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ABSTRACT 
 

In this paper, we study signal detection in multi-input-multi output (MIMO) communications system with 

non-Gaussian noises such as Middleton Class A noise, Gaussian mixtures and alpha stable distributions, 

using several deep neural network-based detector models such as FULLYCONNECTED and DETNET 

detector. By applying information theoretic criterion of Maximum Correntropy , SVD analysis on the 

channel matrix and reducing network complexity, the suggested deep neural network detector performs 

well in environments with non-Gaussian noises and, compared to the deep neural network-based detector 

with MSE loss function, achieves better performance. 
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1. INTRODUCTION 
 

Machine learning (ML) based wireless communications is a new research topic, and although 
with various theoretical difficulties due to wireless network heterogeneity, varying service 

demands, a huge number of connections, it has become a helpful tool with potential capabilities.  

Wireless channel estimation in non-Gaussian noises is a difficult problem. In this study, we look 
at receiver design for non-Gaussian noise-interrupted transmission channels. One of the most 

difficult tasks in MMO communication systems is to reduce bit error rate (BER) without 

increasing the complexity of the inclusive detector [1]. 
 

Multiple antenna communications known as multi-input multi-output (MIMO) technology, 

incorporated in several wireless standards such as 802.11 and LTE, has two important 

advantages, i.e., multiplexing gain (increasing transmission rate) and diversity gain (decreasing 

error probability); however, in high Signal to Noise Ratios, and hence, necessitating its 
application with orthogonal frequency division multiplexing (OFDM). A MIMO transmitter 

sends multiple data streams per antenna, while a MIMO receiver receives multiple copies of 

multiple data streams with noise on each antenna. A MIMO detector detects multiplexed data 
from all receiver antennas, in the presence of noise and interferences [2-5]. 

 

In general, a maximum a posterior (MAP) detector gives excellent detection performance but has 
a limited detection range. Iterative detection algorithms [6-7], successive detection (SD) [8-9] 

and successive interference cancellation (SIC) [10] show high performance with medium 
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complexity. All of these detectors need comprehensive knowledge of channel state information 
(CSI). The development of machine learning (ML) techniques is one possible strategy to 

reducing detector complexity. They may offer solutions working well in addition to being simple 

to be deployed [11]. Deep learning, in particular, when improved by large data, may record 

complicated associations; the name "deep learning" refers to the number of network layers and 
includes more than two depths, and yet bigger networks can accept information better than 

shallow models [12]. Several researches have looked at the use of ML for signal recognition, 

which has resulted in a number of detectors. DNN is widely utilized because of its great learning 
capabilities [13 -14]. However, because of the enormous number of neurons and layers, 

particularly those built for large-scale systems, its computational cost and energy consumption 

are often high [15-35]. Other ML methods for signal recognition include CNN [16-19], RNN [20] 
and ELM [21-22]. 

 

Low-grade matrix analysis and core learning are two approaches that may be used to develop 

sophisticated learning systems. The computational cost of processing large of core matrices can 
be considerably reduced by using low-grade decomposition. Existing techniques, on the other 

hand, are generally unsupervised and do not incorporate supplementary information such as class 

labels, making parsing less effective for a specific learning objective. Kernel learning approaches, 
on the other hand, aim to construct nuclear matrices whose structure is well matched with the 

learning goal, hence improving the overall performance of kernel methods.  

 
In this study, we leverage the advantages of matrix analysis in addition to the Gaussian kernel to 

achieve the benefits of both methodologies. The following are the key points of this paper: We 

discuss RESNET-based detectors and FULLY CONNECTED networks for MIMO 

communications, by exploring maximum Correntropy criterion in the presence of non-Gaussian 
noises such as Middleton Class A models, Gaussian mixtures and alpha stable distributions. 

Based on numerical data, we illustrate which model outperforms the others in terms of 

performance using the suggested cost function. 
 

In section II, preliminaries are explained. In Section III, the proposed model is described, and in 

Section IV, we have numerical results. Section V concludes the paper. 

 

2. PRELIMINARIES 
 

In this section, we review briefly the MIMO channel, non-Gaussian noises, signal detection and 

maximum Correntropy criterion (MCC) 
 

2.1. MIMO Model 
 
As said in Introduction, MIMO technology uses multiple antennas in both the transmitter and 

receiver, leading to improvement in data transmission rate and or detection error probability in 

high signal to noise ratios (SNRs), necessitating the usage of OFDM (orthogonal frequency 

division multiplexing) signalling [36]. In a MIMO system with 𝑁𝑇  Transmitter antennas and  𝑁𝑅 

Receiver antennas, the received baseband signal is as follows: 

 

(1) 𝒚 = 𝑯𝒙 + 𝒛 

[

𝒚𝟏

⋮
𝒚𝑵𝑹

] = [

𝒉𝟏𝟏 ⋯ 𝒉𝟏𝑵𝑻

⋮ ⋱ ⋮
𝒉𝑵𝑹𝟏 ⋯ 𝒉𝑵𝑹𝑵𝑻

] [

𝒙𝟏

⋮
𝒙𝑵𝑻

] + [

𝒛𝟏

⋮
𝒛𝑵𝑹

] 
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The 𝒚 and 𝒙 are the received and transmitted signal vectors, respectively. And 𝑯 represents the 

wireless channel coefficients matrix between the transmitter and receiver, whereas 𝒛 represents 

the noise vector (Fig. one) to be independent of noise. 

 

 
 

Figure 1-MIMO model 

 

One of the most critical difficulties in wireless communication is the reduction of noise effects. 
As a result, using deep learning to detect the signal can be an effective method. 

 

2.2. Non-Gaussian Noises in Wireless Channel 
 

The Gaussian distribution for noise is an assumption based on central limit theorem, leading to 

easily obtain mathematical results about channel estimation, channel rate and capacity and signal 
detection. However, in many practical situations, the Gaussian distribution is not adequate to 

model the underlying noise phenomenon, and various non-Gaussian noise models are used to 

design and analyze the performance of communication systems. Non-Gaussian noise models such 

as Middleton Class A noise, Gaussian mixtures and alpha stable distributions, on the other hand, 
makes difficult to solve communication problems, e.g., to estimate channel model parameters 

prior to signal detection.  

 
Many of the optimization problems are solved by minimizing the known mean squared error 

(MSE). The MSE second order standard is computationally simple and simple to implement, but 

it does not work well in non-Gaussian noises. To deal with non-Gaussian noises, the application 
of information-theoretic criteria provides an efficient approach to dealing with nonlinear, non-

static, and non-Gaussian problems. 

 

Gaussian mixtures (GM) have been used to model various non-Gaussian noises [23-24].  

Probability density function of a Gaussian mixture 𝑓𝑀(𝑥)  is given by the sum of the weighted 

density functions of 𝑁 Gaussian distribution probabilities  𝑓𝑖  (𝑥) with means and variances 

 

(𝜇1،…  ،𝜇𝑁،𝜎1
2،…  ،𝜎𝑁

2) 
 

as: 

 

(2) 
𝒇𝑴(𝒙) = ∑ 𝝀𝒊𝒇𝒊 (𝒙)

𝑵

𝒊=𝟏

 

 
Where, the weights are positive and add up to one. The expectation is: 

 

𝝁 = ∑ 𝝀𝒊𝝁𝒊

𝑵

𝒊=𝟏

 
(3) 

 
This model is general, and it can be used to approximate various symmetric and mean densities, 

such as the Laplacian and alpha stable distributions. Impact noise is a type of acoustic noise 
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caused by instantaneous sharp sounds such as clicks and pops, known as impulses. Middleton 
first described the phenomenon of impact noise in detail in the 1960s, when he proposed a model 

for impulse noise in communication. To create the model, he described impulsive noise in a 

system as a series of pulses that occur at random impulses of varying duration and intensity. 

 

𝑧(𝑡) = ∑ 𝑎𝑖  𝛿(𝑡 − 𝑡𝑖)

𝐼

𝑖=1

 

 
Many authors investigated percussion noise modelling  in the wake of Middleton noise models. 

Some percussion noise models from the literature can be expressed as follows: 

 

I. Impulse noise models without memory 
 

 Middleton Class A 

 Bernoulli-Gaussian 

 Symmetric Alpha-Stable distribution(SαS) 

 

II. Impulse noise models with memory 
 

 Markov-Middleton 

 Markov-Gaussian 

 

To model the phenomena encountered in practice, 𝑆𝛼𝑆 distributions are used. These phenomena 
do not have a Gaussian distribution; instead, their possible distributions may have fat tails when 

compared to Gaussian distribution sequences. The following parameters describe these 

distributions: 
 

 𝛼: is the characteristic exponent, and describes the tail of the distribution(1 < 𝛼 ≤ 2) 

 𝛽: describes the skewness of the distribution (−1 ≤ 𝛽 ≤ +1) 

 𝛾: is the scaling parameter 𝛾 > 0 

 𝛿:is a real number that gives the location of the distribution 

 

Despite being such an appealing model for impulsive noise, the alpha stable distribution family 

has received little attention in the literature because, with the exception of a few special cases, 
there are no explicit compact expressions for the probability density function. Although this 

method is efficient for a large number of samples, it does not provide an analytic form and is not 

suitable for real-time applications due to the extensive numerical integrations involved. Only for 

the Gaussian (𝛼 = 2), Cauchy (𝛼 = 2; 𝛽 = 0), and Pearson (𝛼 =
1

2
; 𝛽 = −1) distributions there 

exist closed form expressions for the probability distribution function (P.D.F.) Figure below (Fig. 

2) compares various noise models. 
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Figure 2-comparison of  additive noise models 

 

2.3. Signal Detection 
 
Signal recognition and classification are two of the most fundamental signal processing issues, 

with numerous applications in domains such as communication, voice recognition, biomedicine, 

image processing, and many more [25]. The difficulty of recognizing the existence of a favored 
signal from noisy data is referred to as signal detection. A significant variety of techniques for 

detecting communication signals have been developed in the literature. [26-27-28] 

 
The great majority of these algorithms assume that the noise in the radio channel has a Gaussian 

distribution. Many non-Gaussian statistical phenomena exist [29]. We employ the  maximum 

Correntropy criterion-based cost function in the DETNET-based deep neural network model as 

well as fully connected models to increase signal identification performance in the presence of 
non-Gaussian noise. 

 

2.4. The Maximum Correntropy Criterion (MCC)  
 

The Maximum Correntropy criterion (MCC) has found effective applications in the fields of 

signal processing and machine learning in recent years, which is especially beneficial when 
signals are tainted by heavy-duty impact noise [30-33]. The best model is obtained using the 

MCC between the model's output variable and the TARGET variable: 

 

(4) 𝑴∗ = 𝒂𝒓𝒈 𝒎𝒂𝒙
𝑴∈𝓜

(𝑽𝝈(𝑻، 𝒀)) 

 

Where 𝑀∗ is the optimal model, 𝒀 is the model output variable and 𝑻 is the target variable,𝑽𝝈 

Cross-Correntropy for two random 𝑻 and 𝒀 , When sampling from the densities, cross-

Correntropy can be estimated with PARZEN estimator: 

 

�̂�𝝈(𝒆) =
𝟏

𝑵
∑ 𝑮𝝈 (𝒕𝒊 − 𝒚𝒊)

𝑵

𝒊=𝟏

=
𝟏

𝑵
∑ 𝑮𝝈 (𝒆𝒊)

𝑵

𝒊=𝟏

 
(5) 

 

and 𝑮𝝈(𝒆) is a Gaussian kernel function as follows: 
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𝐺𝜎(𝑒) =
1

𝜎√2𝜋
exp (−

𝑒2

2𝜎2
) 

 

Where  𝑒 = 𝑇 − 𝑌 is the error between 𝑇 and 𝑌 and 𝜎 is the core bandwidth. Since the Gaussian 

kernel function 𝐺𝜎(𝑒) is a local function of the error variable , Correlation may be utilized as a 
strong error measure in signal processing and machine learning and the maximum Correntropy 

criterion (MCC) algorithm is 

 

𝑀𝐶𝐶 = 𝑚𝑎𝑥
𝑤

�̂�𝝈 (𝑒) 

 

Where the parameters 𝑤 control the error PDF 𝑒 = 𝑇 − 𝑌. 

 
Assume the following is the sample set: 

 

𝒟 = {(𝑡𝑖،𝑦𝑖)}𝑖=1
𝑁  

 

In this case, the experimental form �̂�𝜎(𝑒) Based on the equation (5) is as follows: 

 

�̂�𝝈(𝒆) =
𝟏

𝑵
∑ 𝑮𝝈 (

(𝒕𝒊 − 𝒈(𝒙𝒊))
𝟐

𝟐𝝈𝟐
)

𝑵

𝒊=𝟏
 

(6) 

 

Where the function 𝑔 is the mapping between the input and output of the model and  𝜎 scaling 

parameter. In view of the above considerations, in this paper, our main concerns are the following 

two aspects: 
 

 We are concerned with the connections between the Correntropy loss and the least 

squares loss when they are employed in MIMO detection problems. 

 We make a comparison between detector models based on Correntropy loss criterion. 

 

3. THE PROPOSED MODEL 
 

In general, the primary notion in detectors based on model machine learning is based on a 

learning algorithm such that the output  �̂�𝑴𝑳 of the model is a high-accuracy estimate of the 

transmitted signal vector and may be expressed as follows: 
 

�̂�𝑴𝑳 = 𝓣(𝒇(𝒔 ، 𝓟)) (7) 

 

This comprises 𝒫 a set of learnable parameters and 𝒔 as well as any incoming information and 

channel state information (CSI); 𝑓 is a nonlinear function and 𝒯 that has been mapped to function 

𝑓. Unlike traditional detectors, which have a high level of complexity, detectors inspired by 

machine learning approaches have been developed. These detectors are known as unfolding 
detectors. Deep neural networks are used in these detectors because neural networks employ 

nonlinear functions for training. Furthermore, in Figure 3, we may employ fully connected FC-

DNN neural networks also for detection although DETNET models require a layer-by-layer 
structure.  
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Figure 3. Fully connected Detector 

 
DETNET was first proposed in "Deep MIMO detection" [34]. Based on the iterative optimization 
method, projected gradient descent(PGD) solves the problem of signal detection. DETNET is a 

multi-layered neural network for signal detection in a MIMO system and has a structure based on 

Figure 4. In the DETNET network, all layers have the same structure and each layer has 4 inputs 

(𝑣(𝑙−1)،𝐻𝑇𝐻،�̂�(𝑙−1)، − 𝐻𝑇𝑦). where,  𝑦 wireless channel output vector and 𝐻 channel matrix 

and  𝐻𝑇𝑦 and 𝐻𝑇𝐻 common inputs are all layers .DETNET is iterative network, The output of 
each unit can be used as the overall network output, and as the number of network units 

increases, the output of each unit gets closer to transmission signals based on Euclidean distance. 

We should make the network as deep as possible for better performance. Network output �̂�𝑀𝐿 is 
the result of update on the L layer of the network and the output of each layer is as follows: 

 

(8) 
�̂�[𝒍] = 𝒇[𝒔 − 𝜹[𝒍] 𝝏‖𝒚 − 𝑯𝒔‖𝟐

𝝏𝒔
]𝒔=�̂�[𝒍−𝟏] = 𝒇[�̂�[𝒍−𝟏] − 𝜹𝟏

[𝒍]
𝑯𝑻𝒚 + 𝜹𝟐

[𝒍]
𝑯𝑻𝑯�̂�[𝒍−𝟏]] 

 

concat
enate

RELU

 
 

Figure 4. DETNET model 

 

Where, 𝑓(∙) is a nonlinear mapping (RELU) and 𝛿1 and 𝛿2 are step sizes and �̂�[𝑙] is network 

output. The loss function of the network is as follows: 
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𝐿𝑜𝑠𝑠 =  ∑ log (𝑙)
‖𝑥 − �̂�

[𝒍]‖
2

‖𝑥 − (𝐻𝑇  𝐻)−1𝐻𝑇  𝑦‖2

𝐿

𝑙=1
 

 

In summary, the input-output relationships in the DETNET are as follows: 
 

𝑞[𝑙] =  �̂�[𝑙−1] − 𝛿1
[𝑙]

𝐻𝑇𝑦 + 𝛿2
[𝑙]

𝐻𝑇𝐻�̂�[𝑙−1]
 

𝑥[𝑙] = [𝑣[𝑙−1]𝑞[𝑙]]
𝑇

 

𝑧[𝑙] = 𝑓(𝑤1
[𝑙]𝑥[𝑙] + 𝑏1

[𝑙]) 

�̂�[𝑙] = 𝜓(𝑤2
[𝑙]𝑧[𝑙] + 𝑏2

[𝑙]) 

𝑣[𝑙] = 𝑤3
[𝑙]𝑧[𝑙] + 𝑏3

[𝑙]
 

 

Where the initial values are 𝑣[0] = 0 and  �̂�[0] = 0 and the network parameters are: 

 

{𝑤1
[𝑙]،𝑤2

[𝑙]،𝑤3
[𝑙]،𝑏1

[𝑙]
،𝑏2

[𝑙]
،𝑏3

[𝑙]
،𝛿1

[𝑙]
،𝛿2

[𝑙]
} 

 

Finally, the output of the L layer is equal to 
 

𝑠𝑀𝐿 = 𝒬[�̂�[𝐿]] 
 

Where 𝒬 is the sign function. As can be seen, Although DetNet is a high-performance MIMO 

detection neural network model, there is still room for improvement. We simplify the network in 

this section. SCNET is a sparsely connected neural network that has been simplified. Although 

there are two outputs in Fig.4, only one is used as an approximation of the transmitted signal 𝑥, 

therefore, parameter 𝑣[𝑙] can be deleted, reducing network complexity (SCNET). When the 

number of transmitter and reception antennas on a DETNET network is equal, the network's 
performance suffers. DETNET networks with Rayleigh channel models and modulations such as 

BPSK and QPSK have an excellent record. SCNET networks outperform DETNET networks in 

terms of performance and are less complicated due to a reduced number of parameters. 
Furthermore. The loss function for SCNET based on MSE is as follows: 

 

(9) 
𝑳𝑶𝑺𝑺𝑴𝑺𝑬 = ∑ 𝐥𝐨𝐠 (𝒍) ‖𝒙 − (𝑯𝑻 𝑯)

−𝟏
𝑯𝑻 𝒛‖

𝟐𝑳

𝒍=𝟏
 

 
Where 𝐻 is the channel matrix ,  𝑧 is the nonlinear mapping of the received signal vector, and 𝑥 

is the sent signal vector . Although the DETNET model performs well, there is still opportunity 
for development. We utilize metrics based on information theory such as MCC which outperform 

MSEs in non-Gaussian noises, and compare the models' performances. Based on MCC criteria, 

we define the loss function as follows: 
 

(10) 
𝑳𝑶𝑺𝑺𝑴𝑪𝑪 = 𝝈𝟐[𝟏 − 𝜼𝔼[𝑮𝝈(𝒆)]] = 𝝈𝟐 [𝟏 − 𝜼

𝟏

𝑵
∑ 𝑮𝝈(𝒆𝒊)

𝑵

𝒊=𝟏

] 

 

Where 𝜎 >  0 denotes a scale parameter and e denotes the error signal vector, and is defined as 
follows: 

 

𝑒 = 𝑥 − 𝐻𝑇𝑧[𝑙] 
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The vector 𝑧[𝑙] is a nonlinear mapping of the received signal of the wireless channel in 𝑙 layer  

and 𝐺𝜎(𝑒)  is a Gaussian kernel function with scale parameter 𝜎 > 0 and 𝜂 is learning 

coefficient. Next, in order to reduce the complexity of the model, we remove the inverse matrix 
calculation from Equation (9) and examine the performance of the model. Secondly, we perform 

a pre processing on the model using SVD or QR analysis on the channel matrix 𝐻 to separate and 

eliminate the interference caused by the transmitter antennas, and in this case, we also examine 

the performance of the model. The proposed MCC metric based on the vector 𝑧[𝑙] and 𝑥 and 

based on Equation (10) is as follows: 

 

(11) 
𝑳𝑶𝑺𝑺 = 𝝈𝟐 [𝟏 − 𝜼𝔼[𝑮𝝈(𝒙 − (𝑯𝑻 𝑯)−𝟏𝑯𝑻𝒛[𝒍])]] = 𝝈𝟐[𝟏 − 𝜼

𝟏

𝑵
∑[𝑮𝝈(𝒙𝒊 − (𝑯𝑻 𝑯)−𝟏𝑯𝑻𝒛𝒊

[𝒍])]

𝑵

𝒊=𝟏

] 

 
Our goal is to make maximum similarity between network output and send signals as close as 

possible. Next by removing the inverse matrix calculation from Equation (11), the proposed 
metric is as follows: 

 

(12) 
𝑳𝑶𝑺𝑺 = 𝝈𝟐[𝟏 − 𝜼

𝟏

𝑵
∑[𝑮𝝈(𝒙𝒊 − 𝑯𝑻𝒛𝒊

[𝒍])]

𝑵

𝒊=𝟏

] 

 

SVD analysis is a matrix factorization method used in many numerical applications of linear 

algebra such as PCA. This technique enhances our understanding of key components and 
provides a robust computational framework that allows us to achieve higher accuracy for 

datasets. These are important because they help to find methods for actually calculating and 

estimating results for the models and algorithms we use. In this case, we use the following loss 

function (Eq.13) 
 

𝐻 = 𝑈Σ𝑉𝑇 

(13) 𝑳𝑶𝑺𝑺 = 𝝈𝟐 [𝟏 − 𝜼𝔼[𝑮𝝈(𝒙 − 𝚺𝑻𝒛[𝒍])]] = 𝝈𝟐[𝟏 − 𝜼
𝟏

𝑵
∑ 𝑮𝝈(𝒙𝒊 − 𝚺𝑻𝒛𝒊

[𝒍])𝑵
𝒊=𝟏 ] 

 
In the following, based on the DETNET model, considering a fully connected neural network 

(Fig.3) and the proposed loss function, we examine the model and compare it with DETNET, by 

investigating completely connected models, deleting parameter 𝑣[𝑙], and using the proposal loss 

function. The input and output of the first layer of the network are as follows: 
 

𝑥𝑖
[𝑙] = [𝐻𝑇𝑦  �̂�[𝑙−1]𝐻𝑇𝐻 ]

𝑇
 

�̂�[𝑙] = 𝑓(𝑤[𝑙]𝑥𝑖
[𝑙]  + 𝑏[𝑙]) 

 
And hence, the loss function can be written as follows (Eq. 14): 

 

(14) 𝑳𝑶𝑺𝑺 = 𝝈𝟐[𝟏 − 𝜼𝔼[𝑮𝝈(𝒙 − �̂�[𝒍])]] 
  
In the following section, we will compare the performance of the models. 

 

4. NUMERICAL RESULTS 
 

In this section, we present some simulation results to confirm the effectiveness of the proposed 
DETNET detector based on the changes expressed on the non-Gaussian noise model. We express 

the results based on the fixed channel model, assuming 4 transmitter antennas and 8 receiver 
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antennas. We explore BPSK modulation and evaluate the results in the Gaussian mixed noise 
model as well as the alpha stable distribution. We also use FULLY CONNECTED models and 

express the analysis based on the comparison of models. In each model and each repetition, we 

produce 5000 educational data and use 2000 repetitions in the model training stage.  

 
We then obtain the bit error rate (BER) based on 1000 test data and repeat it 200 times. Using the 

fully connected model as well as the 90-layer DETNET model, we obtain the results based on the 

range of 1 to 20 for the SNR as the ratio of signal power to noise power, that the signal power is 

in the form of the following relation (noting to 𝑦 = 𝐻𝑥 + 𝑧 and independence 𝒙 and 𝑯): 

 

(15) 𝔼[|𝑯|𝟐]𝔼[|𝒙|𝟐] 

 
Where, 𝑯 is the channel matrix and 𝒙 is the transmitted signal. The noise is in the form of a 
Gaussian mixture based on Equation (2) and as follows (Equation (16)): 

 

(16) 
𝒛 = ∑ 𝝀𝒊 𝓝(𝝁𝒊،𝝈𝒊

𝟐 )
𝑵

𝒊=𝟏
 

 
Based on this and using Equation (3), the power of noise can be expressed as follows (Equation 
(17)): 

 

(17) 
𝝈𝒛

𝟐 = ∑ 𝝀𝒊𝝈𝒊
𝟐

𝑵

𝒊=𝟏

+ ∑ 𝝀𝒊 (𝝁𝒊 − 𝝁)

𝑵

𝒊=𝟏

 

 
Based on Equations (16) and (17), the SNR ratio can be expressed as follows: 
 

𝑆𝑁𝑅 =
𝔼[|𝐻|2]𝔼[|𝑥|2]

𝝈𝒛
𝟐

 

 

To obtain different SNR values, we assume that the values 𝜆𝑖 are constant and follow the 

following condition: 

 

𝜆1 > 𝜆2 > ⋯ > 𝜆𝑁  
 

By making changes on the mean variance of Gaussian distributions and assuming the transmitted 
signal strength is constant, we calculate different SNR values, or assuming that the mean variance 

of the Gaussian distributions is constant and the transmitted signal power changes, we gain access 

to different SNR values. In this article, we use the second method and examine non-Gaussian 

noise in two cases. In the first case, we assume that the noise model of a Gaussian mixture 
includes a standard Gaussian distribution with a colored Gaussian distribution, and in the second 

case, we consider an impulse noise, which we estimate the noise model using Scale mixtures of 

the Gaussian to express the noise model. 
 

4.1. Mixture Guassian Noise 
 

The Gaussian mixture model can be considered as follows: 

 

𝒇(𝒛) = (𝟏 − 𝜺)𝜼(𝒛) + 𝜺𝒉(𝒛) (18) 
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where 𝜀 is some small positive constant,𝜂 is a Gaussian  density  function, and ℎ is some other 

density  function  with  heavier  tails. Clearly,  𝑓 defined  by  (Eq.18)  is  a  valid  density  

function  as  long  as 𝜀 lies  in  the  interval  [0,1]. For  small  enough  values  of 𝜀 the behavior of 

𝑓  near the origin is dominated by that of 𝜂,  assuming  that ℎ  is  a  bounded function.  For large  

values of |𝑧|, however, ℎ  dominates  the  behavior  of 𝑓 since  its  tails  decay  at  a  slower  rate 

than do those of 𝜂. In this case, we consider the added noise as follows: 

 
𝑧 = 𝜆1𝒩(0،1) + 𝜆2𝒩(2،6) + 𝜆3𝒩(4،8) 

 
Based on the added noise model and SNR selection, the results in the added noise distribution 

and the two detector models FULLY CONNECTED and DETNET PRE SVD based on the 

proposed loss function (Equation [12]), are reviewed and compared with MSE-based loss 
function. 

 

The results based on Table 1 show that the DETNET network achieves better results with SVD 

preprocessing in the proposed Gaussian noise. In addition, the BER TEST results and the 
comparison of FULLY CONNECTED and DETNET PRE SVD models based on the two loss 

functions are shown in Figures 5,6 . 

 
 As can be seen, firstly, in FULLY CONNECTED models and based on CORRENTROPY 

criterion for 𝐿𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  1.4 , the best results are obtained in high SNRs, but in low SNRs, 

FULLY CONNECTED model based on CORRENTROPY and 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  2.1 leads to 

better results, and secondly DETNET PRE SVD offers the best results based on 
CORRENTROPY criterion in high and low SNRs. 

 

The results based on two loss functions based on MSE and CORRENTROPY show that BER 
values are almost the same in both models and the use of CORRENTROPY leads to better BER 

but the results are slightly different. Gaussian mixed models that can be expressed based on a 

Gaussian distribution Using CORRENTROPY leads to better results than MSE, but due to the 
small difference between the results of the two loss functions, each of these loss functions can be 

used.  

 
Table1 - Compare Ber Test for Fully Connected Detector and Detnet Pre Svd with Correntropy Loss 

Function and Mse Loss Function 

 

SNR=20 SNR=16 SNR=12 SNR=8 SNR=4 SNR 
 

NOISE   

DETECTOR 

MODEL 

 

0.000635 0.00128875 0.0063675 0.03356875 0.10281375 Gaussian 

mixed 

Fully connected 

𝜎 = 2.1  𝜂 = 1 

0.00058625 0.00112625 0.00631625 0.03397 0.1031825 Gaussian 

mixed 

Fully connected 

𝜎 = 1.4  𝜂 = 1 

0.00065625 0.00117875 0.00639475 0.03386625 0.103755 Gaussian 

mixed 

Fully connected 

MSE 

4.5125e-05 1.30375e-

04 

7.1125e-04 3.344875e03 9.93150e03 Gaussian 

mixed 

DETNET PRE 

SVD 

𝜎 = 1.3  𝜂 = 1 

5.0125e-05 1.425e-04 7.17375e-04 3.3535e-03 9.93775e03 Gaussian 

mixed 

DETNET PRE 

SVD 

MSE 
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Figure 5- Comparison of fully connected model 

performance based on LOSS FUNCTION 

Figure 6- -Comparison of PRE SVD DETNET model 

performance based on LOSS FUNCTION 

 

In the following and in the form of seven training errors and TRAIN BER in FULLY 
CONNECTED and DETNET PRE SVD models and based on the LOSS FUNCTIONS studied, 

as can be seen, all models converge to close error values. Also, TEST time is examined in 

different models and the results are expressed in Table 2. 

 
 

 

Figure 7- Comparison of train BER  detector performance based on LOSS FUNCTION 
 

Table 2 - Compare Test Time for Fully Connected Detector and Detnet Pre SVD with Correntropy Loss 

Function and Mse Loss Function 
 

SNR=20 SNR=16 SNR=12 SNR=8 SNR=4 SNR 
 

NOISE   

DETECTOR 

MODEL 

 

4.3354e-

05 

4.36815e-

05 

4.38334e-

05 

4.34597e-

05 

4.3743e-

05 
Gaussian 

mixed 

Fully connected 

𝜎 = 2.1  𝜂 = 1 
4.4293e-

05 

4.32603e-

05 

4.42923e-

05 

4.42998e-

05 

4.1989e-

05 
Gaussian 
mixed 

Fully connected 

𝜎 = 1.4  𝜂 = 1 
4.1950e-

05 

4.18524e-

05 

4.20554e-

05 

4.23451e-

05 

4.2731e-

05 
Gaussian 

mixed 

Fully connected 

MSE 
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2.7027e-

05 

2.68854e-

05 

2.66355e-

05 

2.74955e-

05 

2.6792e-

05 
Gaussian 
mixed 

DETNET PRE 
SVD 

𝜎 = 1.3  𝜂 = 1 
2.8199e-

05 

2.89999e-

05 

3.47213e-

05 

3.27833e-

05 

3.1325e-

05 
Gaussian 

mixed 

DETNET PRE 

SVD 
MSE 

 

 

4.2. Symmetric alpha stable NOISE 
 

In this case, we assume that the model of noise added to the signal in the wireless channel is as 

follows: 

 
𝑧 = 𝑆𝛼𝑆(𝛼 = 1.2 ،   𝛽 =  0.7  ) 

 

Based on what is stated in section one, the 𝑆𝛼𝑆 distribution can be estimated based on a Gaussian 

mixed distribution ,so we assume that the noise distribution is in the form and to calculate the 
SNR, we use the noise distribution estimation based on a Gaussian mixed distribution as follows: 

 

𝑧 = ∑ 𝜆𝑖𝑓(𝑥; 𝜇𝑖،𝜎𝑖
2 )

𝑁

𝑖=1

 

 

The important point in this estimation is the calculation of coefficients, so we assume that the 

number and average and variance of Gaussian distributions are known and the coefficients of 

these distributions are unknown, and we use a Kernel density estimation model to calculate the 
coefficients and obtain the best estimate of noise distribution. 

 

Kernel density estimation (KDE) is a non-parametric method for estimating the probability 
density function of a given random variable. It is also referred to by its traditional name, 

the Parzen-Rosenblatt Window method, after its discoverers. Using this estimation, the noise 

power can be calculated and different values of SNR coefficient can be obtained, and using these 

coefficients, the detector models based on loss functions in the presence of non-Gaussian noise 
can be analysed . The results are shown in Table 3 and Figures 8,9 . 

 

 

Figure 9-  Comparison train BER of DETNET 

without v in the presence of impact noise 

 
 

Figure 8- Comparison BER of DETNET without 

v in the presence of impact noise 
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Table 3 - Compare Test BER for Fully Connected Without V Detector and DETNET without V with 

Correntropy Loss Function and MSE Loss Function 

 
SNR=2

0 

SNR=16 SNR=12 SNR=8 SNR=4 SNR=1            

SNR  
 

NOISE   

DETECTOR 

MODEL 

 

0.001032
75 

0.002442
75 

0.005966 0.013012
25 

0.02185
52 

0.021855
25 

Levy 

distributi

on 

DETNET 

WITHOUT V 

𝜎 = 1.4  𝜂
= 1 

0.017581

25 

0.033792

5 
0.072406

25 

0.142461

25 

0.22538

62 

0.284045 Levy 

distributio

n 

DETNET 

WITHOUT V 

MSE 

 
Based on the data in Table 3, it can be seen that the detector model based on the 

CORRENTROPY criterion has given much better results in impulse noise. 
 

5. CONCLUSIONS AND FUTURE WORK 
 

In this paper, a better in-depth learning model for detection in MIMO systems with non-Gaussian 

environments is proposed based on DETNET model, by exploring MCC criterion. Calculations 
on BER and SNR performances show that DETNET PRE SVD not only simplifies complexity, 

but also improves the performances. The obtained results can be studied for other kinds of noise 

models and loss functions. 
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