
International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 3/4, November 2023

DOI: 10.5121/ijsptm.2023.12402 23

OBJECT CAPABILITY MODEL FOR TEE: A CHERI

BASED COMPARTMENTALIZATION APPROACH

Bala Subramanyan

Verifoxx Ltd, London, UK

ABSTRACT

In this paper, we introduce a capability-driven approach to bolster security and granularity within Trusted
Execution Environments (TEEs) [1]. By delivering precise privilege control and fine-grained

compartmentalization, we aim to improve TEE security standards.

To address vulnerabilities within Trusted Execution Environments (TEEs) and enable selective privilege

management and secure object sharing between secure and normal worlds, we introduce a TEE

compartmentalization framework based on the CHERI object-capability model. Leveraging DSbD

technologies, our framework provides an efficient prototyping environment for developing trusted

applications while safeguarding against existing threats.

At Verifoxx Ltd, our architecture relies on TEEs to handle sensitive data, encompassing tasks such as

extracting client secrets, managing commitments, sharding and executing cryptographic operations for

zero-knowledge responses. The proposed approach holds promise where TEEs can enhance transaction

security and enterprises seeking data protection.

Our approach introduces in-enclave compartments with controlled communication, facilitating domain

transitions through sealed data capability delegations and hardware-assisted call/return mechanisms. This
enables application layer compartmentalization by modularly separating concerns within the secure world,

emphasising single responsibility, least privileges, and information hiding from unprivileged

compartments. Furthermore, we ensure the integrity of lower-layer hardware and OS properties,

effectively thwarting compromise attempts.

KEYWORDS

Trusted Execution Environments (TEE) [1], CHERI architecture [8][7], Object Capability Model,
Compartmentalization, Memory Protection, DoS, Application Layer Security

1. INTRODUCTION

Trusted Execution Environments (TEEs) [1] have emerged as a critical component in enhancing

the security and privacy of modern computing systems. However, like any technology, TEEs are
not immune to vulnerabilities and threats. Addressing these challenges is paramount to ensuring

the continued trustworthiness of TEEs, particularly in environments where sensitive data and

critical operations are commonplace.

This paper presents a novel approach to fortifying TEEs by introducing a capability-based

compartmentalization framework. The framework is built upon the principles of Capability
Hardware Enhanced RISC Instructions (CHERI)[8][7]. It provides a robust and secure

environment for developing trusted applications within TEEs, offering precise control over

https://airccse.org/journal/ijsptm/vol12.html
https://doi.org/10.5121/ijsptm.2023.12402

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 3/4, November 2023

24

privileges and the secure sharing of objects within as well as between the secure and normal
worlds.

In today's digital landscape, where data breaches and cyberattacks continue to threaten

individuals and organisations, the need for stronger TEE security is more evident than ever. The
aspects of our work encompass the creation of in-enclave compartments with controlled

communication, enabling secure domain transitions through sealed data capability delegations

and hardware-assisted mechanisms. Furthermore, it aims to guarantee the integrity of lower-layer
hardware and OS properties, effectively thwarting attempts at compromise.

By building on a capability architecture, our framework aims to minimise the attack surfaces by
decomposing applications into isolated compartments with granularly selected access.

Furthermore, we harness CHERI memory protection[6] to mitigate vulnerabilities associated with

memory leaks, shared memory space, and address space isolations. By circumventing

conventional kernel system calls for compartment delegations and empowering user threads with
suitable capabilities, we significantly reduce the kernel attack surface, thereby preventing

insecure threading and procedure calls. Our compartmentalized enclaves with assured pipelines

are designed to tackle privilege separation-related attacks.

In the subsequent sections of this paper, we provide an exploration of our capability-based TEE

compartmentalization concept and implementation, offering insights into its architecture, security
features, and its potential impact on the broader technology landscape.

2. BACKGROUND

2.1. Trusted Execution Environment (TEE)

Trusted Execution Environments[1] are a pivotal component of modern computing systems,

designed to create secure and isolated enclaves within a processor where sensitive code and data
can be executed and stored. TEEs are engineered to provide a high degree of security and

confidentiality, serving as a safeguard against various forms of attacks and data breaches. They

have become indispensable in numerous applications, particularly those where security is
paramount.

While TEEs are essential for enhancing the security of various applications, as illustrated in
Figure 1 below, TEEs have faced significant challenges and vulnerabilities including:

● Insecure Threading and Procedure Calls: Traditional TEEs often rely on the

underlying operating system for managing threads and

 procedure calls. This dependency has led to vulnerabilities such as race
conditions and code injection attacks, where malicious threads can compromise the

integrity of TEE-enabled applications.

● Memory Vulnerabilities: Buffer overflows and memory-related vulnerabilities have

been exploited to compromise the confidentiality and integrity of TEEs. Attackers can
manipulate memory to gain unauthorised access to secure data or execute arbitrary code.

● Return-Oriented Programming (ROP) Attacks: TEEs have been susceptible to ROP

attacks, where attackers construct malicious code sequences using existing functions in

the TEE's memory. This technique allows them to evade security checks and execute
unauthorised operations.

● Inadequate Address Space Isolations: Insufficient separation of address spaces between

the secure and normal worlds within TEEs has exposed vulnerabilities.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 3/4, November 2023

25

Attackers can exploit these weaknesses to gain access to sensitive data or escalate
privileges.

● Secret Leaks Due to Insecure Shared Memory Buffers: TEEs often use shared

memory buffers for communication between secure and normal worlds. However, if

these buffers are not adequately protected, they can become targets for data leakage
attacks.

● Insufficient Privilege Separation: TEEs typically enforce a broad privilege model,

where all enclaves within the TEE share the same set of rules and instructions. This lack

of fine-grained privilege separation increases the attack surface and makes it challenging
to prevent lateral movement by attackers.

● Horizontal Privilege Escalation Attacks: Attackers have exploited TEE vulnerabilities

to escalate their privileges horizontally, gaining unauthorised access to other

compartments or critical parts of the system.

● Host Kernel Memory Modifications (BOOMERANG Attacks): Certain attacks, like
BOOMERANG attacks, aim to modify the host kernel's memory from within the TEE.

This represents a severe security breach, as it can compromise the entire system's

integrity.

Figure 1: TEE Vulnearability Summary

2.2. Capability Hardware Enhanced RISC Instructions (CHERI)

Capability Hardware Enhanced RISC Instructions (CHERI)[8] improves software security by
extending traditional Instruction-Set Architectures (ISAs)[7] with innovative capability-based

primitives. This architectural paradigm shift is rooted in the fundamental security principles of

"least privilege" and "intentional use."

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 3/4, November 2023

26

Key aspects of CHERI include:

● Fine-Grained Memory Protection: CHERI introduces fine-grained code protection

through the use of in-address-space memory capabilities, which replace conventional
integer-based virtual address representations of code and data pointers. This fine-grained

protection operates at the instruction level, limiting the potential damage that can result

from software bugs. CHERI capabilities safeguard the integrity and origin of pointers

themselves, ensuring the secure handling of in-memory data and code to which the
pointers refer. This approach provides robust protection against a wide array of memory-

and pointer-based vulnerabilities and exploits, including buffer overflows, format-string

attacks, and control-flow manipulation.

● Software Compartmentalization: Secure encapsulation is another key aspect of

CHERI's security model, allowing for the isolation of larger software components. This is

achieved through the efficient implementation of in-address-space software
compartmentalization, often referred to as object capabilities. Object capabilities enable

the explicit definition of isolation boundaries and communication channels within

software. While this approach necessitates clear software structure and communication
descriptions, it significantly reduces the risk of application-level vulnerabilities, such as

logical errors or malicious code introduced via software supply chains.

CHERI has been primarily associated with research and development efforts aimed at improving
the security and robustness of computing systems and is designed to facilitate incremental

adoption within existing security-critical software systems, including operating system kernels,

critical libraries, language runtimes, and applications. Its innovative memory protection
mechanisms[6] have the potential to significantly enhance the security posture of Trusted

Execution Environments, making it a valuable technology for securing TEE-enabled

applications.

By incorporating the principles of CHERI, our proposed capability-based compartmentalization
framework aims to leverage these advancements in memory protection and access control to

create a more secure and resilient TEE environment, mitigating the limitations and vulnerabilities

associated with conventional TEEs. Morello [3] is an Arm experimental platform for evaluation
of CHERI in the Arm architecture context, to explore its potential for mass-market adoption.

3. CAPABILITY-BASED TEE COMPARTMENTALIZATION FRAMEWORK

In our construction, we aim to develop a Trusted Execution Environment (TEE)-aware
compartmentalization framework that enhances security by providing strong isolation within the

secure world of a simple "Secure Key Management and Storage application", named "morello-

Tower". This framework focuses on the application layer, separating concerns and decomposing
capabilities within, achieving modular abstraction, separation of responsibilities, and adhering to

the principle of least privilege. Our solution leverages the CHERI hardware software architecture

and CheriBSD [2] kernel, minimising the need for additional hardware resources and reducing
attack surfaces.

3.1. Implementation Details

As illustrated in Figure 2 below, we have compartmentalized our Key management and storage

system using vertical and work-bounded compartmentalization patterns. This employs a series of

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 3/4, November 2023

27

compartments to perform specific processing of data while limiting the access and exposure of
the given compartment within the pipeline.

Host Compartment (Normal World)

- Purpose: This compartment serves as the interface for user interactions and initialises the

key generation process.

- Function: It forwards an incoming User ID as a sealed data capability to the Enclave
Entry Compartment, thereby requesting the generation of a User key.

Enclave Compartment (Secure World)

This component emulates the secure world and consists of a well-structured pipeline comprising

multiple isolated compartments. Each compartment is endowed with specific access privileges

and distinct responsibilities. These compartments include:

● Entry (Seed) Compartment: Responsible for generating a seed, based on delegated User

ID capability and a source of randomness. The subsequent compartments do not have

access to the User Id data capability.
● Crypto Compartment: Executes operations like generating a key pair from the delegated

seed.

● Exit (Storage) Compartment: With dispatched key pairs object, the given compartment

handles data storage. This compartment has dedicated access to the storage location with
write privileges.

Our framework facilitates controlled communication between these compartments, ensuring

mutual distrust is enforced. Domain transitions between host and enclave compartments, as well
as within the enclave, occur through sealed data capability delegations with hardware-assisted

call/return mechanisms.

Figure 2 : TEE- aware compartmentalization framework

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 3/4, November 2023

28

3.2. Key Aspects

Object-Capability Model

- Objective: To enable selective privileges and secure sharing of objects between the
secure and normal worlds.

- Approach: The foundation of morelloTower is the object-capability model. It provides

the means to securely delegate and control access rights to specific objects or resources
within the TEE, preventing unauthorised access.

Modular Compartmentalization

- Objective: To compartmentalize TEE-aware functions with single responsibility

principles, enforcing the least privilege.
- Approach: morelloTower enforces a modular separation of concerns with each

compartment having a well-defined responsibility and access rights. This approach

ensures that compartments only have access to the resources required for their specific
tasks, minimising the attack surface. Also if any unsafe operation within a compartment

can be gracefully handled by the caller of the compartment, which can then terminate or

reset the connection.

Information Hiding

- Objective: To protect sensitive data from unauthorised access or leakage.

- Approach: The framework incorporates mechanisms for information hiding within

compartments. Sensitive data is shielded from unprivileged compartments, ensuring
confidentiality and integrity.

Hardware-Assisted Security

- Objective: To enhance the security of TEE operations.
- Approach: Hardware-assisted call and return mechanisms are utilised to ensure secure

transitions between compartments. These mechanisms prevent tampering and

unauthorised code execution, contributing to the overall security of the TEE.

Kernel Attack Surface Reduction

- Objective: To minimise exposure to potential kernel-level attacks.

- Approach: morelloTower eliminates the need for traditional kernel system calls for

compartment delegations. This reduction in kernel interactions lowers the attack surface,
making it resistant to rootkit-based attacks and ensuring the TEE kernel's integrity.

Protection Against Denial of Service (DoS)

- Objective: To maintain TEE functionality even in the presence of disruptive actions.
- Approach: By limiting the amount of work each compartment performs per invocation,

denial-of-service attacks can be mitigated. Computations from one flow group will not

effect processing of other pipelines, when multiple instances of same processing are

performed on different data instances.

Memory Protection

- Objective: To mitigate vulnerabilities associated with memory leaks and shared memory

spaces.
- Approach: CHERI memory protection is employed to safeguard against memory

vulnerabilities. It isolates memory spaces, reducing the risk of leaks and enhancing

overall security.

Secure Communication

- Objective: To prevent command injection attacks and unauthorised communication.

- Approach: morelloTower implements sealed data capability delegations and controlled

communication interfaces. These measures protect against command injection attacks and
ensure that communication channels remain secure.

In conclusion, the construction of morelloTower centred around the object-capability model,
modular compartmentalization, information hiding, hardware-assisted security, kernel attack

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 3/4, November 2023

29

surface reduction, DoS protection, memory protection, and secure communication. These
elements collectively contribute to the robust security and compartmentalization of the TEE

aware framework.

4. CONCLUSION AND FUTURE WORK

In this paper, we have presented morelloTower, a framework designed to achieve TEE-aware

secure and granular compartmentalization. By leveraging the CHERI object-capability model and

advanced hardware features, morelloTower provides an innovative solution to address critical
security concerns and vulnerabilities associated with conventional TEEs.

The framework aims to offer modular compartmentalization, enforcing the principle of least
privilege and single responsibility for each compartment. This design minimises the attack

surface, reduces the risk of unauthorised access, and enhances the overall security posture of the

TEE-aware compartments. The integration of information hiding mechanisms ensures the

confidentiality and integrity of sensitive data within these compartments.

Furthermore, morelloTower addresses the issue of denial of service (DoS) attacks by

implementing isolation & redundant resilience mechanisms that allow TEE compartments to
continue functioning even in adverse conditions. Secure communication interfaces and sealed

data capability delegations prevent command injection attacks and unauthorised communication,

further fortifying the security of the TEE. By emphasising these key features and technologies,

morelloTower demonstrates a step forward in the domain of secure computations.

In summary, morelloTower, with its CHERI enabled architecture and emphasis on granular

computation compartmentalization, offers a promising avenue for securing critical applications
and data in an ever-evolving digital landscape.

As part of our ongoing research, we intend to explore life cycle management, asynchronous
object capability invocations, and protocol design for multi-compartment computations.

Additionally, we are actively assessing the performance, semantics, vulnerability mitigation, and

comparative advantages of CHERI-enabled morelloTower in contrast to existing TEE

environments.

Furthermore, at VerifoxxLtd[4], we are extending our research endeavours to enhance the Digital

Security by Design (DSbD) [9] software ecosystem. To this end we are developing a CHERI-
aware WebAssembly Micro Runtime (WAMR) [10] for software modules that can be seamlessly

embedded into morelloTower. This strategic integration aims to reinforce the security posture of

the double sandboxed strategy within morelloTower. We are dedicated to sharing our ongoing
research findings, results, and developmental efforts through forthcoming publications.

AVAILABILITY

MorelloTowerGithub - https://github.com/Verifoxx-LTD/morello_tower.git

ACKNOWLEDGEMENTS

We would like to acknowledge University of Cambridge, SRI International and all the members
of the wider CHERI and Morello teams, for their work. This work was funded by the Innovate

UK project under the Digital Security by Design (DSbD) Ecosystem and Validation project,

106897, to validate and enrich the DSbDtech CHERI ecosystem.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 12, No 3/4, November 2023

30

The views, opinions, and/or findings contained in this paper are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or

the U.S. Government.

REFERENCES

[1] V. Costan and S. Devadas. Intel sgx explained, 2016. https://eprint.iacr.org/2016/086

[2] CheriBSDDSbD. Cheribsd - DSbD. https:// www.cheribsd.org/.

[3] Arm Limited. Architecture reference manual sup- plement: Morello for a-profile architecture, 2020.

[4] VerifoxxLtd. https://verifoxx.com/

[5] MorelloTower. Morello Tower github repo. https://github.com/Verifoxx-LTD/ morellotower.git.
[6] Alexander Richardson Peter G. Neumann John Baldwin-Simon W. Moore David Chisnall Jessica

Clarke Nathaniel Wesley FilardoKhilanGudka Alexandre Joannou Ben Laurie A. Theodore

Markettos J. Edward Maste Alfredo Mazzinghi Edward Tomasz Napierala Robert M. Norton

Michael Roe Peter Sewell Stacey Son Jonathan Woodruf Robert N. M. Watson, Brooks Davis.

Cheriabi: Enforcing valid pointer provenance and minimising pointer privilege in the posix c run-

time environment, 2015.

[7] Jonathan Woodruff Michael Roe HeshamAlmatary Jonathan Anderson John Baldwin Graeme

Barnes David Chisnall Jessica Clarke Brooks Davis Lee Eisen Nathaniel Wesley Filardo Richard

Grisenthwaite Alexandre Joan-nou Ben Laurie A. Theodore Markettos Simon W. Moore Steven

J. Murdoch KyndylanNien-huis Robert Norton Alexander Richardson Peter Rugg Peter Sewell

Stacey Son Hongyan Xia Robert N. M. Watson, Peter G. Neumann. Capability hardware enhanced

risc instructions: Cheri instruction-set architecture (version 8), 2015.
[8] Peter G. Neumann Simon W. Moore Jonathan Anderson David ChisnallNirav Dave Brooks

Davis KhilanGudka Ben Laurie Steven J. Murdoch Robert Norton Michael Roe-Stacey Son

MunrajVadera Robert N. M. Watson, Jonathan Woodruff. A hybrid capability system architecture

for scalable software compartmentalization, 2015. https://www.cl.

cam.ac.uk/research/security/ctsrd/pdfs/201505-oakland2015-cheri-compartmentalization.pdf.

[9] Digital Security by Design. DSbD - https://www.dsbd.tech/about/

[10] WebAssembly Micro Runtime. WAMR - https://github.com/bytecodealliance/wasm-micro-runtime

AUTHOR

BalaSubramanyan, CTO & Co-Founder: 14+ years of expertise in Architecting

and Implementing Confidential Computing, Verifiable Computations and Machine

Learning Solutions across Financial Research and Healthcare domains.
Bala is the Co-Founder and CTO of Verifoxx, a cutting edge identity verification

solution that prioritises privacy through zero-knowledge proof-based verification of

entity’s identities and financial profiles. Before co-founding Verifoxx in 2019, Bala

established his career across organisations such as JP Morgan, S&P Global &

Nationwide where he specialised in implementing confidential computing,
verifiable computations and machine learning solutions.

	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. Trusted Execution Environment (TEE)
	2.2. Capability Hardware Enhanced RISC Instructions (CHERI)

	3. CAPABILITY-BASED TEE COMPARTMENTALIZATION FRAMEWORK
	3.1. Implementation Details
	3.2. Key Aspects
	Object-Capability Model
	Modular Compartmentalization
	Information Hiding
	Hardware-Assisted Security
	Kernel Attack Surface Reduction
	Protection Against Denial of Service (DoS)
	Memory Protection
	Secure Communication

	4. Conclusion and Future Work
	Acknowledgements
	References
	Author

