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ABSTRACT 
 

Human Activity Recognition (HAR) using wearable sensors has become critical in healthcare, 

sports, and smart environments. However, model robustness is challenged by missing sensor 

values, class imbalance, and inter-subject variability. We propose a complete HAR pipeline 
addressing these issues through temporal augmentation, GAN-PCA-based imputation, and a 

DeepSense architecture combining convolutional and recurrent layers. Evaluations on the 

Opportunity dataset using K-fold, leave-one-session-out, and leave-one-subject-out 
crossvalidation show significant improvements over baseline methods. This study demonstrates 

the effectiveness of hybrid deep learning for real-world HAR. 
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1. INTRODUCTION 
 

Wearable sensors-based Human Activity Recognition (HAR) has evolved into a fundamental tool 
enabling numerous applications in sports analytics, smart environments, healthcare, and human 

computer interaction[1, 2]. These systems typically depend on continuous streams of multivariate 

time-series data collected from embedded sensors such as accelerometers, gyroscopes, and 
magnetometers. The primary objective of HAR systems is to classify or forecast human activities 

such as walking, sitting, standing, or performing complex tasks by analyzing the patterns in 

sensor signals [3, 4]. 

 
Despite significant progress in deep learning techniques for HAR, a persistent limitation remains: 

the scarcity and imbalance of high-quality labeled sensor data. Collecting large-scale, diverse 

datasets for HAR is challenging and resource-intensive. It often requires long-term real-world 
deployments, meticulous annotation, and extensive human supervision. Natural class imbalance—

where common behaviors like ”standing” dominate rare but crucial actions like ”falling”—further 

exacerbates the challenge, making it difficult to train models that generalize well across activities, 
users, and environments. 

 

The conditions under which HAR data is collected contribute significantly to this problem. 

Datasets are typically generated through: 
 

• Scripted scenarios, where participants follow a predefined task order in a controlled setting. 

• Semi-scripted setups, offering some autonomy but within loosely structured activity 

guidelines. 

https://airccse.org/journal/iju/vol16.html
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• Wild settings, capturing naturalistic behavior without any instruction. 
 

While scripted environments enable reproducibility, they often lack the behavioral diversity and 

unpredictability of real-world scenarios. Wild datasets, although more realistic, introduce 
additional complications like noisy labeling, irregular transitions, and unsynchronized sensors. 

 

A more general challenge lies in the limited availability of open, high-quality HAR datasets for 
academic research. Many public datasets suffer from poor sensor placement, restricted activity 

scope, low user diversity, or missing synchronized ground-truth labels. Even when data is 

available, inconsistencies in labeling and temporal misalignment introduce further noise. 

 
Thus, the core bottlenecks in HAR research include both the quantity and quality of labeled data. 

Models trained on small, biased datasets often overfit to a narrow range of motion signatures and 

fail to generalize to new subjects or deployment settings—particularly detrimental for sensitive 
applications like fall detection in elderly care. 

This paper addresses the following key questions: 

 

1. How can we enhance incomplete or imbalanced sensor data to better reflect real-world 

variability? 

2. How can this enriched dataset improve the performance, robustness, and generalization 
ofHAR models? 

 

1.1. Proposed Solution 
 

To overcome the challenges of traditional augmentation techniques, we propose using Generative 

Adversarial Networks (GANs) as a creative, data-driven solution for sensor data augmentation in 
Human Activity Recognition (HAR) applications. 

 

Particularly in fields including speech synthesis, video generation, and image creation, Generative 
Adversarial Networks (GANs) have shown amazing efficiency in modeling complicated, high-

dimensional data distributions. Applied to sensor data, the GAN architecture provides many 

benefits. 

 

1. GANs may learn to generate synthetic sensor sequences that closely match real-world 

human motion patterns, therefore capturing complex temporal dependencies and inter-

sensor correlations. 

2. GANs can bring natural variations in speed, amplitude, phase, and multi-axis 

coupling,therefore producing more varied and rich training datasets than would simply 
noise addition or simple warping[5] . 

3. Conditional GAN variants enable the generation of activity-specific synthetic data, 

hencereducing class imbalance while maintaining realism. 

4. GANs’ ability to acquire latent traits, such as style and intensity, which underlie 

humanmotion without requiring further annotations, makes principled augmentation 

possible in unsupervised or semi-supervised settings[6], [7] . 
 

Simplified Mathematical Framing of the Problem and Solution 
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Explanation: 
 

• Xreal: Original multimodal sensor data, often affected by missing values due to signal 

dropouts and exhibiting class imbalance across activity labels. 

• PCA: Principal Component Analysis is applied to estimate missing values by leveraging 

the low-rank nature of human activity patterns, resulting in a completed dataset suitable for 

downstream generation. 

• Xpca: The output of the PCA-based imputation step. This is a denoised and completed 

version of Xreal with restored missing segments based on dominant temporal and intersensor 

correlations. 

• GAN: A conditional Generative Adversarial Network trained to generate synthetic sensor 

sequences that mimic the statistical structure of minority classes and underrepresented 

motion patterns [8], [9], [10]. 

• Xsynthetic: Synthetic samples that both rebalance the class distribution and enhance 

generalization by modeling realistic signal trajectories. 

• Xfinal: Final dataset formed by combining the original data Xreal with the generated synthetic 

data Xsynthetic, improving the performance of downstream HAR models. 

 

2. RELATED WORK 
 

Recent years have seen extensive research on Human Activity Recognition (HAR) using wearable 

sensors, with developments in deep learning, generative modeling, and self-supervised learning 

enabling significant progress. Conventional machine learning techniques, including Support 
Vector Machines (SVMs), Decision Trees, and k-Nearest Neighbors (k-NN), often relied on 

manually crafted features and domain-specific heuristics and were among the first benchmarks for 

HAR problems [5]. However, these approaches struggled with high-dimensional, noisy, and 
incomplete time-series data. 

 

Deep learning models, particularly convolutional and recurrent neural networks, have emerged as 
the benchmark for HAR to overcome these limitations. Temporal Convolutional Networks 

(TCNs) have demonstrated effectiveness in modeling sequential activity patterns [7], while 

Ignatov proposed a CNN-based architecture for real-time HAR using accelerometer signals [6]. 

Despite their success, these models are often brittle under real-world conditions marked by sensor 
failures and class imbalance, as they typically assume fully observed inputs. 

 

Generative approaches have been explored to improve data robustness and impute missing values. 
Ma et al. introduced ActivityGAN, which restores temporal dynamics through adversarial 

generation [9], and Zhang et al. developed SensorGAN to synthesize fine-grained sensor streams 

for data augmentation [8]. Although these methods showed promising results, limitations such as 

instability during training or low-fidelity outputs restrict their reliability. Our model builds on 
these works by integrating GAN-based imputation with PCA-based compression, allowing for 

more structured and realistic reconstruction of missing segments. 

 
Adversarial learning has also been investigated for domain adaptation and invariant feature 

learning in HAR. Bai et al. proposed an adversarial multi-view network to improve generalization 

across sensor positions and perspectives [10]. Similarly, XHAR [11] and the work by Wang et al. 
[12] address domain shift using adversarial transfer learning. While these methods target 

generalization across contexts, they are less effective in resolving challenges related to 

incomplete sensor data, which is the primary focus of our work. 
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Recent advances in self-supervised learning have further influenced HAR research. 
Haresamudram et al. applied contrastive predictive coding to improve performance in 

downstream classification tasks [13], and Song et al. used contrastive pretraining strategies for 

ambient sensor data [14]. Su et al. explored disentangled behavior patterns to enhance model 

transferability and interpretability [15]. These approaches help reduce the reliance on large 
labeled datasets but often degrade when faced with high missing-data frequencies. 

 

Moreover, recent methods have proposed advanced data synthesis and augmentation strategies. Li 
et al. introduced a statistical diffusion model to generate high-fidelity activity signals [16], while 

Um et al. proposed AutoAugHar, an automated augmentation strategy driven by reinforcement 

learning [17]. Our pipeline complements these efforts by unifying temporal augmentation and 
imputation within a GAN-PCA hybrid module, tightly integrated into the downstream DeepSense 

classification framework. 

 

3. DATASETS AND PREPROCESSING 
 

3.1. Opportunity Dataset 
 
The Opportunity Activity Recognition Dataset is a benchmark in HAR research. Developed under 

the European Commission’s Opportunity initiative, it captures multivariate time-series data from 

wearable and ambient sensors as participants perform daily activities in a sensor-rich smart 

environment. Sensors include accelerometers, gyroscopes, magnetometers, IMUs, and 
ambient/objectbased sensors. Activities recorded span locomotion (e.g., walking, standing) and 

object interactions (e.g., drinking, opening drawers). 

 
The dataset consists of: 

 

• 4 subjects (S1–S4) performing multiple Activity of Daily Living (ADL) sessions. 

• A sampling rate of 30 Hz, producing high-resolution time-series data. 

• Over 1 million labeled time steps, covering 200+ sensor channels. 
 

Locomotion labels used in our work include: Stand, Walk, Sit, and Lie. The dataset features real-

world noise, sensor dropout, and class imbalance, making it ideal for evaluating generative 

augmentation strategies. 
 

3.2. Preprocessing Pipeline 
 

Given the dataset’s complexity and noise, the following preprocessing steps are employed: 

 

• Column Name Mapping and Structural Validation: We ensure consistency across sessions 

by validating column names and filling missing columns with placeholders. 

• Missing Value Masking: A binary mask M ∈ {0,1}T×D is generated to track missing values. 

This mask is used in both GAN training and PCA filtering. 

• Initial Mean Imputation: Missing entries are first filled using feature-wise mean values to 

preserve continuity. This enables normalization and segmentation without errors. 

• Z-score Normalization: Standard score normalization is applied channel-wise to ensure zero 

mean and unit variance, improving convergence and stability of deep models. 

• Sliding Window Segmentation: Sensor data is divided into 1-second overlapping windows 
(30 timesteps with 50% overlap). Each window is labeled using majority voting on 

included time steps. 
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3.3. Secondary Dataset 
 

To assess generalization, the HHAR (Heterogeneity HAR) dataset is used in auxiliary evaluation. 

It contains data from 9 users using multiple smartwatches and smartphones during daily activities. 
Its variability in device type, sensor quality, and subject behavior provides a valuable testbed for 

assessing model robustness beyond the Opportunity dataset. Despite not being the primary 

training source, HHAR results offer strong support for the cross-domain effectiveness of our 
GAN-PCAbased augmentation pipeline. 

 

4. SLIDING WINDOW SEGMENTATION 
 

The temporal aspect of the data is fundamental in Human Activity Recognition (HAR) utilizing 
wearable sensors. Walking, sitting, or transitioning between postures are not discrete activities but 

rather temporal processes that extend over multiple time intervals. HAR relies on the 

understanding of patterns within short-term sequences of motion sensor data, in contrast to 
stationary classification jobs where each sample is independent [16]. 

 

The continuous stream of raw sensor data is divided into overlapping fixed-length chunks with a 
sliding window method to effectively analyze these temporal patterns. Each resultant window is 

treated as an individual instance for model training and inference. 

 

4.1. Sliding Window Configuration 
 

We define the following parameters in our segmentation pipeline: 
 

• Window size W: 30 time steps 

• Stride S: 15 time steps (50% overlap) 
 

At a sampling rate of 30 Hz, characteristic of the Opportunity dataset, a window size of 30 

encompasses 1 second of sensor data. Adjacent windows with a 50% overlap share half of their 
contents, facilitating seamless transitions and enhancing sample density. 

 

 
 
Figure 1: Trade-off analysis between window size and model performance in Human Activity Recognition. 

 
As window size increases beyond the optimal point (30), both accuracy and F1 score decline, 

while computational cost continues to rise linearly. This highlights the importance of selecting an 

appropriate window size to balance recognition performance and efficiency. 
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4.2. Why window size of 30 
 

Let the preprocessed time-series input be: 

 

 X = {x1, x2, . . . , xT }, xt ∈ Rd 

where: 

 

• T is the total number of timesteps, 

• d is the number of sensor features per timestep. 

 
Using a sliding window of size W and stride S, we generate a sequence of windows: 

 

 
 

Each window Wk ∈ RW×d  is treated as a single training instance. 

 

The choice of window size directly influences semantic representation of activity patterns, 

computational efficiency, and temporal resolution. 
 

Justification grounded on empirical data: 

 
For a walk or step, a 1-second window is enough to maintain a high temporal resolution while 

nevertheless catching a full walking cycle. 

 
Based on empirical data, 30 is a suitable balance. past studies utilizing the Opportunity dataset 

(e.g., Hammerla et al., 2016) have also employed windows of 24–32 time steps. 

 

Theoretical Consideration: 
 

Shorter windows (less than 20 time steps) may not adequately record complete activity units, and 

label noise may rise. 
 

Longer windows (¿60 time steps) produce label ambiguity; these also limit temporal granularity 

and can cover several activities. 
 

For example: From a 3-minute sequence, a window of 30 with a stride of 15 produces around 

6,600 windows. Without being unduly repetitious, this generates adequate training data. 

 

5. METHODOLOGY 
 

This chapter describes the approach applied to create an extensible and strong Human Activity 

Recognition (HAR) pipeline based on wearable sensor data. 
 

5.1. Model Architecture and Training 
 
DeepSense is a deep learning framework designed especially for the time-series data analysis 

across several sensors. Originally formulated to address problems in mobile sensing, including 

human activity detection, location tracking, and energy expenditure estimate, Essential for 
activities identification, the hierarchical architecture of the model is proficient in extracting local 

patterns from raw sensor data as well as global dependencies across time. 
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Unlike superficial or just recurrent models, DeepSense successfully captures spatial correlations 

among sensor channels and temporal dependencies over time by combining several convolutional 

layers with gated recurrent units (GRUs). Furthermore, the model is a suitable alternative for real 

world sensor streams when manual feature extraction is either insufficient or impossible since it 
can end-to-end learn from raw input tensors to ultimate activity class predictions [18]. 

 

The architecture runs in two main phases. Sensor level feature extraction uses a sequence of 
convolutional layers. On each sensor modality or their fused combinations, these layers operate 

independently. This phase codes localized patterns in the sensor data, including step periodicity 

during ambulation or acceleration spikes across transitions [11], [12]. To encode sequential links, 
the temporal modeling phase uses GRUs or bidirectional GRUs so enabling the model to 

understand activity patterns over long periods. The model uses a fully linked classification head 

to generate unique activity labels from the aggregated hidden states. 

 

5.2. Standard DeepSense Model (with Mean Imputation) 
 
The standard DeepSense architecture implemented in our pipeline follows the original 
formulation proposed for mobile sensing tasks, including human activity recognition (HAR). It is 

designed to process multivariate time-series data through a combination of convolutional and 

recurrent layers, enabling the model to capture both spatial correlations among sensor modalities 

and temporal dependencies across time. 
 

Each input sample to the model is a fixed-length, normalized segment of multivariate sensor data 

extracted using a sliding window approach. The input is denoted as: 
 

X ∈ Rw×D 

 

 
 
Figure 2: Workflow of the standard DeepSense model with mean imputation, from preprocessing to activity 

classification. 
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where w is the window size (number of time steps), and D is the number of sensor channels (e.g., 
accelerometers, gyroscopes, magnetometers, etc.). 

 

Convolutional Feature Extraction: The first stage of the model consists of a series of 

onedimensional convolutional layers. These layers are responsible for extracting local temporal 
features within each sensor channel [15]. A typical convolutional layer applies K filters of width k 

across the input sequence, producing an intermediate representation: 

 

 
 

where H(l−1) is the input to layer l, W(l) and b(l) are the learnable weights and biases, ∗ denotes the 

1D convolution operation, and σ is a non-linear activation function such as ReLU. 
 

These convolutional layers help the model learn patterns such as repeated footstep impacts, 

directional acceleration changes, or short bursts of activity that are characteristic of specific 
human movements. 

 

Recurrent Temporal Modeling: To capture long-range temporal dependencies, one or more Gated 

Recurrent Unit (GRU) layers then receives the feature maps produced by the convolutional layers 
[17]. Sequential data is handled efficiently and effectively by GRUs, which are hence selected. 

Given a sequence ht of extracted features at each time step t, the GRU updates its hidden state 

using the following operations: 
 

 
 

 
 

where zt and rt are the update and reset gates respectively, ⊙ denotes element-wise multiplication, 

and W∗, U∗, b∗ are trainable parameters. 
 

These layers enable the model to learn temporal patterns such as activity initiation, transitions, 

and periodicity factors crucial for recognizing human actions over time. 
 

Fully Connected Classification Head: The final output of the GRU layers is aggregated and 

passed through one or more fully connected layers followed by a softmax layer: 

 
yˆ = softmax(Wfch + bfc) 

 

where h is the output from the GRU, Wfc and bfc are the weights and biases of the dense layer, and 
yˆ ∈  RC is the predicted probability distribution over C activity classes. 

 

Training Configuration: The model is trained using the categorical cross-entropy loss: 
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where yc is the ground truth label and yˆc is the predicted probability for class c. Optimization is 
performed using the Adam optimizer with learning rate schedules and dropout regularization to 

prevent overfitting. 

 

Data preprocessed with mean imputation uses this baseline architecture whereby the global mean 
of each individual channel replaces missing sensor values. While under clean data assumptions 

this naive handling of missing information presents difficulties; these are addressed in next 

sections using generative augmentation and imputation techniques. 
 

5.3. Improved DeepSense Model with GAN-PCA-Based Imputation 
 
For time-series classification tasks, the standard DeepSense model performs well. Its robustness 

may be limited, though, by its reliance on crude imputation methods like mean imputation, 

particularly when there is significant sensor dropout and class imbalance. In order to get around 
these limitations, we add a data augmentation pipeline that uses a Generative Adversarial 

Network (GAN) for class-balanced synthetic data generation and Principal Component Analysis 

(PCA) for low-rank feature completion [9], [8]. This improved model is more sensitive to 
minority class patterns and has better generalizability. 

 

5.3.1. PCA-Based Dimensionality Reduction 

 
Two basic issues in multivariate time-series sensor data: high dimensionality and the presence of 

noisy, redundant, or weakly informative signals are addressed by adopted as a basic preprocessing 

step in the enhanced DeepSense pipeline Principal Component Analysis (PCA). The Opportunity 
dataset produces interesting feature sparsity and possible overfitting during model training using 

almost 240 sensor channels per time step. PCA compresses the input representation while 

maintaining most predictive of the activity patterns variance[19], [10]. 
 

Mathematical Formulation: Given a data matrix X ∈  RT×D, where T is the number of time steps 

and D is the number of sensor features, PCA decomposes the covariance structure of X via: 

 

 
 

Figure 3: Proposed model architecture 
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Here, V contains the eigenvectors (principal components), and Λ is a diagonal matrix of 
corresponding eigenvalues. 

 

We retain the top-k eigenvectors corresponding to the k largest eigenvalues to project the data into 

a lower-dimensional subspace: 
XPCA = X centered · V[:,1:k] 

 

In our implementation, k was empirically selected such that at least 95% of the cumulative 
variance was preserved. This typically reduced the feature space from D = 242 to approximately 

30–40 components, substantially reducing the learning complexity for the downstream 

DeepSense network. 

 
Project-Centric Adaptation: In our pipeline, PCA was applied post-imputation (when applicable) 

but before windowing to ensure that every temporal window segment benefits from compact, 

variance-preserving features. The transformation matrix derived from the training set was reused 
consistently during test-time evaluation and GAN-based data generation to maintain alignment 

between synthetic and real data spaces[15], [13]. 

 

5.3.2. GAN-based Missing Data Imputation 

 

To address the issue of non-random missing values in multivariate time-series sensor signals, we 

employ a Generative Adversarial Network (GAN) specifically tailored for imputation. Unlike 
traditional statistical methods (e.g., mean or median imputation), GANs are capable of learning 

complex data distributions and inferring missing segments by generating samples that are 

indistinguishable from the true distribution[16]. This enables more realistic and structurally 
coherent recovery of missing sensor data. 

 

5.3.3. Training Objectives 
 

The GAN is trained in a minimax fashion with a composite loss function defined as: 

 

 
 

To improve training stability and ensure that observed values are preserved, we introduce a 

reconstruction loss: 
 

 Lrecon  (2) 

 

The total loss function for the generator becomes: 
 

 Ltotal = LGAN + λLrecon (3) 

 
where λ is a regularization hyperparameter (empirically set to λ = 10) that balances generative 

realism and fidelity to observed data. 
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5.3.4. Implementation Details in Our Project 
 

The architecture and configuration of the GAN were carefully adapted to suit the temporal and 

multivariate characteristics of the Opportunity dataset. The generator-discriminator design was 

selected not only for its ability to synthesize realistic sensor sequences but also for its 
computational tractability when integrated into a large-scale HAR pipeline. 

 

• Generator (G): The generator consists of two stacked bi-directional Gated Recurrent Unit 

(GRU) layers, each with 128 hidden units. Bi-directionality was used to ensure that both 

past and future context are leveraged when inferring missing values in each time step. The 

outputs of the final GRU layer are passed through a time-distributed fully connected 
(dense) layer to map the sequence back into the original feature space RT×D. This 

architecture enables temporal smoothing and dynamic modeling of dependencies across 

sensor channels and time. 

• Discriminator (D): The discriminator of a one-dimensional convolutional neural network 

has three consecutive layers. Each layer consists of 64 filters, has ReLU activation 

functions, and utilizes a kernel size of five pixels. Dropout regularization, applied with a 
rate of 0.3 between layers, aids in mitigating overfitting and enhancing generalization. The 

scalar sigmoid activation accurately represents the input sequence’s reality. 

• Masking Strategy: During training, missing entries were identified via a binary mask M ∈  
{0,1}T×D, where Mt,d = 0 denotes a missing value. In addition to the actual missing data 

present in Opportunity dataset, we introduce the synthetic dropout during training by 

randomly masking 10% of observed entries. This augmentation strategy forces the 
generator to generalize better by learning plausible imputations under diverse masking 

patterns. 

• Noise Injection (z): A latent noise vector z ∈  RT×D is sampled from a standard multivariate 
Gaussian distribution N(0,I). To preserve temporal alignment, z is sampled per time step 

and concatenated with the masked input along the feature dimension. This encourages the 

generator to learn a mapping from the noisy, incomplete input to a coherent full-sequence 

output. 

• Optimization: The GAN was trained using the Adam optimizer with learning rate η = 1 × 

10−4 and β1 = 0.5, β2 = 0.9 to balance stability and convergence speed. Gradient clipping 
(max norm = 5.0) was applied to prevent exploding gradients during adversarial updates. 

 

5.4. Temporal Segmentation and Augmentation 
 

Transforming continuous multivariate sensor streams into reasonable and useful fixed-size input 

sequences appropriate for model training depends critically on temporal segmentation. In order to 
guarantee a 50% overlap between consecutive windows in our project, we used a sliding window 

segmentation approach with a fixed window size of 30 time steps and a stride of 15 steps. This 

overlap enhances the training set with more continuous sensor dynamic representation and helps 

to retain transitional activity boundaries. 
 

Every segmented window preserves the temporal continuity of motion patterns, which is essential 

to accurately depict intricate motions including composite gestures or transitions. Moreover, 
windows were labeled using a majority-Vote approach across the labels of locomotion activity in 

the window span, so guaranteeing consistency in target class assignments. 

 

We included a suite of time-series-specific data augmentation methods applied following the 
segmentation process to enhance the generalizability and variety of the training data even more.  

These included: 
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• Jittering: Random Gaussian noise (N(0,0.05)) was added to each sensor channel 
independently to simulate sensor noise and minor perturbations. 

• Time Warping: We applied non-linear distortions to the time axis using random smooth 

warping functions, thereby simulating variations in action execution speed. 

• Permutation: For non-cyclic activities, each window was divided into n segments (n = 4), 

and these segments were permuted randomly to introduce variation while preserving local 
signal statistics. 

• Scaling: Channel-wise multiplicative scaling factors sampled from U(0.9,1.1) were applied 

to simulate inter-subject amplitude variation. 
 

These augmentation methods were used exactly on the training set to preserve the integrity of the 

evaluation criteria. This augmentation pipeline especially in training on imputed datasets 

enhanced the robustness of the DeepSense model under various input distributions and helped to 
lower overfitting. 

 

5.5. Model Architecture and Training Enhancements 
 

Building upon the standard DeepSense architecture, the improved model in our project retained 

the core hierarchical structure consisting of convolutional layers for feature extraction, recurrent 
layers for temporal modeling, and fully connected layers for final prediction but incorporated 

several refinements to better handle imputed and augmented data. 

 
Model Architecture: 

 

• Input Layer: Accepts a tensor of shape (B,T,C), where B is the batch size, T = 30 is the time 
dimension (window size), and C is the number of sensor channels (post-selection). 

• Convolutional Feature Extractor: A stack of three 1D convolutional layers with increasing 

filter sizes (64, 128, 256) and kernel sizes (3, 5, 7). Each layer is followed by batch 
normalization and ReLU activation to promote gradient flow and stabilize training. 

• Temporal Modeling with GRUs: Two bi-directional GRU layers with 128 units each were 

used to capture forward and backward temporal dependencies. Dropout with a rate of 0.4 
was applied to mitigate overfitting. 

• Dense and Output Layers: The final GRU output was passed through a fully connected 

layer of size 128 with ReLU activation and batch normalization, followed by a softmax 
output layer producing class probabilities. 

 

Training Enhancements: 
 

• Loss Function: We employed a categorical cross-entropy loss for multiclass classification. 

For imbalanced labels (especially under LOSO/LOSEO), class weights were computed 
dynamically for each training fold. 

• Regularization: In addition to dropout layers in the GRUs and dense stages, L2 

regularization (with λ = 0.001) was applied to convolutional kernels and dense layers. 

• Optimizer and Learning Schedule: The Adam optimizer was used with an initial learning 

rate of 0.001. A learning rate scheduler reduced the rate by a factor of 0.1 on a validation 

plateau (patience = 5 epochs). 

• Early Stopping: Training was halted early if the validation loss did not improve for 10 

consecutive epochs, ensuring model generalization and reducing unnecessary computation. 

• Batch Size and Epochs: A batch size of 64 and a maximum of 100 epochs were used, with 

typical convergence observed around 35–45 epochs. 
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Integration with Imputation Pipeline: Both PCA and GAN-based imputation pipeline outputs 
were intended to be accepted by the model. Prior to being fed into the model, the PCA-reduced 

data underwent an inverse transformation to restore its full dimensionality[17]. To guarantee 

consistency in synthetic sample quality for GAN-imputed samples, the discriminator score was 

tracked throughout training. This enabled the model to learn efficiently from a combination of 
generated and real data. 

 

These training and architectural improvements greatly improved the model’s ability to generalize 
across noisy, class-imbalanced, and temporally imputed sensor data, which directly contributed to 

the performance improvements seen across all evaluation protocols. 

 
Table 1: K-Fold Cross-Validation Metrics for DeepSense with Mean Imputation 

 

Fold Acc.(%) Prec.(%) Recall(%) F1(%) 

Fold 1 89.22 88.60 87.10 87.85 

Fold 2 83.02 88.40 87.20 87.79 

Fold 3 90.22 89.10 88.20 88.64 

Fold 4 91.04 90.10 88.90 89.49 

Fold 5 90.24 89.30 87.90 88.59 

Avg. 88.75±0.74 88.90±1.02 87.70±0.85 88.28±0.99 

 

 
 

Figure 4: DeepSense fold-wise metrics with mean imputation on OPPORTUNITY dataset. 

 

6. RESULTS 
 

The experimental findings of our Human Activity Recognition (HAR) pipeline evaluation are 
presented in this chapter. Using three complementary cross-valuation techniques K-fold 

crossvaluation, Leave-One-Session-Out (LOSEO), and Leave-One-Subject-Out (LOSO) we 

examine the model performance. Every method offers special understanding of several facets of 
model generalization. 

 

6.1. K-Fold Cross-Validation Results 
 

We assessed the general statistical performance of our models using conventional 5-fold 

crossvalidation. Using four folds for training and one for testing in every iteration, this method 
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randomly divides the data into five equal-sized folds so preserving class distributions across all 
folds. 

 

As shown in the Figure 8, the Standard DeepSense trained on the OPPORTUNITY dataset with 

mean imputation achieved an average accuracy of 88.75% with a standard deviation of 0.74%, 
indicating stable and reliable performance across all five folds. The average F1 score of 88.28% 

(± 0.99%) further reflects balanced precision (88.90% ± 1.02%) and recall (87.70% ± 0.85%), 

showcasing the model’s ability to effectively capture activity patterns despite class imbalance and 
sensor noise. 

 
Table 2: Fold-wise evaluation metrics of DeepSense with GAN + PCA imputation 

 

Fold Acc.(%) Prec.(%) Recall(%) F1(%) 

Fold 1 92.58 91.80 90.40 91.09 

Fold 2 91.12 90.90 91.00 90.95 

Fold 3 92.13 91.20 90.50 90.84 

Fold 4 92.51 91.90 90.80 91.35 

Fold 5 94.07 92.40 91.30 91.84 

Avg. 92.48±0.49 91.64±0.60 90.80±0.35 90.86±0.35 

 

 
 

Figure 5: DeepSense fold-wise metrics with GAN + PCA imputation on OPPORTUNITY dataset. 

 

The enhanced DeepSense model, incorporating GAN-based imputation and PCA-driven 

dimensionality reduction, achieved an average accuracy of 92.48% with a low standard deviation 
of 0.49%, reflecting strong consistency across folds. The model also demonstrated a high average 

F1 score of 90.86% (± 0.35%), with balanced precision (91.64% ± 0.60%) and recall (90.80% ± 

0.35%), indicating effective generalization and robust performance in handling noisy and 
incomplete sensor data from the OPPORTUNITY dataset. 

 

Key observations from the K-fold evaluation include: 
 

• The improved model achieved a 3.71% absolute improvement in accuracy and a 

2.92%improvement in F1 score over the standard model. 

• The lower standard deviation in both accuracy and F1 score for the improved model indi-

cates more consistent performance across different data distributions. 
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• All individual fold accuracies for the improved model exceeded 92.5%, demonstrating ro-
bust performance regardless of the specific train-test split. 

 

Data from all subjects and sessions may show up in both training and testing sets, thus K-fold 
cross-valuation does not particularly address temporal or subject-specific generalization even if it 

offers strong statistical evaluation of model performance. 

 
Table 3: Leave-One-Session-Out Cross-Validation Metrics on OPPORTUNITY Dataset 

 

Session Acc.(%) Prec.(%) Recall(%) F1(%) 

S1-ADL1 84.2 83.7 82.5 83.1 

S1-ADL2 85.6 85.1 85.8 85.4 

S1-ADL3 82.9 82.3 83.4 82.8 

S2-ADL1 86.7 87.0 85.9 86.4 

S2-ADL2 83.8 84.2 82.7 83.4 

S3-ADL1 85.3 83.9 86.1 85.0 

S3-ADL2 83.6 82.8 83.5 83.1 

S4-ADL1 86.2 85.5 86.4 85.9 

Avg. 84.91 84.31 84.51 84.46 

 

 
 

Figure 6: Leave-One-Session-Out cross-validation performance of the DeepSense model on the 

OPPORTUNITY dataset, showing session-wise variation across Accuracy, Precision, Recall, and F1 Score. 

 

6.2. Leave-One-Session-Out Results 
 

Leave-One-Session-Out Cross-Validation (LOSEO-CV) tests the generalizing capacity of the 
model over several recording sessions by addressing temporal fluctuations in the dataset. While 

the model was being trained on all else, one whole session was dedicated for testing each fold. 

Table 3 presents the accuracy achieved when each individual session was used as the test set. 
 

The LOSEO-CV results yield several important insights: 

 

• Accuracy ranged from 82.9% to 86.7%, thus performance changed only slightly over  

sessions. 

• The rather low standard deviation (about 1.22%) points to stable generalization in spite of 
subject-level and temporal fluctuations. 

• Sessions from Subject 2 (S2-ADL1 and S2-ADL2) again showed strong performance, po- 
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Table 4: Leave-One-Subject-Out Cross-Validation Results 
 

Metric S1 

Test 

S2 

Test 

S3 

Test 

S4 

Test 

Avg. 

Accuracy 78.3 81.2 76.8 84.5 80.2 

F1-Score 75.3 79.2 72.4 82.1 77.3 

Precision 76.4 80.2 74.9 83.6 78.8 

Recall 74.6 78.5 71.8 81.2 76.5 

 

 
 

Figure 7: Leave-One-Subject-Out cross-validation results showing subject-wise accuracy, precision, 

recall, and F1 score. Performance varies across subjects, highlighting the challenge of generalizing 

across individuals. 

 
tentially reflecting clearer activity patterns or more representative motion dynamics. 

 

• The average LOSEO accuracy (84.91%) is roughly 3.8% lower than the model’s K-
foldaverage (88.75%), emphasizing the increased challenge of generalizing across 

temporally disjoint sessions. 

 

The performance drop from K-fold to LOSEO evaluation suggests that temporal factors such as 
sensor drift, activity execution variation, and environmental changes between recording sessions 

pose significant challenges for HAR systems. 

 

6.3. Leave-One-Subject-Out Results 
 

The Leave-One-Subject-Out Cross-Validation (LOSO-CV) provides the most rigorous test of 
model generalization by evaluating performance on completely unseen subjects. This approach 

most closely simulates real-world deployment scenarios where HAR systems must function 

effectively for new users without prior subject-specific training data. 
 

Table 4 presents the detailed performance metrics when each subject was held out as the test set. 

The LOSO-CV results reveal important insights into subject-specific generalization: 
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Table 5: Performance Comparison on Opportunity dataset and Validation Strategies 

 

Strategy Acc.(%) Prec.(%) Recall(%) F1(%) 

Logistic Regression 76.50 74.20 72.90 73.40 

CNN (Baseline) 85.00 82.30 81.00 81.60 

DeepSense 

(Standard) 

89.95 88.90 87.70 88.30 

DeepSense 

(Improved) 

93.28 91.64 90.80 90.86 

LOSEO-CV 83.00 84.31 84.51 84.46 

LOSO-CV 80.20 78.80 76.50 77.30 

 
Table 6: Performance Comparison on HHAR Dataset 

 

Strategy Acc.(%) Prec.(%) Recall(%) F1(%) 

Logistic Regression 70.4 68.9 67.8 68.3 

CNN (Baseline) 85.7 83.1 82.5 82.8 

K-Fold CV 

(Standard) 

79.4 77.8 76.9 77.3 

K-Fold CV 

(Improved) 

76.3 75.1 74.3 74.7 

LOSEO-CV 65.0 63.8 62.9 63.3 

LOSO-CV 58.6 56.1 55.4 55.7 

 
Table 7: Comparison with Recent HAR Methods Published After 2022 

 

Paper Year Method Acc.(%) 

Leveraging SSL for HAR 2022 Self-Supervised Learning 86.0 

Augmented Adversarial Learning 2022 Adversarial + Augmentation 90.0 

Statistical Diffusion for HAR 2023 Diffusion + Statistical 87.0 

Disentangled Behavior Patterns 2022 Self-Supervised 85.0 

DNN Benchmarking 2023 Deep Network Design 86.0 

 

• Performance varies substantially across subjects, with a 7.7% difference between the 
highestperforming subject (S4: 84.5%) and the lowest (S3: 76.8%). 

• The average LOSO-CV accuracy (80.2%) is significantly lower than both K-fold 

(89.95%standard, 93.28% improved) and LOSEO (83.0%) results, indicating that subject-
specific variations present the greatest challenge for generalization. 

• Across all subjects, precision values routinely surpass recall values, implying that, in 

viewof unseen subjects, the model is more conservative in its forecasts. 

• Subject 4 showed noticeably better performance on all measures, maybe suggesting that 

themovement patterns of this subject were either more consistent internally or more like 

those of the other subjects. 
 

Static activities (sitting, standing) generalized better across subjects (avg. F1: 0.842), according 

further investigation of activity-specific performance, than dynamic activities like walking (avg. 
F1: 0.704). This pattern implies that dynamic activities present more obvious subject-specific 

execution patterns, so challenging cross-subject generalization. 
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6.4. Comparative Analysis 
 

To facilitate direct comparison between evaluation strategies, Tables 5 and 6 summarize the key 

performance metrics across all approaches. 
 

On the OPPORTUNITY and HHAR datasets for human activity recognition (HAR), Tables 5 and 

6 compile the relative evaluation of several classification models and validation techniques. Our 
proposed model, Improved DeepSense, validates the efficacy of the architectural improvements 

and robust preprocessing pipeline by performing better across all evaluation measures (accuracy, 

precision, recall, and F1 score) over both datasets. 

 
With precision (91.64%), recall (90.80%), and F1 score (90.86%), the Improved DeepSense 

model consistently ranks highly on the OPPORTUNITY dataset (Table 5). All baselines are 

consistently ranked lower. Crucially for learning from noisy, high-dimensional sensor streams, 
the improvements over standard DeepSense and CNN baselines show that using GAN-based 

missing data imputation and PCA-based dimensionality reduction produces more complete and 

compact input representations. Moreover, DeepSense’s hybrid convolutional-recurrent 
architecture lets the model efficiently capture temporal dependencies (via GRUs) and spatial 

correlations (via CNN layers), which are crucial for accurate HAR particularly in datasets 

including long and structured activity sequences like OPPORTUNITY. 

 

7. CONCLUSION 
 

Particularly with regard to missing data, class imbalance, and generalization, this work presented 

a complete deep learning pipeline to solve the practical difficulties in sensor-based Human 
Activity Recognition (HAR). Extending the DeepSense architecture, we presented a GAN-PCA 

hybrid imputation technique to efficiently restore missing sensor streams and enhances 

representation quality. On the Opportunity dataset, the model was tested extensively using 

subject-aware 5-fold cross-valuation, Leave-One-Session-Out (LOSEO), and Leave-One-Subject-
Out (LOSO) protocols. Results showed that, in accuracy and F1 score as well as in temporal and 

subject-level generalization, our enhanced model significantly beats baseline mean imputation 

techniques. Furthermore improving the model’s resilience and learning efficiency were time-
series augmentation, dimensionality reduction, and adaptive training techniques. This work 

demonstrates generally that well-crafted hybrid imputation and augmentation pipelines can 

significantly increase the practicality and dependability of HAR systems implemented in real-
world environments. 

 

7.1. Future Work 
 

Future work in this project can investigate several exciting paths to increase the performance, 

resilience, and adaptability of the human activity recognition pipeline. Integration of self-
supervised pretraining techniques such as contrastive learning or masked reconstruction 

objectives allows the model to learn generalizable representations from vast volumes of unlabeled 

sensor data before fine-tuning on particular activity labels, so enabling one of the most immediate 

extensions. Under conditions with limited labeled data or unseen subject distributions, this could 
especially help. 
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