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ABSTRACT 
 
This article contains a description of a mathematical model of an acoustic system for positioning 

autonomous underwater sensors using the virtual long base method, which can be used during the vessel’s 

collection of information over the deployed underwater network of autonomous sensors (underwater 

wireless sensors network), during the initial determination of the geographical position of the bottom long 

baseline elements or search, including cooperative, with the use of a swarm of autonomous surface vehicles 

(UASV) of emergency submerged objects equipped with an emergency beacon (for example, aircraft and 

ships); The article provides a scheme of an experimental set of equipment, as well as a description of the 

conducted field experiments and their results. 

 

KEYWORDS 
 
Underwater positioning system, VLBL, underwater wireless sensor network, emergency beacon positioning 

 

1. INTRODUCTION 

 
There is a wide range of tasks in which it is required to efficiently determine the geographical 

location of submerged objects, while the external conditions impose restrictions on the use of a 

long baseline navigation system (for example, time and complexity of deployment) and an 

ultrashort navigation base (complex hydrological conditions, shallow water depth, high waves 

etc.), lack of accuracy provided by USBL systems or any weight and size restrictions associated 

with the applied vessel. Also, in some cases, the deployment of a long baseline (especially a 

bottom one) is completely unjustified, for example, when quite rare (or single) measurements of 

the underwater object’s position are required, or in case of a search (for example, accidentally 

submerged objects — ships or aircraft[1][2]) in a fairly wide area, where it is impossible to install 

a long baseline system of the required dimensions. Particularly noteworthy is the positioning of 

the nodes of Underwater wireless network of autonomous sensors UWSN[3][4] which often 

require only a rare or even a one-time estimation of their location. In more detail, the problems of 

localization of nodes of wireless underwater sensor networks are discussed in [5][6][7]. 

 

Problems that discussed above can be successfully solved using a virtual long baseline approach 

[8][9][10]. The key point here is the immobility of the objects being positioned, which makes it 

possible to measure distances from different positions on the surface (in the case of the TOA 

method[6][11]) or pseudo ranges (in the case of the TDOA method [12][13][14]). In both cases, 

clocks of the requesting system and the desired object are not synchronized. The second option 

provides the possibility of a cooperative search for an underwater object by a swarm of  
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autonomous vehicles [15][16]: an object periodically emitting a navigation signal, allows 

simultaneous reception on an unlimited number of surface receivers, thereby providing coverage 

for a theoretically arbitrarily large search area. 

 

Let us consider in more detail the model of the system described in this article. 
 

2. SYSTEM MODEL 

 
The following formatting rules must be followed strictly.  Assume there is a submerged stationary 

object, whose position, expressed in its coordinates xo, yo, zo, has to be estimated. The object is 

equipped with a hydroacoustic responder beacon, transmitting pressure and temperature sensor 

readings on request from outside. In general, distance do (slant range) to it is estimated on the 

requesting system as: 

2/)( dtao TTTd −−=
                                                  (1) 

Where Ta - the time of arrival of the response from the responder by the clock of the requesting 

system, Tt - the time of the beginning of the request signal radiation by the clock of the requesting 

system, Td - constant response delay. 

If the requesting system moves, and at different points in time measures the distance to the 

responder, then a set doi of measurements are formed, matching the locations of the requesting 

system xri, yri, zri. 

The solution to the problem of estimating the location of the desired object for a given set of 

measurements in general form consists in finding the global minimum of the residual function ε: 
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However, the sequential set of points obtained in the process of moving the requesting system is, 

firstly, redundant, and secondly, it is a deliberately disadvantageous arrangement of virtual 

reference points: in a line and/or group on one side of the desired object with a distance between 

points less than to the desired object. All of this leads to a “blurring” of the desired minimum of 

the function ε and/or the formation of false minima that do not correspond to the true position of 

the desired object. This case is illustrated in Figure 1. 

 
Fig. 1 - False minimum with an unsuccessful selection of base points 



 

 

 

 

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 11, No. 2, April 2019 

 

15 

 

Consequently, the problem of estimating the location is now divided into two subproblems: the 

selection of the optimal base - the selection of the optimal set of measurements to solve the 

position estimation problem and the actual solution of the position estimation problem. 

Since, in general, the location of the desired object is unknown even approximately, there is no 

way to pre-select the optimal trajectory of the requesting system and there are no criteria for 

selecting the optimal navigation base. 

 

One possible option of the initial base selection may be such a heuristic approach, where the point 

at which it is supposed to look for a solution selected from the conditions to maximize diversity 

angular directions αmi from some point M(xm, ym, zm), as the initial stage, it is proposed to choose 

the geometric center of the entire set of measurements doi. In this case, it becomes possible to at 

least get a flat base pattern (rather than a line), on the basis of which one can get the first 

approximation of the position of the desired object, which one then choose as a point M, and 

carry out a selection of base points according to the condition of ensuring the maximum variety of 

angular directions from this point, which in many cases will allow obtaining a figure of the 

navigation baseline described around the desired object. This strategy is illustrated in Figure 2. 

 
Fig. 2 - Formation of the navigation base from the entire set of measurements, the number of elements of 

the base is 6 

 
In Figure 2, the rectangles indicate the set of points Ai, representing the trajectory of the 

requesting system, the circles are points selected as elements of the virtual navigation base. 

The angular direction αMAi from the selected point M(xm, ym, zm) to some point Ai(xri, yri, zri), at 

which the distance was measured is determined from a simple trigonometric equation: 

 

)cos(cossinsincos

cos)sin(
arctan

MAiAiMAiM

AiAiM
MAi






−−

−
=                       (3) 



 

 

 

 

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 11, No. 2, April 2019 

 

16 

 

where λM and φM - longitude and latitude of the selected point M, λAi and φAi - longitude and 

latitude of point Ai respectively. 

 

Further, to select points-virtual elements of the navigation base, the following steps are performed: 

- the whole set of measurements is sorted by the angular direction αMAi, and there are two such 

neighboring points Ai and Ai+1, for which the absolute difference modulus Δα will be the 

maximum of the entire set. These points can be considered the boundaries of the entire available 

angular range. This operation must be performed because, in the general case, the angular 

directions αMAi do not necessarily evenly fill the entire circle; At this stage, the starting αs and the 

ending αe angles of the available angular range are determined, the angular range αr itself: 

 

)(2r se  −−=
                                                           (4) 

- At this stage, the desired angular directions are determined in which it is necessary to install the 

virtual elements of the navigation base. The desired angular gap αΔ between the elements is 

defined as: 

)1/( −= Br N                                                               (5) 

Where NB - the required number of virtual elements of the navigation base. 

For the case where Δαmax is lower than αΔ, the last decreases accordingly to (6), otherwise it may 

turn out that measurements with angular directions αs and αe will be selected as base elements, 

while the angular distance between them will be less than αΔ, which, in turn, for small NB will 

result in an uneven arrangement of the base elements in the angular direction. 
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- The desired angular directions αBi are determined at this stage. 
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- at the final stage, such NB measurements are selected from the entire set, in which the angular 

directions are closest by value to the desired ones. 

Now, the solution of problem (2) is possible by one of the optimization methods. However, as it 

is often the case, and as mentioned above, there is no guarantee in selecting the optimal base 

configuration, and the residual function may have false minimums. To solve this problem, one 

can apply the following approach, which is a rough estimation of the position of the global 

minimum using the one-dimensional optimization method. It is worth mentioning that this 

approach is applicable only in the case of the distance measuring method when the distances to 

the desired object are measured directly. 

 

So, since the distance to the virtual elements of the navigation base and the depth of the 

transceiver of the requesting system and the desired object are known, the desired object is 

located on circles in which centers there are virtual base points. The x and y coordinates of the 

desired object, in this case, are expressed through the angle β: 
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xrn, yrn and drn - the coordinates of the nearest base point and the projection of the slant range to it, 

respectively. Having performed a complete search over β in the range from 0 to 2π with a certain 

step (in this work, a search with a step of 10 degrees and then a search with a step of 1 degree in 

the range of +/- 10 degrees from the previous minimum position are used), one can obtain an 

approximate position of the global minimum of the function (2), which then will be used as the 

initial one for solving a two-dimensional problem. 

 

Figure 3 shows a comparison of the effectiveness (number of iterations) of solving the problem of 

estimating the location of the desired object of random data with and without the application of 

preliminary one-dimensional optimization. 

 

Figure 4a and b show the distribution of errors (distances from the actual position of the object to 

the calculated one) on the same random sample, for the variant without preliminary optimization 

and with such. A random error with a uniform distribution and an amplitude of 1 meter was 

injected into the distance measurements. 

 

 
Fig. 3 - The number of iterations to obtain convergence without the use of preliminary one-dimensional 

optimization and with such. Sample size 256, number of base stations 4 

 

The two-dimensional problem was solved using the Nelder – Mead method[17], and the value of 

the residual function (2) at the output of one-dimensional optimization was used to specify the 

initial size of the simplex. 

 

As can be seen from Figure 3, a preliminary one-dimensional optimization, firstly, almost 

eliminates falling into a false minimum, and secondly, significantly reduces the number of 

iterations required to achieve a solution with satisfactory accuracy. In this case, the one-

dimensional optimization procedure has a fixed execution time, which is also important for real-

time systems.  
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а) 

 
b) 

Fig.4 - the distribution of the error of estimating the location of the desired object without the use 

of one-dimensional preliminary optimization (a) and with the use of such (b). Sample size 256, 

number of base stations 4 

 
From histograms in fig. 4a) by significant errors of hundreds of meters it is clear that the search 

went to a false minimum, and in fact, this led to an absolutely wrong result, at the same time 

according to the histogram in fig. 4b) when using preliminary one-dimensional optimization, this 

situation is not observed, and the positioning error has a value comparable to the artificially 

introduced error (~ 1 m). 

 

3. EXPERIMENTAL SETUP 

 
A set of experimental equipment consists of the following parts: 

The desired underwater object - the responder beacon, which was used as a standalone 

RedGTR[18] modem in an autonomous version with a built-in pressure sensor. A modem with a 

battery pack was mounted on a pole with a load and float, providing a vertical position in the 

submerged state. The modem, among other things, supports the transmission of readings from the 
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built-in depth and temperature sensor, has a fixed signal length (400 ms), allows operation in the 

request-response mode, and supports a simple NMEA0183-like interface protocol. It also has 

small dimensions, weight, and provides communication range of up to 8000 meters. A 

submersible stand with a modem is shown in Figure 5.  

 

 
 

Fig. 5 - Submersible stand with a RedGTR modem 
 
The requesting system consists of a small radio-controlled vessel equipped with a GPS/ 

GLONASS receiver, a motherboard based on the STM32F429 processor[19], a RedGTR modem, 

and a digital radio module[20]. Appearance and internals of the vessel are shown in the photo in 

Fig. 6 

Fig. 6 - Appearance (b) and internals (a) of a test vessel 
 

 
a) 

 
b) 
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The scheme of the requesting system is shown in Figure 7. 

 

 
Fig. 7 - Scheme of the requesting system 

 
The experimental test consisted of the following steps: 

 

- alternately at the bottom of the reservoir in two places there was a submersible stand; 

- the vessel described above, which was controlled by radio from the shore, moved along a free  

trajectory through the reservoir. On command by a specially developed software, the source code 

of which is freely available [21], requests were periodically initiated from a modem located on the 

ship to a modem located on a submersible stand. At the same time, the ship’s computational 

module transmitted its GPS location data and retransmitted the beacon response over the radio; 

The frequency of requests was limited only by the modems themselves and amounted to about 1 

time in 2 seconds. The time of one request-response transaction is made up of double the duration 

of the modem signal Ts = 400 ms, the fixed response delay Td = 800 ms, and the double 

propagation time of the signal depending on the slant range between the transponder and the 

inquiring system. 

 

The speed of the vessel varied from 0 to 1 m/s. The experiments were carried out in June 2018 at 

the mouth of the Pichuga River, at the place of its inflow into the Volgograd water reservoir 

(48°59’12.86’’N 44°43’52.24’’E). The depths in the places of the experiments varied from 2 to 

20 meters, the bottom is sandy and rocky, the width of the river at the place of work is 350 meters. 

 
In the course of the work, the following data were recorded: 

- the initial position of the responders before diving using a GPS/GLONASS receiver based on a 

Quectel L76[22]; 
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- the position of the vessel according to the built-in GPS/GLONASS receiver; 

- the depth of the modem of the requesting system; 

- water temperature according to the data of the modem’s built-in sensor of the requesting system; 

- temperature according to the built-in modem sensor on the desired object; 

- depth according to the built-in modem’s sensor on the desired object; 

- distance (slant range) from the requesting system to the desired object with reference to the 

geographical location of the requesting system, where the measurement was made; 

- the calculated geographic location of the desired object; 

 

4. EXPERIMENTAL RESULTS 
 

The main results of this work are the tracks stored in the Google KML format, containing the 

following data: 

 

- a track movement of the requesting system (vessel), according to the onboard GNSS; 

- a track containing the points at which distance measurements were made to the desired object; 

- a track containing points obtained by calculating the coordinates of the desired object, according 

to the procedure described in this paper; 

- the marked point that has a minimal radial error (the value of the function ε according to (2)); 

- the marked point at which the respondent was actually submerged; 

 

Tracks containing data from two experiments are available on GitHub [23] [24] along with the 

source code of the application [21]. 

The distance of the modem of the requesting system from the surface of the water varied from 0.5 

to 0.75 meters. 

The depths of the respondents were 13.2 and 16.5 meters for the first and second experiments, 

respectively. 

Fig. 8 shows a screenshot of the main application window in the process of work (the first 

experiment). 

 

 
 

Fig. 8 - Screenshot of the main application window 
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As can be seen from Figure 8, the described system allows not only to monitor the location of the 

object being searched for but also to correct the vessel's heading, determine the depth of the 

object being searched, as well as the water temperature using its built-in sensor. The RER and 

BRE fields correspond to the current and best values of the residual function (2). 

According to the calculated positions of the object, the deviation from the real position obtained 

using GNSS just before the submersion is in the range of 2-2.5 meters in both experiments, which 

is comparable with the accuracy of the used GNSS modules [22]. 

A general view of the tracks obtained in this work is presented in Fig. 9 and 10. 

 

 
 

Fig.9 - Screenshot of the GoogleEarth application window with tracks obtained during the first experiment 

 

 
 

Fig.10 - Screenshot of the GoogleEarth application window with the tracks obtained during the 

second experiment 
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5. CONCLUSION 

 
The results of mathematical modeling and field experiments confirm: 

- the adequacy of the system model to real conditions; 

- the ability to ensure the localization of stationary submerged objects, equipped with responders 

using mobile surface uninhabited vehicles; If it is necessary to localize several underwater objects 

at the same time (for example, nodes of an underwater wireless network of sensors), the selected 

scheme as a whole can be saved with the only exception that all objects will be polled in turn, 

which will correspondingly increase the localization time; 

- the accuracy of the location estimation of the underwater objects in the experiments performed 

is comparable to the declared accuracy of the used GNSS receivers; 

- the need to apply the proposed method of pre-refinement of the location. 

 

Further studies in this area are planned using the TDOA method, which will allow the use of a 

much simpler device mounted on an underwater object, so-called pinger that does not contain a 

receiving hydroacoustic unit; At the same time, this scheme will allow excluding the transmitting 

hydroacoustic unit from the system that performs the search, and also allows, as already 

mentioned, to apply cooperative search using a swarm of surface vehicles. 
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