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ABSTRACT 
 
The natural signals are mostly analogue in nature, but because of the benefits of digital processing of these 

signals: flexibility, accuracy, storage and low cost; processing these signals digitally is often preferred. 

But the existing analogues to digital converters are efficient in processing signals with small to medium 
bandwidths, but inefficient for signals with large bandwidths. The real-time processing of these signals 

with large bandwidths are done analogically or optically at the cost of the aforementioned advantages of 

digital processing of these signals. This paper is aimed at solving the real-time challenge of processing 

these extremely wide bandwidth signals digitally using a compressive sensing (CS) algorithm, with specific 

detail on the ways the application of CS will enhance the energy efficiency of wireless communication 

devices. Consequently, determine the throughput at which the use of CS is energy efficient for wireless 

devices using energy-efficient compressive sensing throughput (EECST) model. The simulation results 

show that the throughput requirements for introducing CS in any machine to machine (M2M) / internet of 

things (IoT) communication application to be energy efficient are minimum of 54bits per second and 317 

bits per second when the required number of clock cycles for performing various device applications is 

20,000 and 50000 respectively. 
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1. INTRODUCTION 
 

Most signals in nature are analogue signals, to process these signals digitally, they have to be 

converted to digital form using analogue – to – digital (A/D) converter. This conversion is done 

via sampling, quantization, and coding the quantized sample into digital numbers. The conversion 
of analogue signals to digital form result in distortion that inhibits the reconstruction of the 

original analogue signals fully. The control of this distortion can be achieved by proper choice of 

the sampling rate, and the precision in the quantization process. Sampling is the conversion of 
continuous – time signal into a discrete - time signal gotten via taking samples of the continuous 

time signals at discrete – time instants [1]. Figure 1 shows A/D conversion process. 

 

However, many communication systems involve high bandwidth, but sparse radio frequency 
(RF) signals. These features necessitate the application of compressive sensing technique in 

enhancing the energy efficiency [2]. Compressive sensing (CS) is a signal processing strategy for 
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efficient signal acquisitions and reconstructions, which sample the signals at approximately 
information rates. It can also be described as signal acquisition method that collects few samples 

of signal of interest and use optimization technique to reconstruct the original signal from 

incomplete measurement. This technique has provided the window of opportunities for enhancing 

the energy efficiency of machine to machine (M2M) / IoT communication systems.  
 

CS combines the signal sampling and compression into a single process, with low sensitivity to 

packet loss and graceful degradation of signal in the event of unusual sensor readings [3]. It also 
reduces the time spent on data acquisition by the nodes via intelligently picking the coefficients 

of the non-zero part of signals to be sensed. Hence reducing the energy cost of sensing and 

communications. Also, CS represents a paradigm shift in which the number of measurements is 
reduced during acquisition so that no additional compression will be needed [4].  Furthermore, 

CS exploits the information rate with any signal, hence removes redundancy in the signal during 

sampling process. Leading to lower effective sampling rate which reduces the energy cost of 

sampling in the nodes. Also, most computations take place in the base stations (sink) in CS, 
hence elongating the life span of M2M devices [3]. Note that many of these M2M / IoT 

communication devices that are deployed or will be deployed will be only depend on their 

internal battery capacities for processing their data, while their servers (receivers) in the data 
centres will have access to power sources, hence the durability of the M2M / IoT communication 

networks will mainly depend on the durability of the deployed M2M / IoT communication 

devices that are batteries powered. This energy efficient communication paradigm has been 
applied in signals processing, statistics, optimization and many other applications including 

wireless communications [5]. Consequent to the aforementioned points, the imperativeness 

energy efficient algorithms to elongate the battery life span of these devices. 

 
This technique has provided the window of opportunities for enhancing the energy efficiency of 

IoT communication systems, and optimum sampling of radio frequency signals with extremely 

high bandwidth. It also reduces the time spent on data acquisition by the wireless devices via 
intelligently picking the coefficients of the non-zero part of signals (frequency bandwidth) to be 

sensed, hence reducing the energy cost of sensing and communications simultaneously. Also, 

most computations take place in the base stations (sink) in CS algorithm, hence elongating the 

life span of M2M communication devices [3]. These enumerated points make CS an effective 
technique for enhancing the energy efficiency of wireless devices, and optimum sampling of the 

extremely bandwidth analogue signals. 

 

 
 

Figure 1. Analogue - to – digital conversion Process 
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In figure 1, the analogue signal is represented by   𝑥𝑎(𝑡), when the signal is passed via sampler, it 

resulted to discrete time signal represented by 𝑥𝑎(𝑛𝑇)   ≡    𝑥(𝑛) , where T is the sampling 

interval. The faster the sampling rates, the lower the sampling periods, the lower the distortion of 

the analogue signal during reconstruction. But this result to more expensive A/D converter based 

on the existing technology [1]. Hence this paper hope to address this challenge using a more 
energy efficient paradigm in analogue to digital conversion process that is based on the existing 

technology called compressive sensing. The discussion on this paper is limited to periodic 

sampling as described in equation (1). 
 

  𝑥(𝑛) =  𝑥𝑎(𝑛𝑇)                       − ∞ < 𝑛 < ∞                                                           (1) 

 

The reciprocal of the sampling period T is called the sampling rate and it is represented in 
equation (2). 

 
1

𝑇
 =    𝐹𝑠                                                                                                                             (2) 

 
The unit of sampling rate is samples per second or the sampling frequency in Hertz. The 

relationship between the time variable (t) of the periodic analogue signal to (n) of the discrete 

time signal is shown in equation (3). 
 

𝑡 = 𝑛𝑇 =  
𝑛

𝐹𝑠
                                                                                                                 (3) 

 
From equation (3), there is a relationship between the frequency in the analogue signal F, and the 

frequency variable in the discrete – time signals f. To establish this relationship, consider 

analogue sinusoidal signal of the form shown in equation (4). 
 

𝑥𝑎(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝐹𝑡 + 𝜃)                                                                                             (4) 

 

Where A is the amplitude of the sinusoidal signal, and     𝜃   is the phase angle. Which when they 

are sampled periodically at a rate 𝐹𝑠, yields equation (5). 

 

𝑥𝑎(𝑛𝑇)   ≡   𝑥(𝑛) = 𝐴𝑐𝑜𝑠(2𝜋𝐹𝑛𝑇 +  𝜃)   =    𝐴𝑐𝑜𝑠 (
2𝜋𝑛𝐹

𝐹𝑠
+ 𝜃)                   (5) 

 

A discrete time sinusoidal signal can be expressed in equation (6).  

 

𝑥(𝑛)  = 𝐴𝑐𝑜𝑠 (𝜔𝑛 + 𝜃) , −∞ < 𝑛 < ∞                                                           (6) 
 

Where   𝜔  ≡    2𝜋𝑓 

 
Therefore, 

 

Therefore, 
 

𝑥(𝑛) =   𝐴𝑐𝑜𝑠(2𝜋𝑓𝑛 + 𝜃),   𝑓𝑜𝑟  − ∞ < 𝑛 < ∞                                                   (7) 

 

Comparing equations (5) and (7) yields equation (8). It can be observed that the frequency 
variable in the analogue signal F, and that of the digital signal f are linearly related as given in 

(8). 
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𝑓 =
𝐹

𝐹𝑠
       ≡  𝜔 = Ω𝑇                                                                                                (8) 

 

Where f is the frequency of the digital signal, F is the frequency of the analogue signal and   𝐹𝑠is 
the sampling frequency.  Equation (8) is called relative or normalized frequency. Equation (8) 

implied that the frequency of the digital frequency can be established from the frequency of the 

analogue frequency if the 𝐹𝑠 is known. 

 
If the analogue signal is converted to digital signal via sampling the analogue signal at discrete 

time instants, obtaining a discrete – time signals as explained above, the process of converting 

this discrete continuous time signal into discrete values is called quantization, which is 
approximating the discrete time signals to a finite value. In equation (7), the variation of 

continuous – time sinusoidal signals varies from −∞ < 𝑛 < ∞   but discrete – time sinusoidal 

signals, the variation is as given in equation (9). 
 

−
1

2
< 𝑓 <

1

2
 ≡  −𝜋 < 𝜔 < 𝜋                                                                                     (9) 

 

The fundamental difference between continuous – time signals and discrete – time signals is the 

range values of the frequency variables F and f.  Periodic sampling of continuous – time signals 
implies the mapping of the infinite frequency range for the variable F into a finite frequency 

range variable f. This is because the highest frequency in a discrete – time signal    𝜔  =

   𝜋      𝑜𝑟    𝑓 =
1

2
. This follows that, with 𝐹𝑠  the corresponding highest values of F and Ω are 

given in equation (10) [1]. 

 

𝐹𝑚𝑎𝑥  =
𝐹𝑠

2
  =  

1

2𝑇
    𝑎𝑛𝑑    Ω𝑚𝑎𝑥   =  𝜋𝐹𝑠   =

𝜋

𝑇
                                                    (10) 

 
The paper is organized as fellows; section 2 discussed the basis of sampling theorem, section 3 

discussed sampling theorem, section 4 discussed the theory of comprehensive sensing, section 5 

discussed energy consumption in wireless devices, section 6 discussed Energy Efficient 
Compressed Sensing Throughput (EECST) Model, and section 7 concludes the work. 

 

2. BASIS OF SAMPLING THEOREM 
 

Given any analogue signal, how to select the sampling rate is core to be able to effectively 
reconstruct with minimal distortion. Assume that any analogue signal can be represented as the 

sum of sinusoids of different amplitudes, frequencies and phases as given in equation (11). 

 

𝑥𝑎(𝑡) =  ∑ 𝐴𝑖

𝑁

𝑖

cos(2𝜋𝐹𝑖𝑡 + 𝜃𝑖)                                                                                (11) 

 

Where N is the number of the frequency components. All the signals lend themselves to 
representation in equation (11) over short time segment. The amplitude, frequencies and phases 

usually change slowly with time from one-time segment to another. Moreover, assuming that the 

frequencies do not exceed some known frequencies like   𝐹𝑚𝑎𝑥. Example, the      𝐹𝑚𝑎𝑥 for some 

speech signal is 3000Hz, while the 𝐹𝑚𝑎𝑥  for television signal is 5000Hz for television signals. 
Since the maximum frequency may vary slightly from different realization among signals of any 

given class, they may be wish to ensure that 𝐹𝑚𝑎𝑥  does not exceed some predetermined value by 
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passing the analogue signal through a filter that severely attenuates the frequency components 

above 𝐹𝑚𝑎𝑥  [1]. 

 

From the knowledge of       𝐹𝑚𝑎𝑥, the appropriate sampling rate can be selected. From Nyquist 

theorem, the highest frequency in an analogue signal can be reconstructed when the signal is 

sampled at a rate    𝐹𝑆 =
1

𝑇
  𝑖𝑠   

𝐹𝑠

2
. Any frequency above 

𝐹𝑠

2
 or below     − 

𝐹𝑠

2
 results to a sample 

that are identical with corresponding frequency in the range   − 
𝐹𝑠

2
  ≤ 𝐹 ≤

𝐹𝑠

2
. To avoid ambiguity 

resulting from aliasing, the sampling rate that is sufficiently high must be selected. That is, 
𝐹𝑠

2     
 

must be greater than 𝐹𝑚𝑎𝑥 . Thus to avoid the problem of aliasing, 𝐹𝑠 is selected so that equation 
(12) is observed; 

 

𝐹𝑠 >    2𝐹𝑚𝑎𝑥                                                                                                                  (12) 
 

As mentioned earlier, 𝐹𝑚𝑎𝑥is the highest frequency component in the analogue signal. With the 

sampling rate selected in this manner, any frequency component say |𝐹𝑖| < 𝐹𝑚𝑎𝑥in the analogue 

signal is mapped into a discrete – time sinusoid with a frequency as given in equation (13). 
 

−
1

2
≤ 𝑓𝑖 =     

𝑓𝑖

𝐹𝑠
  ≤       

1

2
   ≡ −𝜋 ≤ 𝜔𝑖 = 2𝜋𝑓𝑖 ≤ 𝜋                                               (13) 

 

Since |𝑓| =
1

2
 𝑜𝑟 |𝜔| = 𝜋  is the highest (unique) frequency in a discrete – time signal, the choice 

of sampling rate according to equation (12) avoids the problem of aliasing [1]. Alternatively, the 

condition 𝐹𝑠 > 2𝐹𝑚𝑎𝑥ensure that all the sinusoidal components in the analogue signal are mapped 

into discrete – time frequency components with frequencies in the fundamental interval. Thus 
analogue signals can be reconstructed without distortion from the sample values using 

appropriate interpolation formula. 

 

3. SAMPLING THEOREM 
 

If the highest frequency contained in an analogue signal 𝑥𝑎(𝑡) is 𝐹𝑚𝑎𝑥   = 𝐵  , and the signal has 

a rate 𝐹𝑠   > 2𝐹𝑚𝑎𝑥  ≡ 2𝐵    , then  𝑥𝑎(𝑡) can exactly be recovered from its sample values using 

interpolation function as given in equation (14). 
 

𝑔(𝑡)  =  
𝑠𝑖𝑛2𝜋𝐵𝑡

2𝜋𝐵𝑡
                                                                                                             (14) 

 

Hence, 𝑥𝑎(𝑡) may be expressed as given in equation (15). 

 

𝑥𝑎(𝑡)   =  ∑ 𝑥𝑎 (
𝑛

𝐹𝑠
) 𝑔 (𝑡 −

𝑛

𝐹𝑠
)

∞

𝑛=−∞

                                                                              (15) 

 

Where 𝑥𝑎 (
𝑛

𝐹𝑠
)     = 𝑥𝑎(𝑛𝑇)   ≡    𝑥(𝑛)is the sample of 𝑥𝑎(𝑡) 

 

When the sampling of 𝑥𝑎(𝑡) is performed at the minimum sample rate 𝐹𝑠  = 2𝐵   , the 

reconstruction formula in equation (15) becomes as given in equation (16). 
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𝑥𝑎(𝑡)  =  ∑ 𝑥𝑎 (
𝑛

2𝐵
)

sin 2𝜋𝐵 (𝑡 −
𝑛

2𝐵
)

2𝜋𝐵 (𝑡 −
𝑛

2𝐵
)

∞

𝑛=−∞

                                                              (16) 

 

The sample rate 𝐹𝑁  = 2𝐵  =   2𝐹𝑚𝑎𝑥  is called Nyquist rate and the above theorem is called 

Nyquist sampling theorem, which is basically the theorem used in most digital signals processing. 
 

4. THEORY OF COMPRESSIVE SENSING (CS) 
 

The basic principle of CS is to transform code the analogue signal of interest x into the basis or 

frame that will provide the compressible and sparse representation of the signal [6]. Transform 
coding is done using Fourier transform (FT), fast Fourier transforms (FFT), discrete cosine 

transforms (DCT), wavelet transforms (WT), etc. The sparse representation of the signal of 

length n, entails that it can be represented with k nonzero coefficients, where 𝑘 ≪ 𝑛. While the 
compressible representation of the signal entails that the signal can be well-approximated to those 

k none zeros part of the signal n. The CS algorithm can represent the signal of interest with high 

fidelity by preserving the k none zeros value of n and their locations. This method is called sparse 
approximation, which is the foundation of transform coding schemes, that used the signal sparsity 

and compressibility like JPEG, MPEG, MP3 and JPEG2000 standards [6]. The number of non-

zeros coefficient of x is less than or equal to k. With this technique, the extremely wide 

bandwidth signals can be reduced to size in which the existing A/D can effectively and efficiently 
sample the signals. 

 

||𝒙||𝟎  ≤ 𝒌                                                                                                                          (17) 
 

The signal x is encoded into a smaller vector say b with the aid of a sensing matrix 𝑨 ∈ 𝑹𝒎 × 𝒏, 

where 𝑚 < 𝑛 and it is chosen independently of x [5]. The CS coded signal can be represented as 

given in (17). The CS approach involves directly acquiring the compressed samples without 
going through the intermediate stages, the compressive measurement through linear projections 

as given in (18) [7]. 

 

𝑨𝒙 = 𝒃                                                                                                                               (18) 

 

In the applications of CS in M2M / IoT communication, the encoding of x is not calculated by a 

computer or microcontroller, but obtained by certain electrical or electromagnetic, physical, or 
optical measuring means, depending on the application. Also, because of the condition in 

equation (19), b is the compression of x.  

 

{
𝒌 ≤ 𝒎

𝒎 < 𝑛
                                                                                                                              (19) 

 

Furthermore, on the application of this technique on M2M communication paradigm, b is 

recorded by the wireless M2M device and becomes digitally available to the decoder. Though 

equation (18) above is an underdetermined equation system and has infinite number of solutions, 
x is recovered from b by finding the sparsest solution of equation (18) by solving equation (20). 

 

||𝒙||𝟎𝒙
𝒎𝒊𝒏   𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝑨 = 𝒃                                                                                      (20) 

 

Equation (20) above is called   𝑙0 norm, and though the combinational equation of (20) is Non-
deterministic Polynomial-time hard (NP Hard), and the method of trying all the possible supports 
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of cardinality k is computationally intractable. To make it tractable, 𝒍𝟎 norm is replaced by 𝒍𝟏 

norm as given in equation (21). 

 

||𝒙||𝟏𝒙
𝒎𝒊𝒏  𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝑨𝒙𝒃                                                                                             (21) 

 

Equation (21) above is a convex program and has several fast solvers than equation (20). In ideal 

case, it is better to recover x from (21) when m equals 2k, x is uniquely determined by k indices, 
and k values of its non-zeros entries. In summary, the whole processes of compressive sensing 

consist of the following stages; signal sparse representation using the transform coding 

techniques discussed above, linear encoding measurement collection using sensing matrix 
discussed in the subsection that follows, and compressed signal recovery also discussed in 

subsection 4.3. For linear encoding measurement collection, the types sensing matrix A as it is in 

equation (18) is invaluable in determining the error free compressing and recoverability of the 

signals b. The types of sensing matrices is as discussed in the subsection 4.2. 
 

4.1. Sensing Matrices 
 

The A in equation (18) denotes sensing matrix, which is  𝑀 ×  𝑁 matrix, and represents a 

dimensionality reduction because it maps 𝑅𝑁  to 𝑅𝑀 , where   𝑀 ≪ 𝑁. In designing the sensing 

matrix, they are two fundamental theoretical questions that need to be addressed; how to design 
the sensing matrix A to ensure that it preserves the information in the signal x, and how to recover 

the original signal x from the compressed measurement b. To effectively address the above 

fundamental questions, they are features A is expected to have to effectively address the 
aforementioned challenges. These features are discussed below. 

 

4.1.1. Null Space 

 
The NSP of A which is given in equation (22) is very important in the recovery of the 

compressed signal x’ from b using l1-minimization. The null space of all  𝐴  vectors x, which are 

mapped to 0 is given in equation (22). 
 

ℵ(𝐴) = {𝑥: 𝐴𝑥 = 0}                                                                                                       (22) 

 

This entails that two different k-sparse signals 𝑥 ≠ 𝑥′do not result to same measurement vector b. 
This means that their difference is not part of the null space of the measuring matrix as given in 

equation (23). 

 

𝐴(𝑥 − 𝑥′ ≠ 0 ↔ 𝑥 − 𝑥′ ∉  ℵ(𝐴)                                                                                (23) 

 

For instance, the difference between two k-sparse vectors is at most 2k-sparse. Hence a k-sparse 

x is uniquely defined if ℵ(𝐴) contains no 2k-sparse vectors. This entails that any 2k columns of A 
are linearly independent, which results to lower bound of the number of measurements, that is the 

necessary condition that reconstruction is possible, and is as given in  equation (24) [8]. 

 

𝑀 ≥ 2𝑘                                                                                                                         (24) 

 

This is because to be able to recover all the sparse signals x from the measurement b, then it is 

imperative that 𝐴𝑥 ≠ 𝐴𝑥′ so that it will be possible to distinguish x from x’ based on b [9]. The 

sensing matrix 𝐴 ∈  𝑅𝑀×𝑁  is said to satisfy the null space property (NSP) of order k with 

constant 𝛾 ∈ (0,1) if the condition in equation (25) is met by A. 
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||𝜂Τ||1 ≤ 𝛾||𝜂𝑇𝑐||1                                                                                                      (25) 

 

Where 𝑇 ⊂ {1, … … … … … , 𝑁}  𝑎𝑛𝑑 𝑇 ≤ 𝑘, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜂 ∈ ker 𝐴 ≡ set of the k-largest entries of x 

in the absolute value [10]. Though, there are many ways of characterizing this property of 𝐴  , the 

most used property in characterizing the NS property is the spark (  𝜎 = 𝑠𝑝𝑎𝑟𝑘(𝐴) ) of the 

sensing matrix A.  The spark of A is the minimum numbers of columns of A that are linearly 

dependent [11]. For instance, when there are non-zero columns in A, then  𝜎 ≥ 2, with equality 

only when two columns in A are linearly dependent [12]. 

 

4.1.2. Restricted Isometry Property (RIP) 

 

This is the property of the sensing matrix that aids it to recover the compressed signal that is 

contaminated with noise. A sensing matrix A is said to satisfy the RIP of order K if there exist a 

restricted isometry constant  𝜕𝐾 ∈ (0, 1)  of a matrix 𝐴 ∈  𝑅𝑀×𝑁 that is the smallest number, such 

that the condition in equation (26) holds for all   𝑥 ∈ ∑ =𝐾  {𝑥: ||𝑥||0 ≤ 𝐾. RIP is also called 

uniform uncertainty principle[13].  

 

(1 − 𝜕𝐾) ||𝑥||2
2  ≤ ||𝐴𝑥||2

2 ≤ (1 + 𝜕𝐾)|| 𝑥||2
2                                                         (26) 

 

If the matrix A satisfies the RIP of the order 2K, then equation (26) can be explained that A 

approximately preserve the distance between any pair of K-sparse vectors. In the definition of the 
RIP above, bounds that are symmetric about 1 was assumed. In practice, arbitrary bounds as 

given in equation (27) could be used.  

 

𝛼 ||𝑥||2
2 ≤ ||𝐴𝑥||2

2 ≤  𝛽|| 𝑥||2
2                                                                                         (27) 

 

 
4.1.3. Incoherence 
 

 
 

𝜇(𝐴) =

|< 𝐴𝑖 , 𝐴𝑗 >|

||𝐴𝑖||2||𝐴𝑗||2

1≤𝑖≤𝑗≤𝑁

𝑚𝑎𝑥

                                                                                         (28) 

 

It has been established that    𝐴    with coherence coefficient     𝜇   satisfies the RIP of   𝑠   with 

𝛿𝑠  ≤ 𝜇(𝑠 − 1) whenever    𝑠 <
1

𝜇
+ 1   , where s is the sparcity level of the sparse signal [15] 

[16].  
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𝜇   ≥     √
𝑁 − 𝑀

𝑀(𝑁 − 1)
                                                                                                      (29) 

 

 
 

𝑘 <
1

2
(1 +

1

𝜇(𝐴)
)                                                                                                          (30) 

 

4.2. Types of Sensing Matrices 

 

Compressive sensing involves three main steps: sparse representation, measurement and sparse 

recovery. The sensing or measurement matrix are used to sample only the components that best 

represent the sparse signal. Hence, the choice of the sensing matrix affects the success of the 
sparse recovery process. Therefore, the design of an accurate sensing matrix is a vital process in 

compressive sensing [19]. The authors in [20] stated that design of measuring matrix and 

development of an efficient sparse recovery algorithms are the two main problems that must be 
addressed by compressive sensing theory.  

 

Sensing matrices are broadly classified into two groups – random sensing matrices and 
deterministic sensing matrices. Random sensing matrices are generated at random by identical or 

independent distributions (iid) like normal, Bernoulli random and Fourier ensembles, they are 

easy to construct and they satisfy the RIP with high probability. Random sensing matrices are 

further classified into two types – structured and unstructured sensing matrices as shown in figure 
2. While the deterministic sensing matrices are constructed deterministically to satisfy the RIP, or 

to have small mutual coherence. Most of the deterministic sensing matrices are made based on 

employing polynomials of finite fields [16].   
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Figure 2. Classification of Sensing Matrices [19] 

 

4.3. Compressed Signals Recovery 
 
The recovery of the compressed signal sample is the critical part in determining its adoption in 

M2M communications paradigm. This sub-section provides the summary of the algorithms that 

are used for sparse compressed signals recovery. The compressed signal recovery is NP – hard 
(Non deterministic polynomial-time hard), hence can be recovery using alternative algorithms.  

These recovery algorithms can broadly be classified into three; the convex and relaxation 

algorithms, the Bayesian algorithms and Greedy algorithms. The convex and relaxation 
algorithms solve the sparse signals recovery via convex relaxation algorithms; the examples are 

as shown in figure 3. The Greedy algorithms solve the sparse signals recovery via iterative 

processes, examples of this type of algorithm are also shown in figure 3. Bayesian algorithms 

solve the sparse signals recovery via taking into account a prior knowledge of the sparse 
distributions, examples are also shown in figure 3. 

 

5. ENERGY CONSUMPTION IN WIRELESS M2M COMMUNICATIONS 

DEVICES 
 
Equation (31) summarizes various energy costs associated with wireless communication, and 

figure 4 gives the percentage of various operational energy costs within the wireless devices. 

These energy costs are based on MAC protocol, because it has a major impact on the power 

consumption of the wireless devices, and it is based on a single sampling period [4]. 
 

𝑬𝑇 = 𝑬𝑠𝑡𝑎𝑟𝑡−𝑢𝑝 + 𝑬𝑟𝑎𝑚𝑝 + 𝑬𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + 𝑬𝑙𝑜𝑔𝑔𝑖𝑛𝑔 + 𝑬𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 + 𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔

+ 𝑬𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛                                                                             (31) 

 

Where 𝑬𝑻 is the total operational energy consumption costs in the wireless devices; 𝑬𝒔𝒕𝒂𝒓𝒕−𝒖𝒑 is 

the device initial energy consumption during start-up; 𝑬𝒓𝒂𝒎𝒑 is the energy cost of switching to 
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different energy states for various devices’ operations; 𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 is the energy used by the wireless 

devices for sensing signals; 𝑬𝒍𝒐𝒈𝒈𝒊𝒏𝒈 is the energy cost of storing the sensed data; 𝑬𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈  is 

the data sampling energy cost,  𝑬𝑪𝒐𝒎𝒑𝒖𝒕𝒊𝒏𝒈  is the energy used by the wireless devices in internal 

processing of the sensed signals;  and 𝑬𝒄𝒐𝒎𝒎𝒖𝒏𝒊𝒄𝒂𝒕𝒊𝒐𝒏  is the communication energy cost used for 
transmitting digital signals to the receiver.  

 

Being that start-up energy cost in the wireless device is negligible (< 1%) as can be seen in figure 
4, its effect will not be considered further. The ramp energy cost in the micro-controller unit 

(MCU) of the wireless devices is negligible too, but the ramp energy cost in the radio is 

significant and it constitutes 10% of the total energy cost in the wireless device. Equation (32) is 
used for calculating the radio ramp energy cost. 

 

 
 

Figure 3. Classifications and examples of sparse recovery algorithms 

 

 
 

Figure 4. Various operational energy costs in the wireless device 

 

𝑬𝒓𝒂𝒎𝒑 =
|(𝑰𝒔𝒕𝟐 − 𝑰𝒔𝒕𝟏)| × 𝑻𝒔𝒕𝟏𝟐 × 𝑽𝒅𝒄

𝟐
                                                                    (32) 

 

Where 𝑰𝒔𝒕𝟐 is the current consumed in the state switched to, 𝑰𝒔𝒕𝟏 is the consumed current in the 

current state, 𝑻𝒔𝒕𝟏𝟐  is time used in switching from state 1 to state 2, and 𝑽𝒅𝒄 is the voltage 

consumed. 
 

The sensing energy cost is about 6% of the total energy cost in the wireless device as can be seen 

in figure 2, and the energy cost of sensing b bits of data can be calculated using equation (33). 
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𝑬𝒔𝒆𝒏𝒔𝒊𝒏𝒈 =  𝒃 × 𝑽𝒅𝒄 × 𝑰𝑺𝒆𝒏𝒔𝒊𝒏𝒈 × 𝑻𝒔𝒆𝒏𝒔𝒊𝒏𝒈                                                               (33) 

 

Where 𝑰𝑺𝒆𝒏𝒔𝒊𝒏𝒈  and     𝑻𝒔𝒆𝒏𝒔𝒊𝒏𝒈    are the current consumed in sensing and the sensing time 

respectively. 

 

The logging energy cost is the energy used by the wireless device for reading b bit packet data 

and writing it into the memory [21]. Equation (34) shows how to evaluate the energy cost of 
logging bbits’ data size per cycle. 

 

𝑬𝒍𝒐𝒈𝒈𝒊𝒏𝒈(𝒃) = 𝑬𝒓𝒆𝒂𝒅 +  𝑬𝒘𝒓𝒊𝒕𝒆 =
𝒃 × 𝑽𝒅𝒄

𝟖
(𝑰𝒓𝒆𝒂𝒅 × 𝑻𝒓𝒆𝒂𝒅 + 𝑰𝒘𝒓𝒊𝒕𝒆 × 𝑻𝒘𝒓𝒊𝒕𝒆)    (34) 

 

The sampling energy cost 𝑬𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈  is the energy the wireless device spent on sampling b bits of 

data. The 𝑬𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈  is greatly dependent on the type of data and the rate of sampling. Let the 

period for data sampling be T, time spent on sampling data be 𝑡𝑑𝑎𝑡𝑎 , current used for data 

sampling be 𝐼𝑑𝑎𝑡𝑎   and voltage used to be       𝑉𝑑𝑐. The energy spent on data sampling 𝑬𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈  

is given in (35). 

 

𝒕𝒃 =  𝒕𝒅𝒂𝒕𝒂 × (
𝟏

𝑻
) 𝑬𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 =  𝒕𝒃 × 𝑰𝒅𝒂𝒕𝒂 × 𝑽𝒅𝒄                                                 (35) 

 

The energy cost of computing 𝑬𝑪𝒐𝒎𝒑𝒖𝒕𝒊𝒏𝒈 in a wireless communication device is a key 

constituent of total energy cost in a wireless device. The 𝑬𝑪𝒐𝒎𝒑𝒖𝒕𝒊𝒏𝒈 consists of MCU’s active 

and other modes. The computation energy 𝑬𝒄𝒐𝒎𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 is given in (36) in two states (active and 

sleep). 

 
𝑬𝒄𝒐𝒎𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 =  𝑽𝒅𝒄 × 𝑰𝒂𝒄𝒕𝒊𝒗𝒆 × 𝑻𝒂𝒄𝒕𝒊𝒗𝒆 + 𝑽𝒅𝒄 × 𝑰𝒔𝒍𝒆𝒆𝒑 × 𝑻𝒔𝒍𝒆𝒆𝒑                      (36) 

 

The communications energy costs consist of the energy cost of data transmission and the cost of 

data reception is given in equation (37). 
 

𝑬𝒄𝒐𝒎𝒎𝒖𝒏𝒊𝒄𝒂𝒕𝒊𝒐𝒏 =  𝑬𝒕𝒙 +  𝑬𝒓𝒙                                                                                     (37) 

 

Where 𝑬𝒕𝒙 is the energy cost of transmission of packets of data, and  𝑬𝒓𝒙 is the energy cost of 

receiving data packets. Equations (38) and (39) represents 𝑬𝒕𝒙 and 𝑬𝒓𝒙 respectively. 

 

𝑬𝒕𝒙 = 𝑽𝒅𝒄 × 𝑰𝒕𝒙 × 𝑩𝒍𝒕𝒙 × 𝑻𝒃𝒕𝒙                                                                                      (38) 

 

𝑬𝒓𝒙 =  𝑽𝒅𝒄 ×  𝑰𝒓𝒙  × 𝑩𝒍𝒓𝒙 × 𝑻𝒃𝒓𝒙                                                                                 (39) 

 

Where 𝑰𝒓𝒙  𝑎𝑛𝑑 𝑰𝒕𝒙  are the current consumed in the reception and transmission mode 

respectively; 𝑩𝒍𝒕𝒙 𝑎𝑛𝑑 𝑩𝒍𝒓𝒙 are the bit length of the transmitted, and received packets along with 

their preambles respectively; 𝑻𝒃𝒕𝒙 𝑎𝑛𝑑 𝑻𝒃𝒓𝒙 are the time for transmitting and receiving single bit 

of data.  However in wireless communication devices, the energy costs of various operations are 

evaluated in terms of the number of clock cycles required to perform such operations [22].  To 
this end, the energy cost of performing various operations in wireless communication devices as 

given in equation (31) are evaluated in terms of the number of clock cycles required to perform 

such operations, which varies from one operation to another. 
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6. ENERGY EFFICIENT COMPRESSED SENSING THROUGHPUT (EECST) 

MODEL 
 
Equation (40) gives the fundamental communication model through which any communication 

system follows, hence to have an energy efficient system, the effect of the energy cost of 

variables in equation (40) have to be considered.  

 

𝒚 = 𝑯𝒃 + 𝒏                                                                                                                    (31) 

 

Where y is the signal at the receiver, H is the channel properties, b is the compressed transmitted 
signal as given in equation (18), and n is the channel noise. In (40), H (the channel 

characteristics) has the most significant effect on the received signal y. The sensitivity of the 

receiver is the major determining factor in knowing the amount of power required to get a signal 

b from transmitting station to the receiver when the H properties have been ascertained using the 

appropriate models. The receiver’s sensitivity is the minimum input signal (𝑆𝑚𝑖𝑛) required to 

produce a specific output signal with a specified signal-to-noise ratio (S/N) and is given in 

equation (41) [23]. 
 

𝑺𝒎 = (𝑺/𝑵)𝒎𝒊𝒏 × 𝑲 × 𝑻𝒐 × 𝑩 × (𝑵𝑭)                                                                (41) 

 

Where (𝑺/𝑵)𝒎𝒊𝒏 is the minimum signal-to-noise ratio needed to detect a signal, NF is the noise 

factor, K is Boltzmann’s constant =1.38 × 10−23𝐽𝑜𝑢𝑙𝑒/°𝐾, 𝑇𝑜 is the absolute temperature of the 

receiver input ( °𝐾𝑒𝑙𝑣𝑖𝑛) = 290°𝐾  and B is the receiver bandwidth (Hz) [24]. A typical 

receiver’s sensitivity is around -110dBm, though it is dependent on device type [25].  
 

As stated in [26], that sub 1GHz spectrum provides the energy efficient medium through which 

M2M devices can be connected, let the channel frequency be Sub 1GHz Industrial, Scientific and 

Medical (ISM) radio band (902 – 928) MHz with the centre frequency of 915MHz and bandwidth 
of 26MHz. Now, to determine the power required to transmit the signal from the transmitter to 

the receiver say 4 kilometres in a large city scenario, the path loss normally follows Rayleigh 

distribution. For this discussion, let assume that the value of n as contained in (40) is zero. Also, 
let the base station (BS) height be 40 meters, and mobile station height be 2 meters. Using Hata 

path loss model [27] in path loss evaluation, using the above variables will result to a path loss of 

144.55dB. 
 

However, the channel losses between a transmitter, and a receiver in wireless channel is given in 

equation (42). 

 

𝐿𝑜𝑠𝑠𝑒𝑠 = 𝑃𝑎𝑡ℎ 𝑙𝑜𝑠𝑠 + 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 + 𝑜𝑡ℎ𝑒𝑟 𝑙𝑜𝑠𝑠𝑒𝑠                                  (42) 
 

The penetration loss can be evaluated using equation (43). 
 

𝑳𝒑𝒍(∅) = √𝒅 − 𝒆(∅ − 𝒇)𝟐                                                                                              (43) 

 

Where d, e, f are empirical parameters; and ∅ is the angle of the signal inclination [28]. Now 
using the experimental results for the empirical parameters as contained in [28] for computation. 

The penetration loss at 60° signal reception angle is 23.69dB. Also, other losses as contained in 

(33) are gotten by calculating 10% of the summation of the above losses. Therefore, other loss is 

16.82dB. Hence, a Total loss as given (42) is approximately 185dB. 

The power of the received signal at the receiver     𝑃𝑟  is given in (44). 
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𝑷𝒓 = 𝑷𝒕 + 𝑮𝒕 − 𝑳𝒐𝒔𝒔𝒆𝒔                                                                                                (44) 

 

Where 𝑃𝑡 is the transmit power at the transmitter and  𝐺𝑡 is the total gains in both the transmitter 

and the receiver. Now using 𝑃𝑟 as -110dBm, assuming that the total gains between the transmitter 

and receiver at 2dBm each is 4dB, then the required 𝑃𝑡    is 71dBm. This value of 𝑃𝑡  is the 

minimum required to get any signal across 4 kilometres, assuming all the variables are constant.  

 
Given that there are numerous anticipated M2M / IoT applications across all sectors, the 

throughput requirement for each anticipated application also vary. Based on the trade-off between 

the energy gains from mainly communication energy cost and computing energy cost when CS 

algorithm is applied to the M2M communication devices, it is imperative to ascertain the 
throughput at which the applications of CS algorithm are energy efficient.  

The 𝐸𝑡𝑥>𝐸𝑟𝑥 for a typical wireless ad hoc network and based on the fact that the wireless device 

to be used for M2M communications / IoT are expected to be dumped in order to elongate the life 
span of the devices [29]. It can be deduced that most of the M2M / IoT communication devices 

will rarely receive packets except for updates in terms of the available spectra for 

communication. Hence, in this EECST model, the assumptions made are summarized as follows; 

 
a) M2M communication cellular structure as proposed by Weightless Special Interest Group 

[30], hence, the major communication cost will be on transmitting the data packets to the 

base station, which do most processing and scheduling in the M2M communication 
networks. 

b) The battery power of the devices is very limited, hence the need to know the throughput at 

which the applications of CS algorithm is energy efficient. 
c) The channels of communication are sub 1GHz spectra (902 – 928) MHz ISM Band, hence 

have limited bandwidths as proposed in [31]. 

d) The data processing is done on the base station 

e) Multipath fading does not exist 
f) Binary phase shift keying (BPSK) signal is used in the model 

 

Let the amount of energy required to transmit a single bit of data be 𝒆𝒕𝒃, which is equivalent to 

the number of clock cycles required to transmit a single bit of data 𝒏 and let the energy cost per 

clock cycle be 𝒆𝒄𝒄. To transmit x bit(s) of data without compression, the 𝑬𝒕𝒙 is evaluated as given 

in (45). As mentioned above, the application of CS algorithm increases the energy cost of 

computing / processing. Let the number of clock cycle required to execute CS algorithm on the 

data sample be 𝐶𝑛 , and the 𝑬𝒕𝒙 when CS algorithm is applied is given in equation (45). 

 

𝑬𝒕𝒙 = 𝒙 × 𝒆𝒕𝒃  ≡ 𝒙 × 𝒏 × 𝒆𝒄𝒄                                                                                     (45) 
 

For the benefit of the context of this discussion, it is imperative to split the total number of bits to 

be transmitted into the preamble which is assumed to be constant for both compressed and 

uncompressed signal. Let the number of bits in the preamble be 𝒙𝟏 and the remaining number of 

bits in the packet be     𝒙𝟐, putting the above assumptions in (45) will result to equation (46). 

 

𝑬𝒕𝒙𝟏 = (𝒙𝟏 + 𝒙𝟐) × 𝒆𝒕𝒃  ≡  (𝒙𝟏 + 𝒙𝟐) × 𝒏 × 𝒆𝒄𝒄                                                    (46) 
 

To be able to evaluate 𝑬𝒕𝒙 when CS algorithm is implemented on the M2M communications 

device, let the number of clock cycle required to perform data compression using CS algorithm 

be 𝒏𝒄 and the percentage of compression be ɳ, then the 𝑬𝒕𝒙  using CS algorithm is given in 
equation (47). 
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𝑬𝒕𝒙𝟐 = 𝒙𝟏 × 𝒆𝒕𝒃 + ɳ × 𝒙𝟐 × 𝒆𝒕𝒃 + 𝒏𝒄 × 𝒆𝒄𝒄 ≡ (𝒙𝟏 +  ɳ × 𝒙𝟐) + 𝒏𝒄 × 𝒆𝒄𝒄       (47) 
 

Equation (46) and (47) above are suitable for single – input to single – output (SISO) form of 

communication. For multiple input multiple output (MIMO) form of communication, the above 

equations will not be suitable. This is as a result of the increase in circuit complexity which will 

increase the computing / processing energy cost, coupled with ℵ number of bits that is being 

transmitted simultaneously. However, Zimran R et al [32] stated based on their analysis that, 

using MIMO for data transmission is more energy efficient for transmission across long distance. 

While across short distance, 𝑬𝒄𝒐𝒎𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 is more than 𝑬𝒕𝒙  as a result of the circuit complexity. 

In order to evaluate  𝑬𝒕𝒙  when MIMO is used, let the energy cost of transmitting ℵ bits of data 

using MIMO per transmission be   𝒆ℵ , and the number of clock cycles required by a MIMO 

circuit to transmit x bits of data be  𝒏ℵ,then the energy cost of transmitting x bits of data is as 
given in equation (48). 

 

𝑬𝒕𝒙𝟑 = (
𝒙𝟏 + 𝒙𝟐

ℵ
) × 𝒆ℵ  ≡ (

𝒙𝟏 + 𝒙𝟐

ℵ
) × 𝒏ℵ × 𝒆𝒄𝒄                                                  (48) 

 

Then the 𝑬𝒕𝒙 on the application of CS algorithm is as given in equation (49). 
 

 

 

𝑬𝒕𝒙𝟒 = (
(𝒙𝟏 +  ɳ × 𝒙𝟐)

ℵ
) × 𝒆ℵ +  𝒏ℵ × 𝒆𝒄𝒄                                                                 ( 49) 

 

 

Considering SISO scenario as given in (46) and (47), let’s take the energy cost of MSP430 serial 

micro-processor in active state as the yardstick for evaluation, in which  𝑒𝑡𝑏 =
230𝑛𝑗 and    𝑒𝑐𝑐 = 0.729𝑛𝑗  for a WSN with a range of 100 meters [22].  Also as mentioned 

earlier, the energy cost of processing CS algorithm in the node(s) is determined by the number of 
clock cycles required by the devices to perform the compression operations. Table 1 shows the 

number of clock cycles required by MSP430 micro-processor to perform certain floating-point 

operations.  

 
Table 1. The number of clock cycles for specific floating-point operations [22] 

 
FLOATING POINT  OPERATION(S) NUMBER OF CLOCK – CYCLES 

Addition 184 

Subtraction 177 

Multiplication 395 

Division 405 

Comparison 37 

 

The type of the CS algorithm and the size of the sensing matrix will determine the number of 

clock cycle required by the micro-processor to perform the compression operation on the device. 

For instance, a micro-processor with an impeded Sub-threshold (Sub-VT) CS processor will 

require 8460 clock cycles to apply 50% compression on 512 samples of ECG data [33].  The A in 

(18) is constructed by 12 random indices per column, and the sampling rate of the signal is 

125Hz. Also, assuming that the length of the MAC addresses for both the compress and un-

compressed signal samples are same, then only 𝑥2    in (46) and (47) is considered in the 

computation. Figure 5 shows the data rates at which compression becomes energy efficient.  
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Based on the input variables as stated, the throughput at which compression becomes energy 

efficient is at 53.63 ≈ 54 bits. Though the number of clock cycles used for compression is based 

on Sub-threshold (Sub-VT) CS processor, the number of clock cycles required for performing CS 

compression algorithm varies from one micro-controller to another.  This is because of the 

variations in the inherent properties of various micro-controllers like speed, energy requirement 

per clock cycle, etc. and the variations on the various computation requirements of various CS 

algorithms.  

 

Consequent to the variations in the capabilities of different microprocessor, and the number of 

clock cycles required to perform CS algorithms, Figure 5 shows the minimum data rates that are 

required for the application of CS algorithm on M2M / IoT communication devices to be energy 

efficient. Figures 5 and 6 are derived from equation (46) and (47) which can be used for 

evaluating the data rates in a BPSK scenario, while equation (48) and (49) can be used in 

evaluating the data rates at which the applications of CS algorithm on M2M / IoT communication 

devices become energy efficient in MIMO scenarios. As can be seen in figure 6, when the 

number of clock cycles is increased to 20000, the data rate at which compression becomes energy 

efficient is 127 bits and at 50000, the data rate becomes approximately 317 respectively.  

 

 
 

Figure 5. The CS compressed Vs uncompressed transmitted energy cost. 
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Figure 6. The CS compressed Vs uncompressed transmitted energy cost @ n = 20,000 and 50,000 

 

7. CONCLUSION 
 

The EECST model has become handy for M2M / IoT communication experts to use in evaluation 

based on the throughput requirement of various M2M / IoT communication applications, the rates 
at which the application of the CS algorithm on the wireless devices becomes energy efficient. 

The higher the computational energy cost for executing CS algorithm on the wireless device, the 

higher the throughput at which the application of CS algorithm becomes energy efficient. The 

values used for etbis based on WSN with a range of 100 meters, the value is more in the range of 4 
kilometres. Though, it is imperative to note that the application of CS on any of the applications is 

subject to the recoverability error performance of such signal on the receiver. Also, the type of the 

sensing matrix used for compression, and the type of compressed signal recovery algorithm is 
very vital in determining the difference between the original signals, and recovered signals. 
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