
International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 2, May 2023

DOI: 10.5121/ijsptm.2023.12201 1

THE PERFORMANCE COMPARISON OF A BRUTE-

FORCE PASSWORD CRACKING ALGORITHM USING

REGULAR FUNCTIONS AND GENERATOR
FUNCTIONS IN PYTHON

Berker Tasoluk1 and Zuhal Tanrikulu2

1 Informatics, Istanbul University, Istanbul, Turkey
2 Management Information Systems, Bogazici University, Istanbul, Turkey

ABSTRACT

Python is used extensively in research, including algorithm testing. Python is a multi-paradigm

programming language and supports both object-oriented programming and functional programming. In

the functional side, it supports both regular functions and generator functions. This study tests both

approaches in terms of usability cases and performance. A password-cracking algorithm is used for this

tryout.

KEYWORDS

Python functions, generator functions, regular functions, regular functions, in-memory functions, iterator,
generator expressions, time efficiency, memory efficiency, python programming, general programming,

password cracking

1. INTRODUCTION

In academic research field, Python is used extensively, including algorithm testing, Machine

Learning [1], data science [2], web scraping [3], text and language processing [4, 5]. Python is a
multi-paradigm programming language and supports both object-oriented programming [6] and

functional programming [7]. Functional side of python supports both regular functions and

generator functions [8]. This study tests both approaches in terms of usability cases and
performance. A password-cracking algorithm is used for this tryout. Passwords are used

extensively in the authentication process, by users to identify themselves to the systems they want

to access [9]. Each password is associated with a specific user id in the system like email address,

username, or phone number, and by providing password, users prove that they are who they
claim to be [10]. Passwords connects identification and authentication processes.

In this study, python regular functions and generators are tested for their memory usage and
duration taken to try a certain number of passwords based on a given set of criteria. At the

discussion part, practical usage advice is given for both regular and generator functions.

2. METHODS

In this study, our aim is to compare the two implementations of functions in the field, using a
password cracking undertaking. We have a set of passwords, which eventually would be cracked,

https://airccse.org/journal/ijsptm/vol12.html
https://doi.org/10.5121/ijsptm.2023.12201

2

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 2, May 2023

which is called destination list passwords; and we have another set of passwords, which would be
used to crack the destination list passwords, which we call source list passwords. Destination list

passwords are composed of real-world revealed passwords. We try each entry in the source list

with each entry in the destination list. When we find a match between source list entry and

destination list entry, we suppose that the password is ‘broken’.

2.1. Destination (Target) List of Passwords

Destination list passwords, and the number of passwords included in them are as follows:

Figure 1. Destination password list details

And the file size of each password file is as follows:

Figure 2. Size of password files

3

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 2, May 2023

2.2. Source List of Passwords

Here, the brute force passwords are used for password cracking. Uppercase, lowercase ascii

letters and digits are used to form the source lists. Every possible combination of the following
character sets are used in creating the password files. Python string module properties are used

for the character sets.

>>> import string

>>>string.ascii_uppercase

'ABCDEFGHIJKLMNOPQRSTUVWXYZ' (26 different characters)

>>>string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz' (26 different characters)

>>>string.digits

'0123456789' (10 different characters)

1, 2, 3, 4 and 5-character lists are created in this manner.

The number of entries for each list is calculated as follows:

1 character list: 62 ^1 = 62 entries

2 character list: 62 ^2 = 3.844 entries

3 character list: 62 ^3 = 238.328 entries
4 character list: 62 ^4 = 14.776.336 entries

5 character list: 62 ^5 = 916.132.832 entries

And these numbers are also obtained experimentally, using countline_dir() python function

written.

Figure 3. Experimentally calculated line counts

And the space occupied in disk for each list is as follows:

4

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 2, May 2023

The code ran on a machine with following specs:

 16 GB Ram, Intel Core i7-8750H 2.20 Ghzprocessor, Windows 10 Enterprise LTSC

Operating System, 512 GB SSD Disk

3. RESULTS

3.1. Regular Python Functions

Each destination list entry is tried to be matched with 1-char through 5-char lists; and the result is
as follows:

Figure 4. Password cracking tryout using regular python functions

1-char list took under 1 second to be completed, while 2-char list took under 1 min, 3-char list
completed under 1 hour. 4-char list took 1.8 days to be completed, and 5-char list couldn’t be

completed due to memory error. This memory error is the reason behind re-writing the algorithm

in python using generator functions.

If we look at the relationship between time taken to try all entries in the list (y), with the number

of entries in the list (x), then we get approximately y = (1/95)x linear relationship. From that; we

may conclude that, if we had unlimited memory, it would take approximately 111 days for a 5-
char password list to be completed.

Figure 5. Relationship between number of entries and time taken to crack passwords

5

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 2, May 2023

3.2. Generator Python Functions

Generator functions use iterators, and instead of getting the source list into the memory at once,

they use iterator objects and performs every operation one by one. The old ones are cleared up
from the memory, and the next entry in the iterator is loaded into the memory.

The results from the generator function is as follows:

Figure 6. Password cracking tryout using generator python functions

Figure 7. In-memory vs generator functions time comparison

It took nearly 4 times as much time as it took in using all in-memory python functions. From this
graph, it may be concluded that 4-char source list would take around 1 week (1.8 days x 4), and

5-char source list would take around more than a year (111 days x 4).

4. DISCUSSION

As we can see from the above experiments and calculations; for our case; if we have resources

available, especially the memory; it is better to have the function written as a regular python

function which works all in-memory; instead of using generators. In our scenario; using
generators is efficient in terms of memory, but also slower. If we have time, and not the

resources; then using generator functions may be needed; and sometimes it may be the only

solution we have in hand.

6

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 2, May 2023

REFERENCES

[1] Chen, H., et al., Causalml: Python package for causal machine learning. arXiv preprint

arXiv:2002.11631, 2020.

[2] VanderPlas, J., Python data science handbook: Essential tools for working with data. 2016: "

O'Reilly Media, Inc.".

[3] Broucke, S.V. and B. Baesens, Practical Web Scraping for Data Science: best practices and

examples with Python. 2017: CreateSpace.

[4] Mertz, D., Text processing in Python. 2003: Addison-Wesley Professional.
[5] Bird, S., E. Klein, and E. Loper, Natural language processing with Python: analyzing text with

the natural language toolkit. 2009: " O'Reilly Media, Inc.".

[6] Lutz, M., Learning python: Powerful object-oriented programming. 2013: " O'Reilly Media, Inc.".

[7] Lott, S., Functional python programming. 2015: Packt Publishing Ltd.

[8] Lott, S.F., Functional Python programming: Discover the power of functional programming,

generator functions, lazy evaluation, the built-in itertools library, and monads. 2018: Packt

Publishing Ltd.

[9] Mathew, G. and S. Thomas, A novel multifactor authentication system ensuring usability and

security. arXiv preprint arXiv:1311.4037, 2013.

[10] Kaur, G. and M. Sachdeva, Implementation of Secure Authentication Mechanism for LBS using best

Encryption Technique on the Bases of performance Analysis of cryptographic Algorithms.
International Journal of Security, Privacy and Trust Management, 2012. 1(6).

	1. Introduction
	2. Methods
	2.1. Destination (Target) List of Passwords
	2.2. Source List of Passwords
	>>> import string
	>>>string.ascii_lowercase
	>>>string.digits

	3.1. Regular Python Functions
	3.2. Generator Python Functions
	4. Discussion

