
GasMASk Annotation-based Code Generator

as an Embedded Domain-Specific Language in

Collaborative Multi-Agent Systems

Orçun Oruç, Uwe Aßmann

TU Dresden, Software Technology Group, Nöthnitzer Straße 46, 01187,
Dresden

Abstract. Multi-agent systems have evolved with their application framework, analysis approaches
and design complexities over the past few decades. In order for programming software agents, you
need to handle analysis, design and implementation together; furthermore, privacy and trust should
be integrated externally into the agent-oriented applications. Current frameworks do not consider
privacy, trust, and data integrity in agent applications.
In this study, we propose a domain-specific language that can be used for agent behaviors that
consist of roles, organizational entity, goals through annotation processing with templates. Smart
contracts can be generated to decrease the time for deployment and development stages. Templates
and annotations are popular techniques to reduce boilerplate codebases from agent-oriented pro-
gramming. These techniques can also be used for model-driven software engineering. This study
will take the software agent development as a whole with analysis, design, and development with
embedded domain-specific language development in terms of smart contract applications. Further-
more, we would like to refer to methodology, results of the research, and case study to enlighten
readers in a better way. Finally, we summarize findings and highlight the main research points by
inferencing in the conclusion section.

Keywords: Software agents, Domain-specific languages, Blockchain technology, Smart contracts,
Role-based programming languages, Code Generation, Template-based code generation

1 Introduction

Agent-oriented programming (AOP) can be considered as a subject of object-
oriented programming by showing the state of an object with human-like features
such as belief, desire, intentions, and goals. Moreover, an agent should be in the in-
teraction with other agents, in this way, agents are able to play roles as human-being
does. AOP specializes the object-oriented programming methodology by fixing state
and modules, which are called agents, to consist of features that come from agent
behaviors . Besides, an agent can handle the message passing between other agents
internally.

Agent-based systems have changed their characteristics over the past few decades
aspect of design, analysis, and implementation. Although one can find out the dif-

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

1DOI : 10.5121/ijsptm.2021.10201

http://airccse.org/journal/ijsptm/vol10.html
https://doi.org/10.5121/ijsptm.2021.10201

ficulty of exact definition in terms of the multi-agent system, multi-agent systems
are used broadly in the application areas such as supply chain management, dis-
tributed systems, smart grids, robotic motion planning. Multi-agent systems are
strongly dependent on contexts and roles. Each agent plays a role and it has a
minimal set of attributes that represents the environment. Moreover, agents should
have behaviors that are, in essence, related to implementing deterministic or non-
deterministic behaviors of an agent that operate a role that can be in sequential
order, cyclic order, or parallel order.

Software agents have some mandatory features in order to complete tasks that
have been given by developers. Agent must percept the surrounding environment
through information received from the environment by sensors. And then an event
should be created by an agent to create knowledge about the environment. This
has been called beliefs, which provides some aspect of the agent’s knowledge about
the environment [1]. After defining a concrete goal for an agent, events are often
extracted from percepts and triggered by a new action [2].

Agents must be in a relationship with external trusted parties to provide privacy
and consistency in multi-agent systems. However, the trust was mostly provided by
different logic interpretations and cumbersome ontological definitions in multi-agent
systems. Blockchain technology offers a credible and private data pool that can be
used with programmable contracts (smart contracts) as a shared database. As we
solved the credibility problem with blockchain technology, we can enforce the data
layer security, which is vital for data-driven multi-agent system communication, by
implementing smart contracts on the application layer of the blockchain protocol.
A smart contract is a piece of code that is stored on a blockchain by triggering coin-
based transactions with saved data and which reads and writes data in a blockchain
database 1. In addition, smart contracts can ensure the testability of role features,
secure transactions within the blockchain database, and separation of the business
logic (model) and application logic (system architecture).

The research paper is structured as follows. First, we will discuss the importance
and short history regarding the topic in the Background 2. In the Methodology
and Contributions 1.1 chapter, we will explain contributions that can occur at
the end of this research and emphasize our objectives, problem statement, and
research questions. Secondly, we will list some limitations 1.2, which we might
encounter during this research. In the chapter 3, we introduce previous studies
and surveys that have been conducted before. Later, we will give the details of
the implementation in the chapter 4. In the chapter called Case Study 5, we will
introduce a sample concept, which we would like to implement with our language.
In chapter 6 and 7, we will list our findings and tasks that should be taken into
consideration for further research.

1 https://www.coindesk.com/three-smart-contract-misconceptions

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

2

https://www.coindesk.com/three-smart-contract-misconceptions

1.1 Methodology and Contributions

First of all, we have two research questions. To conclude up regarding the research
problem, we have defined research questions (RQ) as below:

– RQ1: Can a domain-specific language that comprises the main features of agent
communication language, agent framework, and smart contract language be
created?

– RQ2: Can templates be integrated into annotation processors in terms of roles,
goals, and compartments in the domain-specific language?

Goal:
The main goal of this research is to implement a domain-specific language to

demonstrate template samples and code generation for smart contracts.
Objectives:

– Implementing templates to create and delete agents in one of the selected frame-
works.

– Defining annotations for stateful smart contract language in order for the pro-
cess of code generation.

– At the implementation phase, we will define some events in smart contracts to
log to the blockchain networks and specify agents’ basic features to be alive in
an agent management system.

Expected contributions will be in the following items:

– We will have a new embedded domain-specific language that takes as a whole
privacy, security, data integrity and role-orientation in multi-agent systems.

– We will create a tool for stateful contract development in the blockchain database.
– We will have agent templates to reduce boilerplate codebase and increase the

learning curve for agent-oriented applications in a practical framework.

1.2 Limitations

In this section, we will list our limitations regarding the process of writing the
thesis.

– We will present code templates for agent-oriented software engineering and dis-
cuss with the metaprogramming through annotation processing.

– We will focus on the existing meta-model such as CROM for specifying com-
municative entity types. In the context of CROM research, we will follow the
guideline regarding roles and compartments that have been specified before.

– We will develop an application based on a stateful smart contract language
such as Solidity the following design-by-contract approach that interacts with
different agents in the context of role-oriented programming.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

3

– This research is limited to the KQML and FIPA agent communication languages
and it does not comprise stateless blockchain language. Due to the nature of the
stateless blockchain language, it does not purely suitable for the object-oriented
approach.

– As for ontological representation, semantic heterogeneity between agent-oriented
frameworks will not be taken into consideration. So we basically will handle ex-
isting ontologies and will not advance to ontology engineering.

2 Background

Code generation allows you to produce program code that is only strongly typed,
and yet can be easily reconfigured codebase when the source model is changed
2. Principally, code generators are metaprograms translating a regular tree to a
sentence of a context-free language [3]. When the code generator translates the
abstract syntax tree into a context-free language, it uses a model, which is the
definition language of the agent, and view(result) in order for realizing the oper-
ation. An abstract syntax tree is a tree representation of the syntactic structure
that has been represented in a programming language. In this study, we will write a
code-generator in an ad-hoc fashion, which is going to be written for agent-oriented
software applications. The code generation process is a projection of the input data
model into to output codebase. By defining language vocabulary in our embedded-
domain modeling language, we can easily generate an agent-oriented codebase for
various practical frameworks.

2.1 Agent-Oriented Programming

An agent is anything that can be viewed as perceiving its environment through
input and output appliances and acting upon that environment
[4].To understand an environment, agent needs to register the state of history re-
garding the environment. Agents have been designed to better understand the com-
plexity of software systems. Agent-to-Agent and Agent-to-Environment interactions
are an important part of agent-oriented programming because the state of passive
objects is supposed to have interacted in a dynamic environment.

The model of goals, roles, and organizations should be designed at the system
level. In the practical frameworks, this can be done by metamodels or metapro-
gramming with an embedded domain-specific language. Both of the methods can
generate agent-oriented code with smart contracts, but changes should be inte-
grated into the metamodels. Model and view should be strictly separated in both
approaches and the metamodel approach takes more time for a steep learning curve.

2 Microsoft Code-by-using-templates

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

4

Organizational participants are one of the most important features in the agent-
oriented world. For instance, the car dealership, the bank, the school, and the insur-
ance company are all examples of organizational participants [5]. Agent orientation
aims at pursuing a software paradigm. The main research point is about whether
the agent-oriented can ensure a higher quality than its predecessor in terms of
autonomy, reactivity, proactivity, and cooperative features in a particular domain.

In practice, roles, organizations, and goals are defined by messages that contain
envelope, payload, message, and content [?]. Agent platforms are physical platforms
in which agents are deployed and organized. Agent platforms need to register to
directory facilitator in order to find other agent services in the network [?]. An
agent can modify its agent description by sending requests to the directory facili-
tator. Agents are deleted or created by agent management systems, which are one
of the core components in practical agent frameworks. Lastly, organizational and
role-based entities are described in messages in compliance with FIPA and KQML
through agent messaging transport services.

2.2 Role-oriented Programming

In an object-oriented application, objects are in a relationship between other objects
and they are sharing their features of relationships through constraints, dependency,
and invariants. Even though there is no common understanding about roles in a
programming language, role-oriented programming basically looks for an answer to
whether or not an object can collaborate with defined roles among other objects in
the application lifetime.

Roles encapsulate the dynamic behavior of players, which are the core objects
in the context, and dynamically adapt the players’ behavior [6]. Compartments
are container that holds multiple roles or their collaboration features. Roles can
make the design of multi-agent systems easier by implementing the composition of
role attributes, role invariants, role methods, and binding interfaces. The difference
between roles and objects is whether or not the roles can move hosts that exist in
the environment[7]. Role-based software agents are related to context-aware multi-
agent systems. Context is any information that is accessible to the program, where
an entity is a person, place, or another agent that is considered relevant to the
determination of behavioral variations [8]. Agents can dynamically collaborate with
roles, create coalitions of trusted partners as an effective mechanism to communicate
with service requestors, find services requested by them, and determine trusted
services and provide services to the applicants without violating the privacy of the
predefined environment [9]

Compartments belong to the research of the Compartment Role Object Model
(CROM) that establishes subtypes of natural types and relationship types among
combined roles [10]

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

5

2.3 Smart Contracts

Smart contracts are a piece of code that can be triggered by blockchain network
through transactions. More specifically, a smart contract is a secure and unstop-
pable computer representing an agreement that is automatically executable and
enforceable [11]. A transaction is a signed data package to transfer value, which
can be coinbase value, from an account to another account or to a contract, invoke
a method of a contract, or deploy a new contract [11]. Principally, an organization
has an identity and its own purpose [11].

Smart contracts are deterministic applications, which means that the applica-
tions produce the same outputs every time they are carried out. They also have
some preconditions and postconditions that focus on the condition logic of appli-
cations rather than syntax or algorithms in practice.

Blockchain networks behave in a distributed and decentralized manner, which
provides immutable, permissionless or permissioned solutions in a private or public
environment. Consensus is the backbone mechanism of a blockchain solution that
is comprising of various types of them such as proof-of-work, proof-of-stake, proof-
of-authority. The selection of types of consensus should be defined by blockchain
technology, so the technology choice is one of the important parameters for smart
contract applications. For instance, Corda applications do not provide certain de-
terminism just like the Ethereum technology because developers have designed the
Corda blockchain network as a distributed ledger without designing a particular
virtual machine environment. In order to ensure deterministic behaviors in the
blockchain networks, they must imply honest agreement, proper termination, the
validity of nodes, and fault-tolerant.

One can transfer value with a fixed or dynamic price in the blockchain net-
work, which is called on-chain transactions. For deterministic value transfer, on-
chain transactions must be executed in the blockchain virtual machine. Stateful or
stateful transactions can be made in either declarative programming languages or
imperative programming languages. Agents who want to join the network should
take permission from the network administrator. Hence, we can restrict the access
for any external participants who want to connect with the internal blockchain
network that is called permissioned blockchain. This provides high throughput and
low latency in the blockchain network. However, the nature of blockchain is always
permissionless because all nodes can participate in the network to synchronize their
internal block data structures.

Dynamic Smart Contracts For permissionless and permissioned blockchain,
once a smart contract is deployed, the smart contract remains immutable [12].
A smart contract can execute asset-value transfers in the blockchain network or
execute an external contract by passing its address. Thus, a smart contract can

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

6

trigger another smart contract or itself with different attributes. This is the point
that we can create dynamic smart contracts.

Dynamic smart contracts deal with the maintainability of immutable smart
contracts in order to change their behaviors at runtime. Reconfiguration of a smart
contract that is called by multiple contracts might have seen effective to implement;
however, deployment overload can affect the performance of the blockchain network.
Dynamic smart contracts are not implemented in this study; nevertheless, we will
consider the behavior changes using parameter passing from external contracts to
realize partly dynamic states for agents in the blockchain network.

2.4 Domain-Specific Languages for Metaprogramming

Domain-Specific Languages (DSLs) have a small set of features and they are mostly
optimized for a specific domain such as health, finance, or manufacturing. By op-
timizing for a specific domain, a DSL can be easily maintained and built upon a
general-purpose language without defining deeply the underlying concept of lan-
guage design. In this study, we have chosen a general-purpose language called Java,
which provides Pluggable Annotation Processing API that deals with advanced
customized annotations at compile or runtime levels. In this study, we basically
generate an embedded domain-specific language that generates a piece of code in a
general-purpose language and a stateful smart contract language. At the first stage
of the research, applications will be generated by the embedded domain-specific
language. Later, we will focus on the feature of language whether or not it changes
the behavior of existing programs.

3 State of the Art

ALAADIN is one of the oldest metamodels [13] to define models of organizations for
agents and this model defines a very simple description of coordination and negation
schema [13]. The authors determine that the role is an abstract representation of an
agent or service function within a group. Groups are a set of features that behave
as an atomic entity so that an agent dynamically joins, creates, or leaves groups
[14].

When we focus on behavioral roles for agent interaction, (Cabri et. al. 2003)
proposed that an agent system defines a role as a set of capabilities and ex-
pected behaviors. BRAIN is an approach that covers a role-based interaction model,
where agents’ interactions and behaviors are embedded in roles [14]. Moreover, they
achieved and advise to realize agent-oriented features, separation of concerns, and
reuse of solutions [15]. To describe agents semantically, they defined a language
called XRole that exploits built-up definitions of roles. These definitions consist of
name, description, addresses, role description, and contents of the agents with re-
lational features such as MinOccurs and MaxOccurs. RoleSystem is an interaction

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

7

infrastructure that implements the model of BRAIN [16]. Roles defined by XRole
can be read by humans as well as by agents and tools [16]. The RoleSystem provides
two main components which are: reqRegistration, to register an agent in the system
with a specified role; searchForRoleAgent, to search for agents playing a given role
between agents and server agents [16].

The planning capability of multi-agent systems is one of the key features that
the blockchain should take care of it. After assigning roles, plan execution of the
multi-agent systems should complete distributed ordering actions. To do so, a smart
contract can be used which are essentially collections of distributed code and data
representing some business logic that works with the blockchain distributed con-
sensus protocols [17]. The main idea of this paper is to coordinate the steps of
multi-agents through the smart contracts aspect of distributed plan execution. In
this plan execution, multiple smart contracts can be used such as oracle contract,
which is allowing to exploits data in the off-chain storage, or contract of precondi-
tions and postconditions to provide the design-by-contract pattern.

Gaia is one of the methodologies at the design and analysis phases in multi-agent
systems. The main goal of this methodology is to model multi-agent systems for an
organization where different roles interact [14]. The Gaia methodology defines the
features of roles as below:

– Responsibilities: They specify the functionalities of agents that play roles.
– Permissions: They are a set of rights associated with roles in which agents play.
– Activities: Internal computation of an agent. This does not take into consider-

ation the relationship between agents.
– Protocols: This is related to interaction roles indicating agent-to-agent commu-

nication.

The role-based evolutionary programming (RoleEP) presents cooperative mo-
bile agents to collaborate in achieving a common goal [14]. The authors of RoleEP
state that an object becomes an agent by binding itself to a role that is defined in
a dynamic environment [7]. The authors have defined the basic concept as below
[7].

– Environment: An environment is composed of environment attributes, methods
of environment, and roles.

– Roles: A role, which can move between hosts that exist in an environment,
contains role attributes, role methods, and binding interfaces.

– Objects: An object, which cannot move between hosts, is composed of attributes
and methods.

– Agents: An object that binds itself with some roles and acquires traveling/col-
laboration functions is named as Agents.

– Binding Interface: A binding interface, which looks like an abstract method
interface, is used when an object binds itself with a role.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

8

Implementation of a domain-specific language may have metamodel design
paths at the level of M1 (User Model), M2 (Unified Modeling Language), M3 (Meta
Object Facility). For instance, AgentDSL is a domain-specific language for cross-
cutting concerns for agents, which is supporting aspect-oriented programming, and
non-crosscutting concerns [18]. The authors of AgentDSL defines a code generator
that maps abstractions.

4 Implementation

Principally, the selection of the general-purpose language is an important parame-
ter regarding the implementation of code generators because some languages give
native-in support for custom annotations. For instance, Java programming language
supports Annotation Processor which is equivalent to a plug-in of the compiler.

4.1 Algorithm of the Code Generation with Metaprogramming

Algorithm 1 Code Generation with Metaprogramming
1: procedure codeGeneration()(a, b)
2: while RetentionPolicy.SOURCE and ElementType.METHOD do . Runtime or Compile

Time ?
3: Set <?extendsElement > elements← roundEnvironment.getElementsAnnotatedWith(classname)
4: for Element element : elements do . scan for elements
5: AgentImplement autoImplement = element.getAnnotation(AgentGenerator.class);

. generate unique ID
6: end for
7: error =!checkIdV alidity(AgentGenerator.generate(), element);
8: if !error then
9: uniqueIdCheckList.add(AgentGenerator.generate());

10: else
11: throwsanexception
12: end if
13: end while
14: end procedure

The afore-mentioned algorithm can be used with any general-purpose language even
though it has been mentioned for Java language. More or less, the annotation pro-
cess follows steps that have already been explained to readers. The most important
point about either the RetentionPolicy should assign particular configurations at
runtime or generate codebase at the compile time. The developer should decide the
behavior before it was developed in agent-oriented frameworks.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

9

4.2 Template-based Code Generation

Apache Velocity3 is a template project that has been provided by Apache Foun-
dation. Templates can take inputs internally or externally through general-purpose
language. One of the disadvantages regarding templates has lack of validation steps
at the compile time. Nevertheless, this issue can be solved by post compile-time
validation. Generated source code can be integrated with compiler plugin in order
to check data type validation. The following code snippet has been demonstrated
as below:

1 package ${packagename };

2 #set($classkeyword=".class")

3 #set($classwithString=".class.toString ()")

4 #set($dfDescription="DFDescription")

5 #set($agentID = ".setName(getAID ());")

6 #set($addServices=".addServices(serviceDescription);")

7

8 import jade.core.Agent;

9

10 public class ${entity} extends Agents {

11 private static final long serialVersionUID = 1L;

12

13 // --

14 // AGENT SPECIFIC FUNCTIONS

15 // --

16

17 public void setup () {

18

19 addBehaviour(getAgentBehaviour(this , $entity$classkeyword };

20 DFAgentDescription $entity$dfDescription = new DFDescription ();

21 $entity$dfDescription$agentID

22 ServiceDescription serviceDescription = new ServiceDescription ();

23 serviceDescription.setType($entity$classwithString);

24 serviceDescription.setName($entity$classkeyword);

25 $entity$dfDescription$addServices

26 try {

27 DFService.register(this , $entity$dfDescription);

28 } catch(Exception ex)

29 {

30 ex.printStackTrace ();

31 }

32 }

33

34 protected void takeDown () {

35 doDelete ();

36 }

37 }

3 https://velocity.apache.org/

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

10

https://velocity.apache.org/

After compiling the program from a template, a validation step must be done
by an external application programmable interface (API). Most of the program-
ming languages provide the Compiler API that might generate diagnostics during
compilation such as error messages, warning-debug-info level logs 4. An embedded
compiler plugin is a better way to do it; however, external compiler API can test
the application between multiple versions and it provides plenty of benefits to the
agent application programmer. In the following code snippet, the codebase has been
taken from the JThereum Project 5.

The following lines show us a generated codebase from a stateful smart contract
language.

1 */

2 pragma solidity ^0.5.9;

3 contract SimpleEventDemo

4 {

5 function emitEvents(string memory str1 , string memory str2) public

6 {

7 emit SimpleEvent(str1 , str2 , false);

8 emit SimpleEvent(str2 , str1 , false);

9 }

10 event SimpleEvent(string str1 , string str2 , bool switched);

11

12

13 }

Listing 1.1. Generated Solidity Stateful Contract

[H]

1 public class App implements ContractProxyHelper

2 {

3

4 public void emitACoupleOfEvents(String s1, String s2) {

5 ContractStaticImports.emitEvent(new SimpleEvent(s1, s2, false

));

6 ContractStaticImports.emitEvent(new SimpleEvent(s2, s1, false

));

7 }

8

9 @EventClass

10 static class SimpleEvent extends EventClassHelper {

11 final String s1;

12

13 final String s2;

14

15 final boolean switched;

16

17 public SimpleEvent(String s1, String s2, boolean switched) {

4 https://docs.oracle.com/javase/8/docs/api/javax/tools/JavaCompiler.html
5 https://jthereum.com/

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

11

https://docs.oracle.com/javase/8/docs/api/javax/tools/JavaCompiler.html
https://jthereum.com/

18 this.s1 = s1;

19 this.s2 = s2;

20 this.switched = switched;

21 }

22 }

Listing 1.2. Java Contract Generator

4.3 Metaprogramming

Metaprogramming is the ability to write programs that generate source code de-
fined by developers [19]. Beyond that in some programming languages such as
Groovy and Ruby, one can change the behavior of existing methods in order for
realizing dynamic metaprogramming. For instance, Java offers two types of static
metaprogramming such as annotation processing and aspect-oriented programming
to generate codebase; however, dynamic metaprogramming can be achieved by ex-
ternal third-party libraries.

A meta-object protocol (MOP) represents the semantic of the extendibility that
resides in a programming language. The behavior of the program is determined by
the MOP, including the aspect of the program in runtime and compile-time [19].

Every aspect of a program’s mapping down onto the lower level substrate that
is controlled by objects in compile or runtime 6. These objects are called meta-
objects, because the primary duty of these objects is to map the program, not to
represent the predefined domain. For instance, the java.lang.reflect package in Java,
one can create a self-configuring system with pluggable annotations and templates.

Principally, metaprogramming is divided into two main parts, which are runtime
metaprogramming and compile-time metaprogramming. Compile-time metapro-
gramming lets you organize generated codebase at compile time. You can perform
syntactic transformations and code optimization level to interact with the compiler
during the code generation phase [19].

5 Case Study

Manufacturing scheduling is the process of assignment of timing for order, manufac-
turing, and delivery. So we should provide a good quality per unit and the number
of units should be maximized per slot in the production line. At the same time, we
need to minimize the waste of resource requirements and potential failures. Basi-
cally, the next state of smart contracts in a blockchain environment is completely
determined by the current state.

We can create role types, natural types and compartment types in order for im-
plementing a sample case for GasMASk like in the following figure 1. We would like

6 https://wiki.c2.com/?MetaObjectProtocol

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

12

https://wiki.c2.com/?MetaObjectProtocol

to implement a supply chain modeling by realizing data structures in role-oriented
programming in smart contracts. Smart contracts will take the data structure and
evaluate them in object-oriented programming with preconditions and postcondi-
tions as the unit testing framework does.

Fig. 1. Example of the role types

A product type is created for a manufacturing simulation to simulate between
retailer, wholesaler, and manufacturing company. When we defined type of data
structures for roles, they will be create through annotation processing by deploying
in a blockchain network. All of the participants will see events, transactions and
values in the blockchain network and the type of blockchain network will be permis-
sioned blockchain to provide security and trust. RetailerProduct, WholeslarProd-
uct, and FactoryProduct are the abstract types that are implemented from Product
type. These types will be used for agents’ behavior. Natural types in Figure 1 are
going to be in Solidity language so that one can use them for verification and
immutable behaviors.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

13

6 Conclusion

The paper addressed the challenge of compelling trust and security in multi-agent
systems and their role-oriented features by realizing smart contracts regarding
blockchain technology (BCT). The main purpose of the research is to give a new
approach to the intersection between smart contract programming, role-oriented
programming, and agent-oriented programming. The course of findings among var-
ious research areas guides us to design a domain-specific language to contribute to
the multi-agent system area.

– There is no common understanding in terms of multi-agent system methodol-
ogy, analysis, design, or implementation. This increases the complexity of the
research in the multi-agent system area.

– The limited number of domain-driven agent-oriented languages have been pro-
vided so that one can notice that multi-agent system research is most likely
conceptual and it does not provide prototype and result-evaluated research.

– Synthesized metamodeling from scratch in different research areas can be am-
biguous; thus, we believe that embedded domain-specific language with blockchain
can solve most of the problems for multi-agent systems.

– Role-oriented programming with smart contracts is challenging because the
choices of technology can affect the result of the study. For instance, state-
ful and stateless contracts are not advanced technologies that can employ all of
the features of the object-oriented paradigm. Turing complete and non-Turing
complete technologies will be scrutinized in future work. In a nutshell, this pa-
per presented a new significant role approach with smart contract programming
implementing hash data structure and providing data secu- rity regarding roles.
Presenting our approach will simplify the application develop- ment process for
further researchers.

In particular, this study inspects role-oriented multi-agent systems regarding
domain-driven design and blockchain technology in multi-agent systems separately.
The course of finding common points between various research areas guides us to
design a domain-specific language to contribute to the multi-agent system area.
There is no common understanding in terms of multi-agent system methodology,
analysis, design, or implementation. This increases the complexity of the research in
the multi-agent system area. The limited number of domain-driven agent-oriented
languages have been provided so that one can notice that multi-agent system re-
search is most likely conceptual and it does not provide prototype and result-
evaluated research. Synthesized metamodeling from scratch in different research
areas can be ambiguous; thus, we believe that embedded domain-specific language
with blockchain can solve most of the problems for multi-agent systems. Conse-
quently, this paper presented a new significant role approach with smart contract

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

14

programming to encrypt data and to provide data security regarding roles. Intro-
ducing this approach will simplify the application development process with an
embedded domain specific language.

7 Future Work

In future work, we will focus on the following features:

– Runtime metaprogramming extendability of the GasMASk code generation.
– Dynamic smart contract integration into the embedded-domain specific lan-

guage.

We will research on the runtime feature of code generation with a statically
typed language, which means that a language can do type checking the type of
variable at compile time. Most of the dynamically typed language can handle this;
however, most of the agent frameworks are written in a statically typed language.
Another consideration would be regarding role types and natural types at runtime
adaptability. Separately, we will conduct research on dynamic adaptability on a
deterministic blockchain environment.

Acknowledgements

The author would like to thank his supervisors, Prof. Dr. Uwe Aßmann, and Prof.
Dr. Susanne Strahringer, for the patient guidance, encouragement, and comments
they have provided to shape his doctoral vision. This work is funded by the German
Research (DFG) within the Research Training Group Role-Based Software Infras-
tructures for continuous-context-sensitive Systems (GRK 1907, TU Dresden, Soft-
ware Technology Group, Nöthnitzer Straße 46, 01187, Dresden).

References

1. Index. John Wiley and Sons, Ltd, 2004, pp. 221–225. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/0470861223.index

2. B. M. Balachandran, “Developing intelligent agent applications with jade and jess,” in
Knowledge-Based Intelligent Information and Engineering Systems, I. Lovrek, R. J. Howlett,
and L. C. Jain, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 236–244.

3. J. A. M. van den Brand A. Serebrenik J.J. Brunekree, Code Generation with Templates. John
Wiley and Sons, Ltd, 2006, pp. 221–225.

4. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. USA: Prentice
Hall Press, 2009.

5. N. Gaur, L. Desrosiers, P. Novotny, V. Ramakrishna, A. O’Dowd, and S. A. Baset, Hands-On
Blockchain with Hyperledger: Building Decentralized Applications with Hyperledger Fabric and
Composer. Packt Publishing, 2018.

6. N. Taing, T. Springer, N. Cardozo, and A. Schill, “A dynamic instance binding mechanism
supporting run-time variability of role-based software systems,” 03 2016, pp. 137–142.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

15

https://onlinelibrary.wiley.com/doi/abs/10.1002/0470861223.index
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470861223.index

7. N. Ubayashi and T. Tamai, “Roleep: Role based evolutionary programming for cooperative
mobile agent applications,” Principles of Software Evolution, International Symposium on,
vol. 0, p. 232, Nov. 2000.

8. B. Ferreira and A. Leitão, “Context-oriented algorithmic design,” in SLATE, 2018.
9. K. Wan and V. Alagar, “A context-aware trust model for service-oriented multi-agent

systems,” in Service-Oriented Computing – ICSOC 2008 Workshops, G. Feuerlicht and
W. Lamersdorf, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 221–236.

10. T. Kühn, S. Böhme, S. Götz, and U. Aßmann, “A combined formal model for relational
context-dependent roles,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Software Language Engineering, ser. SLE 2015. New York, NY,
USA: Association for Computing Machinery, 2015, p. 113–124. [Online]. Available:
https://doi.org/10.1145/2814251.2814255

11. I. Bashir, Advanced blockchain development : build highly secure, decentralized applications and
conduct secure transactions, 1st ed., ser. Learning path. Birmingham ;: Packt Publishing,
2019.

12. A. Imeri, J. Lamont, N. Agoulmine, and D. Khadraoui, “Model of dynamic smart contract for
permissioned blockchains,” 11 2019.

13. J. Ferber and O. Gutknecht, “A meta-model for the analysis and design of organizations in
multi-agent systems,” Feb. 1970.

14. G. Cabri, L. Leonardi, L. Ferrari, and F. Zambonelli, “Role-based software agent interaction
models: A survey,” Knowledge Eng. Review, vol. 25, pp. 397–419, Dec. 2010.

15. G. Cabri, L. Leonardi, and F. Zambonelli, “Implementing role-based interactions for internet
agents,” Feb. 2003, pp. 380– 387.

16. Cabri, Giacomo and Leonardi, Letizia and Zambonelli, Franco, “Brain: A framework for flex-
ible role-based interactions in multiagent systems,” vol. 2888, Nov. 2003, pp. 145–161.

17. A. Shukla, S. K. Mohalik, and R. Badrinath, “Smart contracts for multiagent plan execution
in untrusted cyber-physical systems,” in 2018 IEEE 25th International Conference on High
Performance Computing Workshops (HiPCW), 2018, pp. 86–94.

18. U. Kulesza, A. Garcia, C. Lucena, and P. Alencar, “A generative approach for multi-agent
system development,” vol. 3390, May 2004, pp. 52–69.

19. D. Ghosh, DSLs in Action, 1st ed. USA: Manning Publications Co., 2010.

Author

Orçun Oruç received M.Sc. from TU Chemnitz, and he graduated from Kocaeli
University with a B.Sc. degree. Currently, he is pursuing his Ph.D. in Computer
Engineering-Software Technology at the Dresden Technical University. His research
interests include programming languages, multi-agent systems, role-oriented pro-
gramming, natural language processing, decentralized, and distributed applications.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 10, No 2, May 2021

16

https://doi.org/10.1145/2814251.2814255

	GasMASk Annotation-based Code Generator as an Embedded Domain-Specific Language in Collaborative Multi-Agent Systems
	Introduction
	Methodology and Contributions
	Limitations

	Background
	Agent-Oriented Programming
	Role-oriented Programming
	Smart Contracts
	Dynamic Smart Contracts

	Domain-Specific Languages for Metaprogramming

	State of the Art
	Implementation
	Algorithm of the Code Generation with Metaprogramming
	Template-based Code Generation
	Metaprogramming

	Case Study
	Conclusion
	Future Work

