ibm.com/developerworks/cloud/library/cl-

mobilecloudcomputing/ , Accessed 10/18/2017.

[13] E. Nakagawa, A. Oliveira, M. Becker. Reference Architecture and Product Line Architecture: A

Subtle but Critical Difference. In 5th European Conference on Software Architecture, 2011.

[14] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Software

Architecture Description Languages. In IEEE Transactions on Software Engineering, vol 26, no. 1,

pp: 70-93, 2000.

[15] B. Wilder. Cloud Architecture Patterns. O’Reilly Media, Inc, ISBN 10: 1-4493-1977-7, 2012.

[16] C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck. An Architectural Pattern Language of

Cloud-based Applications. In Proceedings of the 18th Conference on Pattern Languages of Programs

(PLoP), 2011.

[17] Cloud Computing Design Patterns: [online:] accessed on January 5, 2016.

http://www.cloudpatterns.org/

[18] Cloud Design Patterns. [online:] accessed on January 6, 2016.

http://en.clouddesignpattern.org/index.php/Main_Page

[19] J. Roth. Patterns of Mobile Interaction. In Personal and Ubiquitous Computing, vol 6, no 4, pp: 282 -

289, 2002.

[20] A. Ahmad, A., P. Jamshidi, C. Pahl. Graph-based Pattern Identification from Architecture Change

Logs. In 10th Workshop on Systems/Software Arhitecture, pp. 200-213. Springer. 2012.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.6, November 2017

38

[21] G. Lewis, M. Novakouski, and E. Snchez. A Reference Architecture for Group-Context-Aware

Mobile Applications. In Mobile Computing, Applications, and Services, volume 110 of Lecture Notes

of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp:

44–63. Springer, 2013.

[22] J. Kim. Architectural Patterns for Service-based Mobile Applications. In IEEE International

Conference on Service-Oriented Computing and Applications (SOCA), pp: 1-4, 2010.

[23] Architectural Patterns, Reference Models, and Reference Architectures, [online:] accessed on January

6, 2016. http://www.ece.ubc.ca/~matei/EECE417/BASS/ch02lev1sec3.html.

[24] K. Z. Chen. Integration of Design Method Software for Concurrent Engineering using Axiomatic

Design. In International Journal of Manufacturing Technology Management, vol 9, no 4, pp. 242–

252, 1998.

[25] A. Ahmad, A. B. Tamimi, N. Saeed, M. Hamayun, M. Fraz. Research Protocol of Software

Architecture for Mobile Cloud Systems: A Mapping Study. Technical Report, College of Computer

Science and Engineering, University of Ha’il, 2017.

[26] A. Ahmad, P. Jamshidi, C. Pahl. Classification and Comparison of Architecture Evolution Reuse

Knowledge – A Systematic Review. In Journal of Software Evolution and Process, vol 26, no 7, pp:

654-691, 2014.m.org/10.1145/161468.16147.

[27] A. Ahmad, M. A. Babar. A Framework for Architecture-driven Migration of Legacy Systems to

Cloud-enabled Software. In Proceedings of the WICSA/ECSA 2014 Companion Volume, ACM,

2014.

[28] F. Khaliq, A. Ahmad, O. Maqbool, P. Jamshidi, C. Pahl. Exploiting Patterns and Tool Support for

Reusable and Automated Change Support for Software Architectures. In International Journal of

Software Engineering. Vol 9, no 1. Pp: 35 – 58, 2016.

