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ABSTRACT 
 
Vehicular Ad-hoc Networks (VANETs) are crucial for advancing intelligent transportation systems, 

enhancing road safety, and enabling efficient vehicle-to-vehicle and vehicle-to-infrastructure 

communications.  However, accurately simulating vehicular environments' dynamic and complex nature 

remains a significant challenge.  This study addresses this gap by benchmarking the performance of a 

mesoscopic model, which incorporates a lane-changing technique, against a microscopic model using 

Monte Carlo simulations.  The microscopic model focuses on individual vehicle movements, considering 

driver behaviour and interactions, while the mesoscopic model captures traffic flow at the road segment or 

neighbourhood level. The updated mesoscopic model incorporates a lane change technique to better reflect 

realistic vehicle movements.  The updated mesoscopic model generated approximately 350 to 400 vehicles 

in the simulations, with a narrow distribution and a peak frequency of about 120 vehicles.  In contrast, the 

original microscopic model produced around 800 vehicles and had a wider distribution but exhibited a 

similar peak frequency.  The revised model demonstrated a slight negative skewness of -0.1019, while the 

original model showed a slight positive skewness of 0.0618.  Both models displayed negative kurtosis 

values, indicating lighter tails than a normal distribution.  Notably, the original model had a more negative 

kurtosis of -0.2931, compared to -0.1742 for the revised model.  These findings suggest that the 

microscopic model is more adept at capturing the variability of traffic flow, making it a more accurate 

reflection of real-world scenarios where vehicle interactions significantly impact vehicle dynamics during 
data transmissions. 
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1. INTRODUCTION 
 

Vehicular Ad-Hoc Networks (VANETs) have become increasingly important in advancing 
intelligent transportation systems, improving road safety, and establishing effective means for 
vehicle-to-vehicle and vehicle-to-infrastructure communications [1, 2]. Given the dynamic nature 

of vehicular environments with high mobility and diverse traffic conditions, simulations are 
essential to develop efficient network protocols for VANETs [2].  These simulations rely on 
mobility models to accurately represent real-world vehicle movements within the network.  The 
movement patterns of vehicles have a significant impact on VANET simulations, influencing 
network protocol performance metrics such as throughput, delay, and packet delivery ratios [3].  
These models aim to capture the dynamic behaviour of vehicles on roads, encompassing aspects 
like acceleration, deceleration, lane changes, and route variations. Therefore, comprehensive 
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mobility models must consider numerous factors, from basic vehicle motions to complex 
interactions with road systems and traffic conditions. 
 
The selection of an appropriate mobility model is crucial for accurately representing real-world 

simulation scenarios [2]. Researchers have developed various mobility models, each designed for 
specific simulation requirements and levels of realism. These models can be broadly classified 
into three categories: microscopic, mesoscopic, and macroscopic, based on their level of 
complexity and the scale at which they operate [2, 4-6].  Microscopic models focus on the 
intricate details of individual vehicle movements, considering factors such as driver behaviour, 
vehicle acceleration, and interactions with other vehicles [2, 4-6].  In contrast, mesoscopic 
models offer a moderate level of detail, suitable for simulating traffic flow and vehicle 
movements at the level of road segments or neighbourhoods [7]. On the other hand, macroscopic 

models abstract individual vehicle movements to concentrate on the overall traffic flow patterns 
across larger areas, such as cities or regions [6, 8]. 
 
Each type of mobility model offers unique advantages and is suitable for different kinds of 
VANET simulations. By carefully selecting and applying these models, researchers and engineers 
can derive meaningful insights into the performance and behaviour of VANETs under a wide 
range of conditions. Ultimately, the insights gained from simulations using accurate mobility 

models are instrumental in designing and optimizing VANET protocols and applications for real-
world deployment, paving the way for smarter, safer, and more efficient transportation systems. 
The mobility model presented in this paper has been adapted from a prior model developed by [9]  
by incorporating a lane change technique to better capture the realistic movements of vehicles in 
VANET environments. The formulation of this adapted model has been thoroughly described in 
references [10, 11]. The current study aims to benchmark the performance of this revised model, 
which is a mesoscopic mobility model against the original mobility model from [9] that is based 

on a microscopic mobility model. 
 

2. LITERATURE SURVEY ON VANETS MOBILITY MODELS 
 

In VANETs, the dynamic vehicular movements trigger variations in the network architecture, 
directly impacting key performance metrics such as throughput, transmission latency, and packet 
loss rate [2, 3, 6]. Accurately reproducing realistic traffic flow in the simulation environment is 
crucial for advancing research on VANET topology and routing protocols. Consequently, the 
vehicular mobility model has become the primary focus in VANET simulation research, 
concentrating on identifying the movement patterns of vehicle nodes to enhance the realism of 
the simulations. This ensures that the conclusions drawn from the research are applicable to real-

world implementations.  Therefore, researchers employ various methods to accurately simulate 
vehicle mobility [3, 6].   
 
One of the early influential works is by Wisitpongphan et al. [12]., which is still highly cited. In 
this research, the authors developed an analytical framework based on an extended car-following 
model, which falls under the category of the microscopic mobility model.  The authors utilized 
empirical data collected from the dual-loop detector on the eastbound I-80, a 5-lane highway 

immediately east of the San Francisco-Oakland Bay Bridge between Emeryville, CA, and 
Berkeley, CA. From the realistic mobility trace, the authors were able to approximate the 
probability distribution of inter-arrival times and inter-vehicle spacing as exponential distribution, 
and vehicle arrival as a Poisson distribution.  The study conducted by Wisitpongphan et al. [12] 
formed the basis for our revised mobility model, which incorporates Poisson distribution to 
represent vehicle arrival rate and exponential distribution to account for vehicle inter-arrival 
times. 
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Table 1 presents a summary of research conducted between 2019 and 2024 on empirical mobility 
trace and mobility models. These works aim to accurately represent the dynamic nature of vehicle 
movements in both highway and urban areas. 
 

Table 1: Literature review on common approaches for generating vehicles' mobility for year 2019-2024 

 
Vehicle 

Mobility 

Approach 

Referenc

e 

Dataset/Model/ 

Technique 

Objectives 

Mobility 
Trace 

[13] 

Beijing taxi traces, 

Singapore and Jakarta 

e-hailing vehicle traces 

This study examines data dissemination in a 

vehicular network using empirical mobility traces 

and incorporates the method of index coding to 

minimize the number and size of transmissions. 

[14] 

Public transportation 

mobility using General 

Transit Feed 

Specification (GTFS) 

data for Dublin, Rome, 

Seattle and Washington 

The study reveals key characteristics of bus-based 

networks and examines their network topology and 

spatiotemporal impacts. The data is further used to 

assess the design of routing protocols in bus-based 

networks. 

[15] 

Two sets of GPS 

traces. 1) over 4000 

taxis and buses in 

Shanghai, 2) over 7000 

taxis in Shenzhen 

The mobility trace is incorporated into the proposed 

Dynamically Evolving Networking model, which 

simulates the evolution of VANETs. This model 

enables a more accurate representation of how 

VANETs function in real-world scenarios. The 

proposed model allows the network to evolve into a 

scale-free network as it grows, self-organizes, and 

even decreases in size. Additionally, it can ensure 

good network connectivity and survivability. 

[16] 

Datasets of GPS traces 

from 320 taxis in Rome 

and 551 taxis in San 

Francisco 

The study employs three distinct approaches - 

instantaneous, aggregated, and time-varying analysis 

- to model vehicular ad-hoc networks using graph 

theory. The authors analyze two large-scale traces, 

which enables them to ground the theoretical models 

in real-world data, thereby enhancing the validity and 

applicability of the findings. 

Microscop

ic 

Mobility 

Mode 

[17] 

Microscopic 

Mechanism based on 

Intersection Records 

(MMIR) 

The proposed mechanism aims to enhance the 

accuracy of connectivity probability or estimated 

delivery delay for street selection in VANETs using 

a microscopic approach that leverages individual 

vehicle data. 

[18] 

A microscopic traffic 

modelling for road 

networks  

In this research, the authors use microscopic 

modelling to focus on vehicle behaviour and 

interactions rather than on aggregate traffic flow 

analysis. A new formalism has been introduced to 

describe the dynamics of vehicle traffic, particularly 

in unidirectional traffic scenarios. This model 

effectively captures vehicle interactions, including 

acceleration, deceleration, and the maintenance of 

safe distances. It reveals the behaviour of individual 

vehicles and is adaptable to various road networks, 

making it a valuable tool for analyzing traffic 

systems and urban environments. This approach 

benefits both scholars and practitioners who are 

studying complex traffic situations due to its detailed 
examination and broad applicability. 
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[19] 

the Adaptive Driver 

Model (ADM) and 

Adaptive Lane 

Changing Model 

(ALC) 

This study develops microscopic simulations that can 

accurately represent realistic traffic configurations 

and support large-scale applications in cyber-

physical systems 

[20] 

A Variable Speed 

Limit (VSL) control 

algorithm with the 

Model Predictive 

Control (MPC) 

framework 

This study examines Variable Speed Limit control 

strategies that leverage microscopic traffic flow data 

to enhance traffic flow predictions. 

Mesoscopi

c Mobility 
Model 

[21] 

A mesoscopic model of 

vehicular mobility on a 

multilane highway with 

steady-state traffic flow 

conditions 

This study presents the mathematical modelling of 1) 

the expected number of hops in a communication 

link, 2) the distribution of successful multi-hop 

forwarding, 3) the expected time delay, and 4) the 

expected connectivity distance.  The accuracy of the 

proposed model is validated through simulations 

conducted using an event-based network simulator 

and a road traffic simulator 

[22] 

Probability-based 

theoretical approaches, 

including the Poisson 

process, uniform 

distribution, and 

exponential 

distribution, are applied 

to deduce the 

connectivity 

probabilities of 

cognitive vehicular 

networks (CVNs) 

The authors develop a robust analytical framework 

using probability theory to analyze the connectivity 

of cognitive vehicular networks under different 

scenarios, including single-hop and multi-hop 

clustering. By examining these scenarios 

independently, the authors gain insights into how 

connectivity varies with distinct communication 

structures, namely the inter-cluster integration 

process and the intra-cluster communication process. 

[23] 

The study uses a 

stochastic geometry 

model to characterize 

the vehicular network's 

spatial features. It 

integrates the Poisson 

Line Process to model 

the distribution of 

roadside infrastructure 

and the 1D Poisson 
Point Process to 

represent vehicle 

locations within the 

network. 

The paper proposes a comprehensive analytical 

framework for investigating multi-hop relaying in 

vehicular networks. The framework analyzes how 

various network parameters, such as the number of 

hops, impact the coverage provided by road-side 

units (RSUs) to vehicles. This analysis provides 

insights into the optimal RSU density required for 

effective network-wide communication. 

Additionally, the study assesses the delivery delays 

introduced by multi-hop relaying. 

[24] 

The paper uses the 

M/M/1 queuing model 

to assess the VANET 
system's performance, 

assuming a Poisson 

arrival process and 

exponential service 

times to understand 

vehicle flow and 

service dynamics on 

highways. 

The paper presents a mathematical model that 

captures the dynamic nature of traffic and service in 

VANETs. It includes the calculation of the average 
number of vehicles in the queue and the distribution 

of waiting times. The authors analyze the queuing 

system's performance by measuring traffic flow in 

highway lanes, with a specific focus on the impact of 

vehicle collisions. The simulation helps understand 

how vehicles interact within the network and their 

overall impact on communication efficiency. 
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Macrosco

pic 

Mobility 

Model 

[25] 

A new macroscopic 

model for Variable 

Speed Limits (VSLs). 

This study investigates the impact of variable speed 

limits on the fundamental diagram of traffic flow. 

The research reveals that the fundamental diagram 

induced by VSLs does not conform to the traditional 

triangular assumption, challenging the conventional 

understanding of traffic flow under speed 

restrictions. The authors aim to demonstrate how 

changes in speed limits can alter the characteristics 

of this diagram, particularly in terms of capacity and 

density. Their findings indicate that reducing the 

speed limit from 120 to 90 km/h leads to a decrease 

in freeway capacity and an increase in critical density 

for the studied segment of the A12 freeway in The 

Netherlands. Furthermore, the proposed model is 

rigorously compared with two well-established 
macroscopic models for VSLs 

[26] 

The authors have 

modified the original 

Greenberg model to 

improve its accuracy 

and applicability in 
real-world scenarios. 

The authors employed a modified Greenberg model 

to simulate traffic variables across different 

scenarios, incorporating intermediate inputs/outputs 

as well as a viscosity term in the motion equation. 

The primary goal of this work was to investigate the 
impact of viscosity on traffic variables by conducting 

simulations using the modified model and leveraging 

measured traffic data as the initial and boundary 

conditions. 

[27] 

The authors adopt the 

macroscopic first-order 

Lighthill-Whitham-
Richards model to 

describe the overall 

dynamics of the traffic 

flow, coupled with two 

ordinary differential 

equations that 

characterize the 

trajectories of the front 

and back endpoints of 

the platoon. 

The model effectively captures the interaction 

between a platoon of vehicles and the surrounding 

traffic flow, representing a novel approach in this 
research area. The paper highlights the dynamics of 

how slow-moving vehicles, depicted as a platoon, 

can create point-moving bottlenecks in traffic. 

Additionally, the authors have developed a finite 

volume scheme to compute approximate solutions to 

the coupled partial differential equation and ordinary 

differential equation system. This computational 

method is evaluated within the paper, demonstrating 

its effectiveness in simulating the dynamics of 

vehicle platooning. 

[28] 

This work improves the 

established Lighthill-

Whitham-Richards 

model by incorporating 

vehicle spacing in both 

time and distance 

domains. 

This paper introduces a novel model that focuses on 

the analysis of inhomogeneous traffic flow during 

transitional periods. The proposed model is designed 

to more effectively characterize the evolution of 

traffic dynamics and provide deeper insights into the 

behavior of traffic under varying conditions. The 

authors employ the Godunov numerical technique to 

evaluate both the established LWR model and their 

newly developed model, ensuring numerical stability 

and reliability through adherence to the Courant-

Friedrichs-Lewy condition. The performance of the 

proposed model is rigorously assessed and compared 

to the LWR model using Greenshields and 

Underwood target velocity distributions 
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2.1. Real-World Mobility Trace 
 

Based on a survey done by Clayson et al. [29], a mobility trace is a dataset that records vehicle 

positions over time using Global Navigation Satellite System (GPS) and cellular networks. Real-
world traces provide accurate vehicle movement data, aiding in creating realistic simulations and 
improving vehicular network solutions. As a result, these traces offer advantages that range from 
creating more realistic simulation scenarios to identifying information that improves solutions for 
vehicular networks.   
 
According to Clayson et al. [29], most vehicular mobility traces originate from academic research 

or are provided by traffic control organizations. In their survey, the authors identified three types 
of mobility traces that contain vehicle movement data from real-world scenarios: bus mobility 
traces, taxi mobility traces, and private car mobility traces.  The authors present several vehicular 
motion traces and conducts a qualitative comparison among them. All of the traces are publicly 
accessible and can be categorized as either real-world or synthetic. Real-world traces comprise 
positioning data captured by location devices such as GPS receivers. However, due to privacy 
and security concerns, the majority of these traces are of the movements of anonymous taxis or 

buses.  
 
The literature review presented in Table 1 clearly shows that researchers are likely using mobility 
trace data from public transportation due to significant concerns about security and privacy. 
 

2.2. Mobility Models 
 

As mentioned in Section 1, VANET mobility models are typically classified into three main 
categories: 1) microscopic, 2) mesoscopic, and 3) macroscopic. 
 
2.2.1. Microscopic Mobility Models 

 

The microscopic mobility model focuses on individual vehicle motion, typically at the level of a 
single road segment. Several models have been developed under this category, including the Car 

Following Model, Intelligent Driver Model, Krauss Model, Wiedemann Model, and Cellular 
Automata Model [6]. 
 
2.2.2. Mesoscopic Mobility Models 

 

Mesoscopic traffic models represent an intermediate level of abstraction, capturing the overall 
properties of traffic flows through probability distributions while still accounting for individual 

vehicle interactions [6, 21]. For instance, these models may employ a uniform distribution to 
characterize the velocity distribution at a given time and location or an exponential distribution 
for the vehicular arrival rate. 
 
The mesoscopic mobility model is commonly used in VANET research for simulating vehicular 
communication networks. It captures steady-state traffic flow conditions and predicts 
connectivity metrics, essential for designing efficient VANET applications [6, 21]. While 

mesoscopic models are practical, there's a growing interest in more detailed microscopic models 
that capture finer-grained mobility patterns, providing insights into individual vehicle behaviours' 
impact on network performance for specific applications like autonomous driving and pedestrian 
safety. 
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2.2.3. Macroscopic Mobility Models 

 

This model takes into account more than just vehicles. It considers the flow of a large number of 
vehicles from a global perspective, taking into account road topology, features and conditions, 

traffic density and distribution, traffic signals, and traffic flow [6]. This approach allows for the 
calculation of road capacity and traffic distribution in the road network. 
 

3. MOBILITY MODELS ANALYSIS 
 

This section provides an overview of how the behavioural characteristics in the mobility model 
from [9] and [10, 11] influence the overall traffic flow and patterns.  Comprehensive 
documentation of both the original and revised mobility models can be found in the references 
cited.  Table 2 listed the summary on the analysis of both mobility models.  
 

Table 2: Analysis on mobility models by [9] and [10, 11] 

 
Assumption Mobility Model by [9] Mobility Model by [10, 11] 

Vehicle Arrival Rate 
Traffic flow based on microscopic 

approach 
Poisson process 

Inter-Arrival Rate 

between vehicle 

batches 

Not stated  Exponential distribution 

Vehicles Speed 

Distribution 

Vehicles’ speed in both model use an equation that is influenced by 

acceleration factor. The factor is determined by a set of equations 

involving several random variables and an aggressiveness (AGG) 

parameter 

Aggressiveness of 

Vehicle Mobility 

Behaviour (AGG) 

The AGG parameter affects the 

predictability of vehicle movements, 

thereby influencing the performance of 

the routing protocol proposed by the 

authors.  The parameter AGG is 

represented by the single value of 0.2. 

The impact of the parameter in a 

traffic scenario is illustrated 

using three different AGG 

values: 0.2, 0.5, and 0.8. 

 
The revised mobility model utilizes a batch arrival process to simulate vehicle arrivals, with 
vehicles being generated in groups according to a Poisson process, as stated in Table 2. The 
parameters of the Poisson distribution, including the mean and standard deviation, are employed 

to manage the expected batch size and its variability. From the definition given in Section 2, we 
can confidently categorize our revised model as a mesoscopic mobility model. 
 
Conversely, the mobility model in [9] does not explicitly mention batch generation for vehicle 
arrival. Instead, it uses traffic flow that is based on a microscopic approach to focus on 
maintaining a continuous flow of vehicles on the highway.  
 
As shown in Table 2, the revised model in [10, 11]  employs an exponential distribution to 

represent the inter-arrival rate between vehicle batches. This probabilistic distribution effectively 
captures the randomness and variability in the time intervals between successive vehicle arrivals, 
mirroring the stochastic nature of traffic flow. The rate parameter of the exponential distribution 
determines the expected time interval between batches, allowing for flexibility in simulating 
diverse traffic conditions. 
 
On the other hand, the authors in [9] does not explicitly define an inter-arrival rate distribution. 

Instead, the authors use a discrete-time model where vehicles continuously recalculate their 
acceleration at regular intervals. This approach focuses on the uninterrupted movement of 
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vehicles rather than discrete arrival events, aligning with the model's emphasis on maintaining 
prescribed speed limits and lane dynamics. 
 
Both models employ a similar approach to modelling speed distribution, drawing from the 

methodology outlined in [9]. For each time interval, the models calculate each vehicle's speed by 
incorporating an acceleration factor to determine whether vehicles should accelerate or 
decelerate. Additionally, the models leverage random variables and aggressiveness (AGG) 
factors to simulate realistic speed variations among vehicles, capturing the dynamic nature of 
highway traffic. 
 
As both mobility models employ the same approach to determine vehicle speeds, they also utilize 
the same definition for the aggressiveness parameter [10, 11]. The AGG parameter, as defined by 

Kesting et al. [30], is used to control and simulate the aggressive driving behavior of vehicles in 
the proposed model. Higher values of AGG indicate more aggressive driving, which significantly 
affects the overall mobility pattern of vehicles on the highway. Therefore, AGG parameter has a 
direct impact on the performance of the proposed routing protocol in [9], influencing its ability to 
accurately predict route lifetimes and proactively create new routes before existing ones fail.  The 
authors for the revised mobility model in [10, 11] investigated the impacts of varying the AGG 
parameter, which represents driver aggressiveness, at specific values of 0.2 (low), 0.5 (medium), 

and 0.8 (high), on the performance of the proposed clustering algorithm. 
 

3.1. The Lane Changing Technique 
 

In our revised mobility model, we incorporate a lane-changing technique to enhance the 
performance of the clustering algorithm proposed in [9]. This technique involves the introduction 

of two key probabilities: 
 

𝑝1: The probability of a vehicle maintaining its current lane when the relative distance 
between the vehicle and its preceding vehicle is lower than a specific threshold, 
known as the “safety distance.” 
 

𝑝2: The probability of a vehicle preserving its lane when the relative distance between 

the vehicle and its preceding vehicle exceeds a certain value, denoted as the 𝑑𝑡ℎ 
parameter 

 
The lane-changing technique divides the complementary probabilities 𝑝1 and 𝑝2 into two equal 

probabilities. For vehicles not in the border lanes, 𝑝1: represents the probability of a lane change 

to the right, while 𝑝2: represents the probability of a lane change to the left. However, for 
vehicles in the border lanes, there is only one lane change option, either to the right or to the left.   

The mathematical expressions for the two key probabilities, 𝑝1 and 𝑝2 are presented in Equation 
1.  Equation 1 formalizes the lane change decision-making process, where the vehicle's lateral 

position 𝑦 is updated based on the probabilities of executing a lane change to the right or left. 

These probabilities are determined by the distance 𝑑 between the vehicle and its leading vehicle, 

as well as the values of the probabilities 𝑝1 and 𝑝2. 
 

𝑦𝑖,𝑡+1 =

{
 
 

 
 𝑦𝑖,𝑡+1 𝑖𝑓 (𝜀 ≥ 𝑝1 𝜀 < 𝑝1 +

1 − 𝑝1
2

 𝑑 < 𝑑𝑡ℎ) 𝑜𝑟 (𝜀 ≥ 𝑝1 𝜀 < 𝑝2 +
1 − 𝑝2
2

 𝑑 ≥ 𝑑𝑡ℎ)

𝑦𝑖,𝑡−1 𝑖𝑓 (𝜀 < 1  𝜀 ≥ 𝑝1 +
1 − 𝑝1
2

 𝑑 < 𝑑𝑡ℎ) 𝑜𝑟 (𝜀 < 1  𝜀 ≥ 𝑝2 +
1 − 𝑝2
2

 𝑑 ≥ 𝑑𝑡ℎ)

𝑦𝑖,𝑡  𝑖𝑓(𝜀 < 𝑝1  𝑑 < 𝑑𝑡ℎ)𝑜𝑟(𝜀 < 𝑝2  𝑑 ≥ 𝑑𝑡ℎ)

 
(1) 

 

 
With 
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𝑑 = |𝑥𝑖+1,𝑡 − 𝑥𝑖,𝑡|  

 

Where 

 

𝑦𝑖,𝑡+1:  the updated position of vehicle 𝑖 at time 𝑡 + 1  

 

𝜀: a random number generated between 0 and 1  

 

𝑑: denotes the distance separating the vehicle of interest and its preceding vehicle 

 

𝑑𝑡ℎ: denotes a distance threshold between the vehicle 𝑖 and the lead vehicle that triggers a lane change 

for probability 𝑝1.  

 

4. MOBILITY MODELS BENCHMARK 
 

A Monte Carlo simulation, comprising 1000 iterations, was conducted to assess the performance 
of the two mobility models. The simulated scenario involved a 6-lane unidirectional highway 
spanning 10 kilometres. Communication configuration and delay factors were excluded from this 
simulation. The purpose of the Monte Carlo simulation was to evaluate and analyse the 
differences between the two mobility models based on the discussion presented in the preceding 

section. 
 

4.1. Results on Vehicles' Generation 
 

The first step in the Monte Carlo simulation for both mobility models is to analyze the 
characteristics and the distribution for the vehicle generation. 

 
 

Figure 1.  Comparison between two models on number of vehicles generated 

 
Figure 1 presents the histograms depicting the frequency distributions of the number of vehicles 
generated by the two modelling approaches.  The histogram on the left represents the distribution 
of the number of vehicles generated by the revised model, while the histogram on the right 
represents the distribution of the number of vehicles generated by the original model.  A 

histogram is a graphical representation of the frequency distribution of a quantitative variable. 
The x-axis depicts the variable values, with each bar representing a discrete value or a class of 
continuous values arranged in ascending order. The height of the bars on the y-axis corresponds 
to the frequency distribution of the respective variable values. 
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The revised model, as indicated in Table 2 and referenced in [10, 11], employs a Poisson process 
for generating the number of vehicles and an Exponential distribution for inter-arrival time. In 
contrast, the original model described in [9]  adopts a microscopic approach to determine the 
number of vehicles. As depicted in Figure 1, the distribution for the revised model is centred 

around 350-400 vehicles with a relatively narrow spread and a higher peak frequency of 
approximately 120 vehicles. On the other hand, the distribution of the original model is centred 
around 800 vehicles with a wider spread but a similar peak frequency, highlighting greater 
variability in vehicle generation. This aligns with the model's emphasis on individual vehicle 
behaviours and dynamic routing. In summary, the revised model assumes a random arrival of 
vehicles based on an average rate, making it more suitable for modelling traffic flow at a macro 
level or for less congested scenarios. Conversely, the original model accounts for individual 
vehicle behaviours and interactions, allowing for more densely packed vehicles and potentially 

providing a more realistic representation of congested highway scenarios. 
 

 
 

Figure 2. Number of vehicles generated statistical comparison between the two models 

 
Furthermore, Figure 2 presents the findings on skewness and kurtosis. Skewness is a measure 
used to assess the symmetry, or lack thereof, in a distribution or dataset [31]. An asymmetric 
distribution appears the same on both sides of its central point. Both models exhibit relatively 
small skewness values, indicating that their distributions are nearly symmetrical. The revised 
model has a slightly negative skewness of -0.1019, suggesting a subtle leftward asymmetry, 
whereas the original model demonstrates a slightly positive skewness of 0.0618, indicating a mild 
rightward asymmetry. 

 
Kurtosis is a statistical measure that indicates whether the data exhibits a heavy-tailed or light-
tailed distribution relative to a normal distribution [31]. A kurtosis value of 0 corresponds to a 
distribution with a peak and tails similar to a normal distribution.  Both models exhibit negative 
kurtosis values, indicating that their distributions have lighter tails and are more platykurtic 
(flatter) compared to a normal distribution. The original model has a slightly more negative 
kurtosis value of -0.2931 compared to the revised model's -0.1742, suggesting an even flatter 

distribution with fewer extreme values in the tails than the revised model. This implies a slightly 
flatter peak and lighter tails for the original model. 
 

4.2. Impact on the AGG Parameters on the Traffic Flow 
 

This section examines the impact of the aggressiveness behaviour parameter on traffic flow using 

the Monte Carlo simulation. Figure 3 illustrates the relationship between the aggressiveness 
(AGG) parameter and different vehicle traffic flows in the network.  The AGG parameter is used 
to control and simulate the aggressive driving behaviour of vehicles in the network. As described 
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in Section 3, this parameter influences the acceleration and deceleration dynamics of vehicles, 
where higher AGG values correspond to more aggressive driving. This parameter has a 
significant impact on the overall mobility patterns exhibited by vehicles on the highway.  
 

 
 

Figure 3.  Comparison of Two Models Examining the Impact of Aggressiveness Parameters on Different 

Traffic Flows 

 
In terms of the distribution shape, the revised model exhibits a more symmetric and narrower 
distribution, which is consistent with the Poisson distribution used for vehicle arrivals. In 
contrast, the original model displays a wider range of vehicle counts, reflecting a more complex, 
microscopic approach to vehicle movement. As we progress through the rows in Figure 3, both 

models demonstrate an increase in vehicle count as the AGG parameter rises. However, this 
effect is more pronounced in the original model, indicating that the microscopic approach is more 
sensitive to changes in driver aggressiveness. 
 
As the traffic flow increases as we move right across the columns of Figure 3, both models 
demonstrate a rise in vehicle generation. The original model exhibits a wider spread of vehicle 
counts at higher flow rates, indicating that the microscopic approach is able to capture a greater 

degree of variability in traffic patterns. Conversely, the revised model's narrower distribution 
suggests that it may be more adept at predicting average traffic conditions, but could 
underestimate extreme scenarios. The wider distribution seen in the original model implies that it 
encompasses a wider range of traffic scenarios, potentially making it more suitable for the study 
of edge cases or unusual traffic patterns. 
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The findings illustrated in Figure 3 suggest that the original model displays higher peak densities, 
particularly at elevated AGG values and flow rates. This implies that the original model's 
microscopic approach may be more effective in capturing traffic clustering or congestion effects. 
Additionally, both models exhibit sensitivity to changes in AGG and flow rate, but the original 

model appears to be more responsive. This indicates that the original model's microscopic 
approach may be better equipped to adapt to diverse traffic conditions and driver behaviours. 
 
In summary, both models exhibit the expected behaviour as flow rates and aggregation 
parameters increase. The original model, which utilizes a microscopic approach, consistently 
yields higher vehicle counts, possibly due to its more detailed representation of vehicle 
interactions. In contrast, the revised model, which employs a Poisson process, demonstrates 
slightly more right-skewed distributions compared to the original model.  

 
While both models produce distributions that closely resemble a normal distribution, they still 
significantly differ from a perfectly normal distribution. These results emphasize the distinctions 
between the two modelling approaches and their implications for traffic flow simulation. The 
original model appears to capture more variability in traffic flow, potentially making it more 
representative of real-world scenarios where vehicle interactions play a significant role. On the 
other hand, the revised model, although simpler, still captures the general trends of increasing 

traffic density and the effects of the AGG parameter. 
 

4.3. Results on Lane Changing Technique 
 

This section presents the findings from the extended version of the Monte Carlo simulation 
conducted in the previous section. The extended simulation incorporated a lane-changing 

technique for both the original and revised models. For the revised model, the lane-changing 
technique was based on Equation 1. However, the authors in [9].  did not specifically mention the 
model or technique for lane changing in the original model. Therefore, it is assumed that the 
authors of the original model employed a microscopic approach to model lane-changing 
behaviour. The scenario for this extended simulation remains consistent with the previous 
section, featuring a 10 km highway with six unidirectional lanes. 
 

Table 3: List of parameters used in the extended Monte-Carlo simulation 

 

Parameter Value 

𝑣𝑚𝑖𝑛 5.56 m/s (20 km/h) 

𝑣𝑚𝑎𝑥 33.33 m/s (120 km/h) 

𝑑𝑡ℎ 52 meter 

𝑎𝑚𝑎𝑥 2.0 m/s2 

𝑑𝑚𝑎𝑥 -2.0 m/s2 

 
Table 3 presents the parameter values employed in the extended Monte-Carlo simulation. The 

parameters 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 correspond to the speed ranges observed for vehicles on a highway 

setting. Similarly, 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 reflect the acceleration and deceleration limits typically 
exhibited by highway vehicles. The parameter 𝑑𝑡ℎ represents the distance threshold used to 
trigger lane-changing decisions, and its value is based on the commonly used 3-second rule for 
safe following distances on highways [32]. 
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Figure 4.  CDF of Distances Between Vehicles 
 

Figure 4 presents the cumulative distribution functions of the inter-vehicle distances for both 
models. The x-axis in Figure 4 indicates that the distances between vehicles range from very 
small (close to 0 meters) to quite large (over 5000 meters), reflecting the variability in traffic 
density along the highway. The relatively smooth curve suggests a continuous distribution of 
distances with no sharp jumps at any particular distance, indicating that vehicles are spread out 

along the highway rather than clustering at specific intervals. 
 
A notable feature is the relatively steep increase in the CDF for short distances (0-100 meters), 
suggesting that a significant portion of vehicles are quite close to each other, potentially 
representing areas of higher traffic density or potential congestion. Furthermore, the curve 
flattens out for larger distances (beyond 500 meters), indicating fewer instances of very large 
gaps between vehicles. From this CDF, it is evident that only a small fraction of vehicle pairs 

(less than 5%) is within the threshold distance (67 meters) of each other 
. 

 
 

Figure 5.  Average Vehicles Speed over Simulation Time 

 
In Figure 5, the average speeds of both models throughout the simulation period are illustrated. 
The revised model starts with a slightly lower average speed compared to the original model. 
However, both models rapidly stabilize and maintain consistent average speeds throughout the 
simulation. The revised model demonstrates minor fluctuations in speed, suggesting a more 
controlled traffic flow with a gradual decline in average speed over time, but within a consistent 
range. In contrast, the original model starts with a higher average speed than the revised model 

but then experiences a sharp drop in average speed early in the simulation. The output for the 
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original model in Figure 5 shows more pronounced variations in speed throughout the simulation, 
with a decreasing trend in average speed over time and greater variability. 
 

5. CONCLUSION 
 

This study compares a microscopic model and a mesoscopic model for vehicular ad hoc networks 
(VANETs), highlighting their respective strengths and applications. The microscopic model 

offers a detailed representation of individual vehicle behaviours, making it suitable for scenarios 
that require high accuracy in vehicle interactions and driver behaviour. In contrast, the 
mesoscopic model captures broader traffic flow patterns, making it better suited for simulations 
at the level of road segments or neighbourhoods. Including a lane-changing technique in the 
revised mesoscopic model enhances its realism and applicability. 
 
While the microscopic model excels in reflecting the variability of traffic flow and is more 
responsive to changes in driver aggressiveness, it also presents higher computational complexity, 

which may limit its use in certain situations. On the other hand, although less detailed, the 
mesoscopic model provides a practical approach for macro-level traffic flow modelling; however, 
it may need to fully address extreme traffic scenarios or the sensitivity to driver behaviour. 
 
The Monte Carlo simulations show that the microscopic model provides a more accurate 
representation of vehicle movements, which is crucial for developing effective VANET 
protocols.  Future work could further investigate these models' performance in more complex 

scenarios, such as urban environments with traffic signals, intersections, and pedestrian 
interactions. Insights gained from simulations using accurate mobility models are essential for 
designing and optimizing VANET protocols and applications for real-world deployment, paving 
the way for smarter, safer, and more efficient transportation systems. 
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