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ABSTRACT 
 

Malware detection in IoT environments necessitates robust methodologies. This study introduces 
a CNN-LSTM hybrid model for IoT malware identification and evaluates its performance against 

established methods. Leveraging K-fold cross-validation, the proposed approach achieved 95.5% 

accuracy, surpassing existing methods. The CNN algorithm enabled superior learning model 

construction, and the LSTM classifier exhibited heightened accuracy in classification. 
Comparative analysis against prevalent techniques demonstrated the efficacy of the proposed 

model, highlighting its potential for enhancing IoT security. The study advocates for future 

exploration of SVMs as alternatives, emphasizes the need for distributed detection strategies, and 
underscores the importance of predictive analyses for a more powerful IOT security. This 

research serves as a platform for developing more resilient security measures in IoT ecosystems. 
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1. INTRODUCTION 
 

The Internet of Things (IoT) is a powerful digital technology that connects the real and online 
worlds. It lets people, things, and machines communicate and interact with each other across the 

globe. This creates new ways of doing business and working together. But IoT devices are also 

hard to design and secure, so cybercriminals can easily hack them. They use weak passwords, old 
software, and malware to take over IoT devices [1]. In 2020, one out of every four cyberattacks 

was aimed at IoT devices, and this number will only go up as more people use these technologies. 

Malware is one of the biggest dangers for IoT devices, and it shows how important it is to have 

better security solutions. 
 

For example, in October 2016, Dyn, a major DNS provider in the US, was hit by one of the 

biggest and strongest DDoS attacks by the Mirai malware family. This malware infected more 
than 1.2 million IoT devices, and attacked popular websites like Google and Amazon. 

 

So, it is very important for researchers to improve the security of IoT devices, especially when 
they deal with IoT-related malware. There are many research studies on how to make IoT devices 

more secure, such as how to protect IoT communications [2][3]. Jamal Adineh and his colleagues 

have categorized various applications of the Internet of Things to identify security requirements 

and their upcoming challenges. They analyze traditional encryption solutions to address issues of 
privacy, confidentiality, and accessibility. Additionally, they explore emerging technologies such 

as blockchain and software-defined networks. In this context, a recent survey conducted by Imran 
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Makhdoom and others comprehensively addresses security issues and threats posed by IoT 
devices [4]. Furthermore, they emphasized that the inherent safety provided by communication 

protocols does not sufficiently protect IoT devices from malicious malware and potentially 

endangering attacks. Hassan and his associates conducted a survey regarding security issues for 

IoT devices [1]. 
 

However, the authors solely focus on introducing solutions like authentication and lightweight 

encryption, not the issue of identifying IoT malware. Furthermore, Felt and colleagues [5] 
examined 46 pieces of mobile malware in the wild and collected a dataset to evaluate the 

effectiveness of mobile malware identification and prevention methods. Costin et al. [6] 

presented only a comprehensive review and analysis of all known classes of IoT malware without 
delving into approaches for identifying IoT malware. There are two main ways to find IoT 

malware: dynamic and static analysis. The dynamic way is to watch executable files while they 

run and find weird behaviors [7]. But this way is not very good, because some malware only acts 

badly when certain things happen. Also, it is hard to run IoT executable files because they use 
different architectures like MIPS, ARM, PowerPC, Sparc, and they have limited resources. 

 

The static way is to look at and find bad files without running them. One big benefit of static 
analysis is that it can see what the malware is made of. This means that we can see all the 

possible ways the malware can work, no matter what kind of processor it uses. This is great for 

dealing with the variety of IoT devices. 
 

However, there is not much research on how to use static analysis to find IoT malware, even 

though there are many studies on IoT security and malware detection. Identifying IoT malware is 

becoming a key issue for ensuring the security of the internet system and personal data. In 
summary, IoT malware identification methods can be divided into two groups: non-graph-based 

and graph-based methods. Non-graph-based methods can achieve good results when identifying 

malware without customization or obfuscation, but they potentially lose their accuracy when 
identifying clear malware. On the other hand, graph-based methods show advantages when 

analyzing the control flow of IoT malware, so despite the complexity of these methods, they have 

the potential to identify precise malicious codes that are invisible or complicated. Based on the 

mechanism, detection analysis and processing time, the advantages and limitations of the work 
done so far, they can be used to improve efficiency in future research. As a further development 

of this work, a lightweight graph-based detection method can be designed and developed that 

helps to detect malicious executable files in IoT devices. In this paper, the following solutions are 
presented to address the existing challenges:  

 

1 - We receive the datasets and divide them into two groups for experimental and training 
sections. For this purpose, we use k-fold cross validation 

2 - Since the data have a high volume, their dimensions must be reduced, so we use SVD. This 

method reduces linear dimensions using short singular value decomposition (SVD). 

3 - In the next step, feature selection is performed. Therefore, we use Chi-Squared. This is 
another filter-based method. In this method, we calculate the chi-square metric between the 

target and the numerical variable and only select the variable with the maximum chi-square 

values and create a learning model with the help of CNN. 
 

 In the following, the background of the research will be discussed in the second section. The 

proposed method is explained in the third section. In the fourth section, the proposed method is 
simulated with the Python program and the results will be compared with other methods. In the 

fifth section, we will conclude and make suggestions for future work. 

 

2. BACKGROUND OF THE RESEARCH 
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The initial approach for identifying IoT devices on the internet involves scanning the entire 4Ipv 

address space. The use of scanners to find specific types of devices has been demonstrated, as 

shown in [8]. Researchers illustrate how Shodan, Masscan, and Nmap can be used to identify 

particular vulnerable IoT models. Similarly, CERN network researchers analyzed and attempted 
to identify IoT devices using web scraping [9]. They identified all devices, initially by scanning 

their open ports and subsequently by scraping their web interfaces when they had a port. Using 

this technique, they successfully identified numerous models and manufacturers of Internet of 
Things devices. They then conducted vulnerability assessments on the identified devices, noting 

that 11% were vulnerable by default and an additional 13% could be easily guessed through 

default credential verification. 
 

The second intriguing approach to identify Internet of Things devices involves traffic capture. 

Although this is a new research area, some researchers have developed techniques to identify 

devices based on traffic capture. Most of these techniques are based on domain names that the 
devices contact, as they can be easily obtained from the captures as they are not encrypted in 

DNS lists. Authors in [10] propose a model for fingerprinting IoT devices behind NAT (Network 

Address Translation) and identifying them in a precise and explainable manner. Their idea 
involves indexing each device with a list of domains related to their query frequency. Since 

researchers cannot own all IoT devices, Princeton University researchers crowdsourced IoT 

identification and suggested Inspector-IoT, a tool aimed at collecting device traffic to create 
datasets for IoT identification. This tool is intended to be run by volunteer users who have 

devices on their personal computers. 

 

Hang Guo and John Heidemann [11] attempted to identify Internet of Things traffic to measure 
the growth of IoT devices. They propose three detection techniques: IP-based, DNS-based, and 

TLS-based. The IP-based technique works by listening to DNS traffic to record IP address 

profiles of devices purchased. The second technique, DNS-based, is similar to the previous one, 
except that working with domain names instead of IP addresses prevents changes over time and 

facilitates identification of third-party and manufacturer domains thanks to domain names and 

WHOIS information. These techniques exhibit high accuracy in their own devices and seem to be 

more flexible over time as they have identified devices through several years of old traffic 
captures. 

 

Finally, the TLS-based detection method aims to identify IoT devices that present an HTTPS 
interface (e.g., IP cameras). Researchers analyze web page TLS certificates and search for 

keywords that can identify the manufacturer or type of device. Previous studies primarily 

conducted traffic detection on a local scale, for example, within a university environment. 
Authors in [12] studied IoT device detection on a larger scale: transferring detection to the ISP 

(Internet Service Provider) or IXP (Internet Exchange Point) level. The detection technique relies 

on specific IoT infrastructure detection. Researchers initially identify domains that devices 

contact by monitoring DNS traffic and classify them into specific IoT domains and public 
domains. Then they obtain IP addresses associated with IoT-specific domains using DNSDB and 

filter out those shared across multiple services to derive dedicated infrastructure. Ultimately, the 

endpoint (IP address, port) is linked to the related device, creating a profile for each type of 
device. This method achieves excellent detection performance in evaluating functions; however, 

researchers acknowledge its limitations as it cannot identify devices that were not part of the 

training set and does not work well for devices with limited network traffic. 
 

Malware analysis in the Internet of Things is performed using static, dynamic, and hybrid 

analysis techniques. Nazra and colleagues [13] were the first to perform malware analysis based 

on gray-scale images in 2011. Visual images of malware are created by rewriting the eight-bit 
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code value of executable files to the corresponding gray-scale value. Texture features are 
extracted from these images. Texture-based analysis for Internet of Things malware in the field of 

deep learning is emerging. Evanson and colleagues [14] proposed an approach for analyzing 

malware using texture images of malware files and machine learning in IoTPOT for Bashlite and 

Mirai [15]. They provided Haralick texture features from the co-occurrence matrix and used 
machine learning classifiers. 

 

Carillo and colleagues [16] examined the forensic and reverse engineering capabilities of 
malware for identifying IoT malware. They initially used machine learning to identify malware 

for Linux-based IoT systems. They also discovered new malware using clustering techniques. 

They utilized the dataset provided by E.Cozzi and colleagues [17]. 
 

Ganesh and colleagues [18] used machine learning capabilities to identify Mirai botnet attacks in 

the Internet of Things. They used ANN for evaluation in the BaIoT-N dataset. Bandiyab and 

colleagues [19] used deep learning for analyzing IoT traffic malware. They applied 50ResNet for 
empirical validation of their concept using a 1000-network file (pcap). 

 

Kyushu and colleagues [20] proposed a lightweight approach to identify Internet of Things 
malware. They targeted DDoS malware for their study and extracted malware images from 

IoTPOT binaries. Their experimental setup demonstrated performance for identifying DDoS 

malware and benign software. 
 

Ren and colleagues [21] presented a comprehensive malware detection mechanism for IoT 

Android devices. They collected 8000 malicious APK files and 8000 harmful files respectively 

from the Google Play store and VirusShare. They utilized deep learning importance for 
evaluating their concept. 

 

Naeem and colleagues [22] identified industrial IoT malware with a proposed deep analysis of 
CNN-based traffic. They used color images of the intended malware for identification in the 

Mobile Leopard dataset. 

 

3. THE PROPOSED METHOD 
 
In this section, the steps of the proposed method will be explained. This method consists of 

several phases, and we'll discuss each phase separately below: 

 

Phase One: 

 

In the first stage, the database is entered and divided into two parts: training and testing. We've 

used the UNSW-NB15 database in this context [23]. UNSW-NB15 is a dataset for network 
intrusion detection. This database includes 9 different attacks, such as DoS attacks, worms, 

backdoors, fuzzers, etc. It contains a number of raw network packets. This dataset is split into 

two sections: training set consisting of 175,341 records and a test set with 82,332 records, some 
of which are specific to attacks, while others are normal records. The data available in the 

UNSW-NB15 dataset was generated in the Cyber Range lab at UNSW Canberra using IXIA 

PerfectStorm tools. As mentioned earlier, it's formed from a combination of artificial attacks and 
normal events. 

 

 

 

 

Phase Two: 
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In this stage, we examine the entered data and run the dimensionality reduction algorithm to 

reduce the problem's constraints and achieve better results. The SVD system is used for 

dimensionality reduction. SVD or Singular Value Decomposition is one of several techniques 

used to reduce the dimensions, i.e., the number of columns, in a dataset. In predictive analytics, 
more columns usually mean more time to build models and score data. If some columns do not 

contribute to prediction value, it's a waste of time, or worse, they add noise to the model and 

reduce its quality or predictive accuracy. 
 

Dimensionality reduction can simply be achieved by discarding columns, for example, those that 

may be linearly dependent or specifically non-predictive, identified by feature importance 
ranking techniques. However, new columns based on linear combinations of the original columns 

can also be extracted. In either case, the transformed dataset obtained can be fed into machine 

learning algorithms to achieve faster model building, quicker scoring time, and more accurate 

models. While SVD can be used for dimensionality reduction, it's often used in digital signal 
processing for noise reduction, image compression, and other domains. 

 

SVD [26] is an algorithm that takes an m x n matrix, M, of real or complex values and 
decomposes it into three component matrices, represented by USV*. U is an m x p matrix. S is a 

diagonal matrix of size p x p. V is an n x p matrix, with V* as the transpose of V, a p x n matrix. 

If M contains complex values, p is referred to as the rank. The diagonal entries of the S matrix are 
known as the singular values of M. The columns of U are usually called the left singular vectors 

of M, and the columns of V are the right singular vectors of M. 

Consider the visual representation of these matrices below: 

 

 
 

Figure 1 - Data Matrix Components in SVD (Rokhlin et al., 2019) 

 
One of the features of SVD is that, based on the decomposition of M into U, S, and V, the 

original matrix M or an approximation of it can be reconstructed. The singular values in the 

diagonal matrix S can be used to understand the amount of variance explained by each of the 
singular vectors. Figure 2 shows the pseudo-code algorithm for SVD. 
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Figure 2 - Pseudo-code of the SVD Dimension Reduction Method (Anowar, 2021) 

 

Phase 3: 
 

Following dimension reduction, the feature selection stage begins. Feature selection methods are 

commonly categorized into three classes: 1 - filter-based methods, 2 - wrapper-based methods, 

and 3 - embedded methods, with the best being machine-based methods. In this study, the 
Convolutional Neural Network (CNN) method has been employed for feature selection. 

Feature Selection Algorithm: 

1 - Let A = {A1, A2, …An} be a set of input features to the CNN. Assume R is the maximum 
acceptable drop in accuracy of the test set. 

2 - Train network N to minimize loss values with input A until the accuracy of the training set is 

acceptable. 
3 - For all k = 1, 2, …n, set the weights of input Ak to zero in network Nk while keeping the 

weights of other inputs equal to the weight of network N. 

4 - Calculate the accuracy of the training set (Rk) and the test set (R'k) respectively. 

5 - Rank the Nk networks based on the accuracy of the training set. 
6 - Compute the change in test set accuracy r for each Nk starting from k = 1. If r <= R, remove 

Ak from the input set A, and N = N-1. If k < N, k = k+1, and proceed to the next iteration. 

Otherwise, stop the algorithm. 
 

Phase 4: 

 

After model training, batch operations need to be performed. Among the top 10 styles introduced 
in 2022, the LSTM system is used for data classification. LSTMs are a type of Recurrent Neural 

Network (RNN) capable of learning and memorizing long-term dependencies. LSTMs work in a 

three-stage process. 
 

Stage 1: Decide how much past data should be remembered. 

The first stage in LSTM is deciding which information should be discarded at a particular time 
step from the cell. The sigmoid function determines this. It looks at the previous state (ht-1) along 

with the current input (xt) and computes the function. In LSTM, the inference for cell states (ct) 

and hidden states (ht) is represented by the following equation (Biswal, 2023): 

 

𝑐𝑡=𝑓𝑡 ⨀ 𝑐𝑡−𝑖+𝑖𝑡 ⊙𝑡𝑎𝑛ℎ(𝑈ℎ𝑡−1+𝑊𝑥𝑡+𝑏)                       (1) 

ℎ𝑡=𝑜𝑡 ⨀ 𝑡𝑎𝑛ℎ(𝑐𝑡)                    (2) 

 

The symbol ⨀ represents an element-wise multiplication operation, and within this framework, 

three gates are defined as follows according to Biswal (2023): 
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𝑖𝑡= 𝜎 (𝑊𝑖𝑥𝑡+𝑈𝑖ℎ𝑡−1+𝑏𝑖)  (3) 

𝑓𝑡= 𝜎 (𝑊𝑓𝑥𝑡+𝑈𝑓ℎ𝑡−1+𝑏𝑓)  (4) 

𝑜𝑡= 𝜎 (𝑊𝑜𝑥𝑡+𝑈𝑜ℎ𝑡−1+𝑏𝑜)  (5) 

 

Here, σ represents the sigmoid function allowing the input information to influence the output in 

the current time step. 𝑖𝑡 determines which information to release based on its importance at the 

current time step. 𝑓𝑡 decides which information can be discarded as it's not crucial from the 

previous information, where U, W, and b are input parameters. 
 

4. RESULTS AND EVALUATION 
 

As simulation and evaluation stand among the most crucial segments of any research work, this 

section delves into evaluating the proposed method. In the preceding section, a solution for 
intrusion detection in a network was presented. This part focuses on simulation outcomes and 

their comparison based on multiple evaluation metrics. Python software is employed for 

simulations. 
 

4.1. Required Datasets 
 
To evaluate the proposed method, simulations must be conducted based on certain existing 

datasets, and the performance of the proposed method must be evaluated. In this regard, the 

following datasets have been used in this study: 

 

4.1.1. - BoT-IoT 

 

The BoT-IoT dataset was crafted by designing a real network environment in the Cyber Range 
laboratory at UNSW Canberra. This network environment encapsulates a blend of regular traffic 

and botnet behavior. The dataset source files are provided in various formats, including primary 

pcap files, generated argus files, and csv files. The files have been segregated based on attack 
categories and subcategories to facilitate better labeling in the labeling process. 

The pcap files collected amount to 69.3 gigabytes with over 72,000,000 records. The extracted 

traffic in CSV format stands at 16.7 gigabytes. The dataset encompasses DDoS, DoS, OS and 

Service Scan, Keylogging, and Exfiltration Data attacks, predominantly organized based on the 
protocol used. 

 

4.1.2. - CSE CIC IDS2018 
 

The CSE CIC IDS2018 dataset is tailored for training models capable of identifying or predicting 

network intrusions. This dataset, along with similar ones, is employed in research aiming to 
detect network intrusions using machine learning algorithms. 

The CSE CIC IDS2018 dataset comprises nearly 160,000,000 data samples. This dataset stands 

as the most recent intrusion detection dataset, allowing access to substantial data volumes and 

encompassing a wide array of network attack types. 
 

4.2. Evaluation Methods 
 

False Positive Rate (FPR) Metric:  It examines what percentage of intruded states are falsely 

identified as normal, giving insight into the system's misidentification percentage. Lower values 

indicate better performance, calculated using the formula 𝐹𝑃𝑅=𝐹𝑃/𝑁, where FP represents 
falsely identified positive data, and N is the total count of abnormal vectors [24]. 
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(6) 

 

False Rejection Rate (FRR) Metric: It demonstrates how often the intrusion detection system 
incorrectly marks authentic and correct states as intrusions, resulting in false alarms that restrict 

authorized users' network access. Calculated as 𝐹𝑅𝑅=𝐹𝑁𝑃, where FN represents falsely 

identified negative data, and P is the total count of positive data [24]. 

 

 (7) 

 

Accuracy Metric: This metric illustrates the system's percentage of correctly identifying 

intrusion and non-intrusion states. Calculated using the formula 𝐴𝐶𝐶=𝑡𝑟𝑢𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑟𝑑, 

higher values denote better performance [24]. 
 

      (8) 

 

Precision Metric: An important measure in intrusion detection algorithms, Precision, is 

calculated using 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=𝑇𝑃/𝑇𝑃+𝐹𝑃, demonstrating the system's ability to correctly identify 

positive cases among all identified cases. Higher precision indicates fewer false positives [24]. 

 

      (9) 
 

In this context, TP represents the number of data correctly identified as positive, while FP 

signifies the count of data mistakenly labeled as positive. 

 

Recall Metric: It is calculated using the below formula [24]: 

 

   (10) 
 

Here, TP refers to the count of data correctly identified as positive, while FN represents the count 

of data incorrectly labeled as negative. 
 

F-measure Metric: This metric, computed using formula (11), acts as a balance between recall 

and precision [24]: 

 

   (11) 
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4.3. Dataset Results 
 

 

 
 

Chart -1: A comparison chart of results in the dataset 

 

As shown in Chart 1, the proposed method was executed five times on two datasets, measuring 

its performance and detection capability each time based on precision, accuracy, recall, and the F-

measure values. Due to different subsets being selected as the training set and models being built 
based on them, diverse results were obtained. To address this, multiple runs were conducted to 

display the final outcome as an average on the final charts and compare it with other works [19], 

[21]. 
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Chart 2 - Comparison of average results of the proposed method with other methods [19],[21] 

Considering the results, the proposed method has demonstrated better capabilities in data analysis 

and intrusion detection within a shorter time frame. Moreover, compared to methods [21] and 

[19], it exhibits higher accuracy in intrusion detection. Method [21] achieved an accuracy of 
93.4%, method [19] attained 94.5%, while the proposed method managed to detect network 

intrusions with an accuracy of 95.5%. 

 

5. DISCUSSION AND CONCLUSION: 
 
Effective malware detection demands appropriate and robust methods across diverse 

environments. Deploying autonomous systems is critical for network security, yet strategies like 

centralized or distributed detection pose performance trade-offs. Our study showcased a CNN-
LSTM approach achieving 95.5% accuracy in IoT malware detection, surpassing existing 

methods [21] and [19]. This emphasizes the potential of this approach while signaling promising 

pathways for future research. We propose exploring SVMs as alternatives [25] and advocating 

for advanced techniques to fortify IoT security. Future endeavors should prioritize distributed 
detection methods to reduce performance bottlenecks and measure reliability against severe 

threats. Incorporating predictive analyses and deep learning model evaluations will further 

enhance detection systems. This study underscores the urgency for advanced strategies in IoT 
security, highlighting the need for tailored detection mechanisms and architectural theories to 

strengthen network defenses. In conclusion, our research contributes a robust methodology for 

IoT malware detection, but further investigations, enhancing distributed detection strategies, and 

integrating predictive analyses, are vital to fortify network security against evolving threats. This 
study sets the stage for future research directions aiming to create more resilient and adaptive 

security measures for IoT ecosystems. 
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