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ABSTRACT 

In this paper we discuss and compare methods to analyse the influence inter-cell interference will have on 

coverage/outage probabilities in cellular networks. The framework is based on a common method to find 

the Laplace transform of the distribution of interference from neighbouring cells. It turns out that for 

Suzuki distributed fading the analysis is highly simplified. In case of Rayleigh faded channels only, the 

analysis is even more simplified. The modelling approach, which is based on classical probab ility methods, 

rather than on modern measure theory for point processes, allows for both fixed and stochastic locations of 

base stations. The different models are applied to quantify the effect of inter-cell interference on 

coverage/outage probabilities and on spectrum efficiencies in LTE networks.  We consider several 

scenarios ranging from fixed hexagonal layout of base station to stochastic location of based on uniform 

distribution of base stations. We also extend the coverage/outage analysis for the Gin ibre Point Process to 

Suzuki faded environment. Numerical examples show large differences in both spectrum efficiency and 

coverage/outage probabilities for the different network scenarios considered. 
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1. INTRODUCTION 

The demand for cellular capacity is steadily increasing. In particular 4G, e.g. LTE (Long Term 
Evolution) and also 5G, now standardized by 3GPP, will boost the capacity compared to legacy 
mobile networks and will bring significant enhancements in terms of spectrum efficiency, peak 
data rate and latency. One of the main hard struggles in Orthogonal Frequency-Division Multiple 
Access (OFDMA) networks like LTE is to design effective mechanisms that minimise the effect 
of the other-cell interference; since the Signal-to-Interference-plus-Noise Ratio (SINR) which 
actually determines the obtainable bit rate, strongly dependent of the magnitude of this 
interference. Hence, accurate models that describe the other-cell interference will be important to 
be able to maximise the SINR for users and therefore increasing the overall capacity and 
improving Quality of Service (QoS) in such networks.   
 
In the literature the modelling of other-cell inference is not very mature mainly because of the 
difficulties to model the interference efficiently. For downlink the interference will be the sum of 
signals from all surrounded base stations (BSs) using the same frequency as a tagged user. In 
several papers a fixed regular hexagonal cell layout is used as a basis for interference estimations. 
Since actual BS layouts are far from regular, a stochastic modelling may be beneficial. It turns out 
that if the BSs are located according to a two dimensional Poisson Point Process (PPP), the 
analysis is heavily simplified and closed form expression of the coverage probability can be 
obtained in closed form for the case of Rayleigh fading [1]. However models based on PPPs have 
the drawback that BSs may be placed arbitrary close to each other with high probability and 
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therefore the interference may become larger than what is experienced in real network. 
 

Another observation is the extensive use of the Rayleigh faded radio propagation model in the 
literature for cellular network performance analysis, and hence excluding other types of fading. 
By relying solely on Rayleigh fading, other important types of fading like shadowing is excluded 
from the models. We believe that the Rayleigh faded only models suffer from fundamental 
inaccuracies which should not be ignored. It is well documented that slow fading or shadowing is 
an important part of radio propagation modelling at least when it comes to macro type of cells 
where different types of obstacles are likely to be present [11]. In our calculation we demonstrate 
that themean obtainable bit rate per hertz is a decreasing function of the standard deviation of the 
shadowing. 
 
In one part of this paper we consider a cellular network where the interfering BSs are uniformly 
distributed over a given area in the plane, e.g. are outside a cell of circular shape. Thereby we 
may avoid that interfering BSs may be arbitrary close to the BS a user is connected to.From a 
modelling perspective it is important that the interfering BSs cannot be arbitrarily close to the BS 
a user is connected to, however, the possible distance between interfering BSs is not that 
important since it is the actual distances and not the exact locations that counts. Another approach 
is to apply more sophisticated stochastic models for BS deployment that have some kind of 
repulsive properties. We therefore also consider the Ginibre Point Process (GPP) as an option for 
BS layout [13][14]. In addition we also allows for more realistic fading models by combining fast 
and slow (shadowing) fading. The fading used is the so-called Suzuki fading model that combines 
Rayleigh fading and Log-normal slow fading (shadowing) [7]. The aim is to obtain the 
distribution of the SINR, e.g. the outage performance, but also the bit rate per hertz efficiency for 
the cellular network which is a very strong performance measure. 
 
The rest of this paper is organised as follows. In section 2 we briefly summarize related work. In 
section 3 the propagation and fading models used in the analysis is discussed. Then in section 4 
the distribution of the SINR is derived for several scenarios ranging from fixed hexagonal cell 
layout to stochastic location of the interfering BSs. Section 5 describes how the distribution and 
moments of the bitrate per hertz can be obtained an LTE network, based on the discrete Channel 
Quality Indicator (CQI) table standardised by 3 GPP. Then in section 6 some numerical examples 
are discussed and section 7 concludes the paper. 

2. RELATED WORK 

Since the breakthrough of Andrews et al. it in the paper[1],where a PPP is used to describe 
locations of BSs in cellular network for other cells interference calculations, which also result in 
surprisingly compact and elegant results for the distribution of SINR and spectrum efficiency, 
similar analyses have been carried out in several new directions. Interference handling is 
extremely important for the performance of cellular networks and models that can be used to 
calculate the effect oncell capacity and on outage probabilities are highly valuable. For instance 
when deploying LTE networks coverage and capacity estimation will be valuable input for 
network planners to determine necessary radio resources and secure QoS to the users.  
 
Later works have been extended mainly in the two following directions: 

· HetNet type of cellular networks with small cells present, e.g. multiple tiers 

· More realistic BS location models than the PPP 

The modelling approach in [1] is possible to extend to Het Net type by introducing several tiers. 
In [15]-[18]different variants of multi tiers analysis are given. The resulting model capture the 
heterogeneity very well where the BSs in each tier is assumed to be located according to PPPs 
with different intensities. The main outcome of the modelling is mainly the coverage probability 
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under some different assumptions like how users are connected to the different tiers. For most of 
the cases closed form solutions or/and approximations are found.  
 
Recently other types of stochastic point processes have been proposed to model macro cell layout 
of BS. One of the promising new approaches is to assume that the BS layout follows a so-called 
determinantal point process (DPP). The DPP have in contrast to the PPP soft repulsiveness 
characteristic meaning that the probability of having two BSs to be located very close will be very 
small. A stationary DPP is characterised by a single covariance function which determines the 
DPP completely. Different forms of the covariance function give rise to different types of DPPs. 
In [19] it is demonstrated that DPP very well describes the BS layout found in real deployments. 

For special case of b -GPP the distribution of the SINR is found in relative closed forms in [14] 

for Rayleigh faded transmission. For the general DPP similar expressions are found in [19] but 
the result is not feasible for calculation in its current form. 

3. MODELLING OF RADIO PROPAGATION AND FADING 

The description of fading of radio signals is an important part of models for spectrum efficiency. 
Usually the radio propagation is described by a distance dependant part, the path loss, and an 
additional stochastic fading part that is not distance dependent. The fading, i.e. the stochastic part, 
is often divided into two distinct components namely slow fading or shadowing and fast fading. 
Below, we briefly describe the different components and also discuss how it is possible to 
combine slow and fast fading. 

3.1 PATH LOSS MODEL 

One of the most used path loss model for mobile scenarios is the Cost-Hata model, also called the 
COST 231 model [8]. The path loss L in dB is given by: 

 [ ] CRhhahfL
BRB
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and where, L = median path loss in dB, f = carrier frequency in megahertz, 
B

h = BS antenna 

effective height in meters, R = link distance in kilometres, 
R

h = mobile station antenna effective 

height in meters, )(
R

ha = mobile station antenna height correction factor. Its validity ranges are:  

· frequency: 1500 MHz to 2000 MHz,  

· mobile station antenna height: 1 to 10m,  

· BS antenna height: 30 to 200m and link distance: 1 to 20 km.  

In the numerical examples in this paper we will use: f = 2000MHz, hB = 30 meter, hR = 1.5 meter 

and C = 0 dB, which then gives: )log(2249.35744.137 RL += . 

3.2 SHADOWING AND SLOW FADING (LOG-NORMAL FADING) 

Log-normal shadowing is the result of the signal being blocked by large objects in the 
propagation path. These are typically distant objects in the environment such as mountains, hills, 
or large buildings. The length of time it takes for a moving receiver to pass through the "shadow" 
of these obstacles brings about the term "slow fading". The statistical model used to describe 
shadowing is the Log-normal distribution of the mean signal power [9]. Briefly the Log-normal 
shadowing is obtained by assuming that there is a stochastic part of L , say Y , added to the 

expression (1) that is normal distributed (with zero mean) and standard deviation 
Y

s  (all given in 
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dB). The corresponding variable 
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3.3 FAST FADING (RAYLEIGH FADING) 

Fast fading is also called multi-path fading, as a result of multi-path propagation [4]. When multi-
path signals arrive at a User Equipment (UE), the constructive and destructive phases create rapid 
variations in signal strength. The worst case fast fading occurs when there is no direct path, which 
is called Rayleigh fading. Using a one ray model, this small scale distribution simulates the 
effects of rapid amplitude fluctuations when the receiver travels a distance of a few wavelengths. 
As the number of reflected rays approaches infinity, the signal levels approaches a Rayleigh 
distribution, while the corresponding power follows an exponential distribution. In this paper we 
assume that the fast fading is according to the Rayleigh model. 

3.4 COMBINING FAST AND SLOW FADING (SUZUKI DISTRIBUTED FADING) 

Suzuki fading superimposes the Log-normal distribution onto the Rayleigh distribution. This is 
often used to simulate the effects of a dense urban environment with the average received power 
level fluctuating slowly due to shadowing effects and the fast fading represents rapid signal 
fluctuations on top of the shadowing effect [7]. By conditioning on the slow fading then for a 
Rayleigh faded channel the fast fading component will be exponentially distributed. Hence, the 

total stochastic variation of the signal power may be taken as the product 
e

XXS
ln

=  of a Log-

normal and an exponential distributed random variable. (By proper scaling we take the mean of 

the exponential distributed random variable
e

X to unity.) The resulting distribution also called the 

Suzuki distribution, and have PDF and CCDF given by the integrals: 
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the integrals above in terms of the Laplace transform of the Log-normal distribution by: 
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where )(ˆ xf
Lns

 is the Laplace transform of the Log-normal distribution. Moreover, the 

corresponding Laplace transform of S  may be written as: 
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In a separate appendix we provide some additional results on Suzuki distribution. Especially we 
show that the CCDF and PDF and the corresponding Laplace transforms may be expressed as 
contour integrals. These types of integrals are well suited for deriving asymptotic expansions, e.g. 
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by applying the saddle point method which turns out to be very accurate. 

4. OUTAGE PROBABILITIES AND DISTRIBUTION OF SINR 

4.1 GENERAL CONSIDERATIONS 

One of the most important parameters determining the cell capacity and obtainable bitrates for 
users is the Signal to Interference plus Noise Ratio (SINR). We have 

 

IN

P
SINR

+
=  (7) 

where P  is the received power, N  is noise power and  I  represents the interference from 
neighbouring cells. In the following we also allow for stochastic location of BSs. So formally we 
let  W  be the set of BSs under consideration (which may have stochastic location) and we denote 

the BS that the user is connected to 
0

B  and we denote the set of interfering BSs as 
0

B-W=G . 

(See Figure 1 below) 

 

Figure 1. General layout for interference considerations downlink. 

Now we assume that aSP =  where S  represents the stochastic fading (with mean unity) and  
ad -= Rca  where c  is the transmitted power and ad -R  represents the path loss where R  is the 

distance to the BS
0

B , d  is an appropriate scaling parameter and a  the attenuation factor (a.k.a. 

the path loss exponent). The interference I  is the sum of the received power of all interfering 

signals from all the other BSs i.e. we take å
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SaI  where  

0
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BSs and 
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S represents the stochastic fading component and further ad -=
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corresponding transmitted power and 
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R  is the distance to the i ’ th interfering BS
i
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ratio divided by the scaling factor in the path loss model and the scaled interference  aII =  
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c
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To find the distribution or outage probabilities of SINR we first consider the case where the 
location of the BSs W  are known. By conditioning on the interference we find: 

B2 
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the scaled interference I  when the locations of the BSs are known. (When there is no confusion 
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which is the Laplace transform of the interference I  when the locations of all interfering BSs are 

known. In (9) we must secure that the contour { }iyaz
a

+==g  is chosen so small that also 

)(ˆ xzf
I
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 is analytical on the contour, i.e. we may not take a  arbitrarily large. Alternative by 

changing the integration (9) may be written as: 
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*g  is in the negative half plane i.e. 0£*a  but chosen so that also 

)(zH W  is analytically on the line. 

For Suzuki faded channels the expression for the outage probability )(
~

xFW  may be heavily 

simplified. If the fading S is Suzuki distributed then the outage probability is given by: 
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To obtain (13) we take (8) as the starting point, and by (5) we find (by changing the order of 
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If the slow fading is negligible, i.e. we have a Rayleigh faded channel only, then the outage 

probability is obtained by taking the limit 0®s ; i.e. we may take )1()( yyLn -= ds  and we find: 
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To simplify the modelling we shall in the following assume that all the interfering cells are 

transmitting with the same power i.e. we have dd
i

=  for all i , but we allow for cases where the 

connected BS may transmit with different power than the interfering ones, i.e. we allow for value 

of d  that differs from unity. 

4.2 FIXED HEXAGONAL GRID 

In this case all the BSs have a fixed location. In the following we give the outage probability for a 
hexagonal cell layout by taking the interference from the nearest BSs into account. I.e. we neglect 
the interference from BSs outside the first ring of hexagons. (See Figure 2 below.) 

 
Figure 2. Hexagonal cell layout. 

If a user is located in the inner hexagonal by its polar coordinates  ),( qR  and the distance 

between BSs is taken to be D , then the distance to the interfering BSs may be written: 
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If we assume that users are uniformly distributed over the cell area, we find the function )(zH  by 

averaging over the cell:  
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Observe that in (17) we may choose the smaller averaging areal than a full hexagonal due to the 
symmetry.  

If a second ring of hexagonal interfering cells is added expression (16) has to be extended by the 
product of 12 extra Laplace transforms with the appropriate distances while (17) remains the 
same. 

4.3 STOCHASTIC LOCATION OF BS 

As the number of interfering BSs grows large the computational effort by applying a fixed layout 
of BS will not be feasible. Another issue is that for a real network there will be large variations in 
the actual placing of the BSs so a regular grid will not match well with what will be the layout of 
BSs in a real network. To cater for such variations stochastic models may give a better description 
of the interference than a regular grid model is able to do.  

4.3.1 UNIFORM DISTRIBUTION OF BSS  
 

In the following we assume that the BSs are uniformly distributed over an area A  in the plane 
and that the user is located say at a particular location which we chose as the origin. We assumes 

that we have totally n  BSs that all are uniformly distributed over A and we assume that the user 
is connected to the nearest base station and that the remaining 1-n  BSs are interfering the user. 

We denote ò=
A

dAA  the areal of A . We shall first find the Laplace transform of the interference 

given that the distance to the nearest (connected) BS is R  and we denote the circle centred at the 

origin of radius R  for 
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C . Hence there are 1-n  interfering BSs that are uniformly distributed 
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Figure 3. Stochastic cell layout with circular symmetry where the user is located in origin . 
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where the surface integration is taken over the variation of the distance r  (over the area A ). The 

probability that exactly one of the BS is located in a surface element qRdRddA=  at distance R  

and that all the remaining 1-n  BSs are outside 
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If we have circular symmetry, e.g. the area 
mR

CA =  a circle with radius  
m

R , the angular parts of the 

surface integrals are easily performed giving: 
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Now, if we consider a large network where the number of BSs per area is constant l , i.e. we 

have ë ûAn l= and ¥®A . Taking the limit, we have: l®
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become: 
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For the case with circular symmetry, e.g. the area 
mR

CA = is a circle with radius 
m

R  and ¥®
m

R  

we obtain: 
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where 2)( aplh -=q .Observe that (23) and (24) is exactly the results as optioned in [1] with the 

PPP modelling of BSs location. In fact we may easily obtain the results for PPP by the results 
above. For the PPP the conditional distribution of the of BSs in area A  will be uniform, given the 
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number of BSs, and the number of BSs will be Poisson distributed with parameter Al . Hence, 

for the PPP case we find: 
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where )(zH  is given by (23). We therefore conclude that for large networks where the BSs are 

uniformly distributed over the area give exactly the same result as for the corresponding PPP 
case. This is in fact similar to several other examples where Poisson models are obtained by 
limiting approaches; e.g. by superposition of thin, independent arrival streams which tend to a 
Poisson process when the number of streams get large, while the total arrival rate is kept constant. 

As pointed out in [1] is it possible to perform the integration of (24) for the cases where 2=a  

and 4=a . For 2=a yields the simple expression: 
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while for 4=a  the integral may be written in terms of complementary error function: 
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By the expressions (21) and (24) the effect of the interference is represented in a very compact 
manner compared with the expressions for the fixed grid as by (17), (15) and (16) above. To be 
able to compare the two models the mean numbers of BSs over an area should be equal. Since the 

area of an hexagon is 2

2

3
D  this corresponds to a BS density of 

23

2

D
=l . 

For Suzuki fading it is possible to express the function )(zG  more explicitly. We have 
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If we assume Rayleigh fading only, the corresponding result is obtained by letting 0®s ; i.e. we 

may take )1()( yyLn -= ds  in (27) and therefore )(
2

2
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For Log-normal fading distribution we have dydueyLnzG
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 where last integral will converge for 2>a . We have 
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yzdx  where )(tG and ),( atG are the Gamma 

and the incomplete Gamma function respectively. We may therefore write:  
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The case without any fading may be obtained from (28) by taking the limit 0®s ; i.e. we may 
take )1()( yyLn -= ds  and hence 1)()( -= zVzG . 

Observe that for Log-normal fading we cannot use (13) for calculating the outage distribution, but 
must rather use the more cumbersome inversion integrals (9) or (12). 

4.3.2 STOCHASTIC INTERFERENCE MODELS WITH A MINIMUM DISTANCE BETWEEN THE 

CONNECTED AND THE INTERFERING BSS  
 

If BSs are placed according to a PPP process the BSs will have a finite probability of being very 
close to each other. In practice there will be a minimum distance between BSs. Also, to be able to 

compare the results with the fixed grid deployment of BSs we now choose the BS
0B  to be at the 

centre and assume circular symmetry as shown in Figure 4 below, where the interfering BS is 
located in the area A between circles with radius 

minR and 
maxR .

 
Figure 4. Stochastic location of BSs where we have circular symmetry with the connected BS located at 

origin. 

If there is a total of n  interfering BSs which act independently and all of them are located 
uniformly over the given area, then the Laplace transform of the interference for a particular user 
located at distance R  from the BS the user is connected to may be found by applying the same 
method as described in section 4.3.1 above and we may apply (18): 
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where )( 2

min

2
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RRA -= p  and where the integration limits of r  is taken as  

  )(sin)cos(),( 22 fff -+-=G yy  with 1³y  (31) 

Fortunately, it is possible to perform the integral over the angle f  in the integral above. To do 
this we define the following inverse function by:  

Bi 

q i 
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By reversing the integration and performing the integral over the angle f  we therefore find: 
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It is possible to write (33) more explicitly by applying (31) and we find: 
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and where )(zG  is defined by (19) above. For calculations it may be beneficial to change the 

integration according to the angle variable )
2

1
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=f , i.e. we take ),( yr fG= where 

),( yfG  is given by (31) above. With this change of integration variable we obtain: 
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We may also easily analyse the case where the BSs are uniformly distributed on the periphery on 

a circle of radius 
s

R  by letting
s

RRP =®
minmax

. We therefore find: 
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where ),(),( yzQ
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yzQ
y ¶
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=  is the partial derivative of ),( yzQ  and s

RL p2=  is the length of the 

circumference of the circle. Performing the differentiation gives:  
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Since (39) is an improper integral for both end points 1-y  and 1+y  it will be beneficial also for 

this integral to introduce the same change of integration variable as above, i.e. according to 

),( yr fG=  which transforms the integral to: 
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In the expressions above we have assumed that the numbers of BSs are known, however, over a 
larger area it will rather be that the number of BSs will be a linear function of the areal of A , i.e. 
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we have ë ûAn l=  where l  is the density or intensity of BSs per unit area as for the Poisson case 

above, i.e. we have 
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1)(ˆ . As the network grows large this will approach an 

exponential expression: 
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dARvzdfzg ))((ˆ1)(ˆ a  and is given above by (34) above for case where A  is the 

area limited between two concentric circles. In the limit when ¥®maxR  we then find, since 

))(,( max RRzQ  tends to zero, the following expressions for )(ˆ zg
RI

:  
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where ),( yzQ  is given either by (35) or (36) above.  

Finally the same method will also apply for the case where the BSs are randomly distributed over 

the periphery of a circle.  By taking ë ûLn *= l  in (37); then for large L  we have: 

  
)(ˆ

)(ˆ zh

RI

RIezf
*-

=
l

 where (43) 

)(ˆ zh
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 is given by (38) above and where *l  now is the BS  intensity per length rather than per 

area. 

For all the models above we then have the Laplace transform of the sum of the noise to signal 
ratio and the scaled interference for a user located at distance R  from the transmitting BS on the 
form: 
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where the Laplace transform of the interference )(ˆ zf
RI

 is given by either (29), (37), (41) or 

(43)above.  

Finally, if we consider a circular cell with radius cellR where minRRcell £ and assume that a typical 

user is uniformly located in the cell, we find by averaging over the cell area: 
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The circular cell assumption is fundamentally different from the PPP assumption since we restrict 
the distances between the connected and the interfering BSs. This is not the case for the PPP 
model where the distance between the connected and the interfering BS may be small with 
relative high probability. We therefore expect that the PPP modelling will give higher inference 
than the models in section 4.3.2 and therefore give poorer performance. 

4.3.3 BSS DISTRIBUTED ACCORDING TO A GINIBRE POINT PROCESS  
 

Recently the Ginibre Point Process (GPP) has gain large attention for describing deployment of 
BSs in cellular networks. The GPP is a special case of Determinantal Point Process (DPP) which 
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has repulsion characterises imolying that two BSs will be close with small probability, while for a 
PPP there is a tendency to clumping of points that will not been seen in real deployment. It is 
possible to generalize a GPP to a so called b -GPP which is a thinned and re-scaled GPP. The 

thinning is done by deleting the points in the original GPP with probability b . Rescaling is done 

to maintain the same intensity as in the standard GPP. The b -GPP thus extends the classical GPP 

to point processes that covers a rather broad range of possible BS layouts ranging from PPP when 

0®b  to standard GPP when 1=b , [12]. 

 

The derivation below is in line with [13] but the similar result is also derived in [14].We let 

{ }T,F=W where F  is where be a point process in the plane with points 
iX , Ni Î  where the 

ordering is arbitrary and T is defined a set of independent indicator variable 
iT , Ni Î   with 

b-== 1)0( iTP  and b== )1( iTP . Hence the b -tinned version of F  is the set of points 
iX  

which have 1=iT  and only this points represent the location of a real BSs. We also denote 

{ }}1=Î= iT TNiN . Then conditioned on { }T,F=W  the Laplace transform )(zHW as given by (10) 

and (11) will take the form: 
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where ii XR = is the distance from the typical user to the BS 
TNi Î  and 

TNB Î0
 is the index of 

the BS where the typical users is associated and we also must have
0Bi RR > for all }{\ 0BNi TÎ .  

Summing over all the possibility of jB =0
 and taking into account that this represents a BS with 

probability b== )1( iTP  and then we may find )(zH  by talking expectations over the random 

variables 
iR  and the indicator variable 

iT  (this makes it possible to take the product over all N  in 
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We now use the highly special result for the Ginibre process (see e.g. [13] or [14]) which states 

that the ensemble { }2

iR  for Ni Î all are independent and 
2

iR follows an Erlang’ i  distribution with 

parameter 
b

pl
g = . b  is here includes to scale up the standard Ginibre process so that all the b -

GPP will have the same intensity l . Hence, 
2

iR will have the density function  
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and by inserting in we then have:
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manipulations we then find )(zH can be written: 
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For numerical calculations and it will be beneficial to rewrite the product and sum in (50) above 

by taking ),,(1),,( uzjJuzjI -= . This then gives  ( )Õ
¥

=

-=
0

),,(1),(
i

uziJuzP b  and 

( ) 1

0

),,(1
!

),(
-

¥

=

-= å uzjJ
j

u
uzS

j

j

b andby some manipulations we find 

( )dxxzdfex
j

u
uReuzjJ

x

S

xuj
j

j

u ò
¥

=

--
+

- -+=
1

1

)(ˆ1
!

)(),,( 2
a

 (52) 
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may for instance be used to find the limit 0®b of )(zH . We have 
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 which is exactly (24) for the PPP. When 

calculating the product ( )Õ
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uziJuzP b  it will be beneficial to factor out the “PPP” part 

by using (53) since we may write: 
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Hence, we may therefore write: 
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The function ),( buzU therefore represents the deviation from the corresponding PPP model. 

Compared to (24) the result for b -GPP above is much more time consuming to calculate since it 

requires calculation of both infinite sums as well as numerical integrations. By the rewriting done 
by (54) and (55) we speed up the convergence of the sums above since 
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4.3.4 FORMULAS FOR SINR DISTRIBUTION (OUTAGE PROBABILITIES) 
 

We end this chapter by summarizing the methods to obtain the SINR distribution.For all the 
scenarios of  BSs locations described above in 4.2 and 4.3 we can express the outage probabilities 
by some of the following expressions: 

· for Rayleigh faded channels: 
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· and Suzuki faded channels by the integral [15]:  
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· and finally for general fading distribution S  (with Lace transform )(ˆ zfS ) the outage is given by 

the contour integrals (9) or (12): 
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In All These Cases Represent The Laplace Transform Of The “Scaled” Interference And Noise 
Power And Is Given As Either (17), (21), (24), (45) Or (56). In Appendix- III We Discuss Some 

(Numerical) Methods For Evaluation Of The Integral (58) For Suzuki Fading. ) 

5. CAPACITY CONSIDERATIONS BASED ON LTE-CQI VALUES 

In this section we analyse the bit rate that is possible to obtain of a channel of a certain 
bandwidth. The analysis is based on the assumption that it is possible to specify a functional 



International Journal of Wireless & Mobile Networks (IJWMN) Vol.9, No.3, June 2017 

 

85 

 

relation between the SINR and the corresponding bit rate. For LTE part of this relation is given 
by the 15 standardized CQI values in Table 1 below [2]. To fully specify this relation the 
mapping between SINR values to different CQI indexes also have to be specified. Often a linear 
relation between CQI indexes and SINR in [dB] is assumed, but this may be vendor specific. The 
absolute upper bound on the bit rate-SINR relation is of course the Shannon formula [10]. 

5.1 OBTAINABLE BITRATE PER SYMBOL RATE AS FUNCTION OF SINR 

The aim is to express the bit rate as a function of SINR for a user in an LTE cell. For LTE the 
obtainable spectrum efficiency will depend on the radio signal quality (both for up-and 
downlink). An indication of the actual radio signal quality is signalled over the radio interface by 
the so-called CQI index, which is in the range 1 to 15. Based on the CQI value the coding rate is 
determined on basis of the modulation QPSK, 16QAM, 64QAM, and the amount of redundancy 
included. The modulation and the Forward Error Correction (FEC) rate is chosen based on the 
CQI value as shown in Table 1 [2]. For analytical modelling the actual CQI measurement 
procedures are difficult to incorporate into the analysis due to the time lag, i.e. the signalled CQI 
is based on measurements taken in earlier TTIs (Transmission Time Interval). To simplify the 
analyses, we assume that this time lag is set to zero and that the CQI is given as a function of the 
momentary SINR, i.e. CQI = CQI(SINR). This approximation is justified if the time variation in 
SINR is significantly slower than the length of a TTI interval. Hence, by applying the CQI table 
found in [2] we get the spectrum efficiency as function of the SINR as the step function: 

 [ )
1

, +Î=
jjj

ggSINRforcfB  for 15,...,1,0=j  (60) 

where f  is the bandwidth of the channel, 
jc  is the efficiency for CQI equal j  (as given by Table 

1) and [ )1, +jj gg  are the corresponding intervals of SINR values. (We also take 00 =c , 00 =g  and 

¥=16g .) 

Table 1 CQI table 

 

CQI index modulation code rate x 1024 efficiency 

0 out of range 

1 QPSK 78 0.1523 

2 QPSK 120 0.2344 

3 QPSK 193 0.3770 

4 QPSK 308 0.6016 

5 QPSK 449 0.8770 

6 QPSK 602 1.1758 

7 16QAM 378 1.4766 

8 16QAM 490 1.9141 

9 16QAM 616 2.4063 

10 64QAM 466 2.7305 

11 64QAM 567 3.3223 

12 64QAM 666 3.9023 

13 64QAM 772 4.5234 

14 64QAM 873 5.1152 

15 64QAM 948 5.5547 

 

To fully describe the bit rate function above we also have to specify the intervals [ )1, +jj gg . 

Several simulation studies e.g. [3] suggest that there is a linear relation between a CQI index and 

the actual SINR limits in [dB]. With this assumption we have [ ] bajgdBSINR jj +== 10log10  or 

1010

baj

jg

+

=  for some constants a  and b . It is also argued that the actual range of the SINR limits 

in [dB] is determined by the following (end point) observations: SINR[dB]=-6 corresponds to 
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CQI=1, while SINR[dB]=20 corresponds to CQI=15. Hence with this assumption we then have 

ba +=-6  and ba +=1520  or 713=a  and 755-=b . 

 

Figure 5. Normalized throughput as function of the SINR based on: 1.-CQI table, 2.-Shannon and 3.-

Modified Shannon. 

For extensive analytical modelling the step-based bandwidth function is somehow cumbersome to 
apply. An absolute upper bound yields the Shannon formula [10]; 

 )1(log
2

SINRfB +=  (61) 

However, it is well known that the Shannon upper bound is too optimistic. First of all the 

bandwidth function should never exceed the highest possible rate 5.5547
15

=c . We therefore 

suggest a downscaling and truncating the Shannon formula by taking: 

 )]1ln(,[ SINRTMindB g+=  (62) 

with 
2ln

C
fd =  and 

C

c
T

2ln
15=  where C  is the downscaling constant (relative to the Shannon 

formula) and g  is a constant less than unity. By choosing C  and g  that minimise the square 

distances between the standardised CQI values in Table 1above and the truncated Shannon 

formula (62) we find 9449.0=C  and 4852.0=g . (Upper and lower estimates of the CQI based 

zigzagging bit rate function is obtained by taking 6008.010 20 ==
a

u
gg  and 3918.010 20 == -a

l
gg ). 

We observe that a downscaling of the Shannon limit is very much in line with the corresponding 
bitrates obtained by the CQI table as shown in Table 1and hence we believe that (62) yields a 

quite accurate approximation. In fact the approximated CQI values app

j
c , based on the truncated 

Shannon formula, follow the similar logarithmic behaviour: 

 )1(log
2

japp

j
Cc ab+=  (63) 

where we now have 0984.010 1020 == +ba

ga  and 5336.110 10 ==
a

b . As seen from Figure 6 this 

approximation is very much in line with the values given by the CQI table. 
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Figure 6. Normalised throughput as function of CQI index based on CQI table and on approximated CQI 

values. 

5.2 DISTRIBUTION OF THE OBTAINABLE BITRATE FOR A CHANNEL 
 

If the distribution of the SINR is known the corresponding distribution of the obtainable bitrate 
B  of a transmission channel, may be found by the distribution of SINR and the functional 
relation between them. For LTE the functional relation is described in details in section 5.1. 
Alternatively, this relation may be taken as the Shannon formula which then gives the upper 
bound of the obtainable bit rate. In section 5.1 we also have determined a truncated version of 
Shannon formula that approximates the standardized bitrates quite well. Below we express the 
distribution of the possible obtainable bit rate as function of SINR and the CCDF of SINR given 

by )Pr()(
~

xSINRxF >= .  

First we consider the case where the functional relation between SINR and bit rate B  is the step 
function given by CQI rates inTable 1, i.e. on the discrete form (60) above. The CCDF of the bit 

rate )( yBPB £=  is then given as the following step function: 

 ( ]11 ,)(
~

1)( ++ Î-= jjj cfcfyforgFyB  for 15,...,1,0=j  (64) 

Hence, we also find the corresponding k ’th moment of the obtainable bitrate as the (finite) sum: 

 [ ] ( ) )(
~15

1

1 j

j

k

j

k

j

kk

k gFccfBEm å
=

--==  (65) 

Rather than applying the discrete modelling approach above, we may prefer to apply the 
continuous counterpart defined by relation (62). With this assumption we find: 

 

ïî

ï
í
ì

³

<--
=

-

Tdyfor

TdyforeF
yB

dy

1

))1((
~

1
)(

1g
 (66) 

and based on (66) we may write the k ’th moment of the bit rate as: 

 
[ ] ))1((

~
)())1(ln( 1

)1(

0

1

-++== -
-

=
ò

-

Tkkk

e

y

kk

k eFTddyyfydBEm

T

gg
g

 (67) 

where )(yf  is the PDF of the SINR (given as )(
~

)( yFyf ¢-= ). Alternative by integrating by parts 

the k ’th moment may also be written in terms of the CCDF as: 
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Normally, the moments without any truncation, is found from the expression above by taking the 

limit ¥®T . By defining )1(1 -= - Tegh  then ))(
~

)1(ln()())1(ln((
0

hghg
h

Fdyyfydm kk

y

k
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. If the limit ¥®h  exists for (67) then we have: 0)())1(ln()(
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definition; and therefore: 
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6. NUMERICAL EXAMPLES AND DISCUSSION 

6.1 SCENARIOS AND PARAMETER CHOICES FOR COMPARISON OF THE MODELS 
 

When comparing the different interference models/scenarios described in the sections 4.2 and 4.3 
we must be clear about the actual differences between them so that the comparison is “fair”. We 
take the hexagonal layout as the basis for the comparison. In the examples we have calculations 
for both 7 (Hexagonal 7- BS) and 19 (Hexagonal 19-BS) BSs where the first represents the cases 
shown in Figure 2 with a BS surrounded by 6 (interfering) neighbouring BSs and the second 
represents the case with the second ring with additional 12 (interfering) BSs. When comparing 
hexagonal layout with circular cell models we choose to require that areas are equal, i.e. the area 
of a circular cell equals that of a hexagonal cell. Also when comparing models with PPP we take 
the intensity so that the (mean) number of BSs coincide with that of the hexagonal grid i.e. 

1=hexAl   where  2)23( DAhex =  is the area of a hexagon with (shortest) diameter D  as shown in 

Figure 2. We have considered the following interference scenarios: 

1. The cells and BSs are located as hexagonal either with 7 or 19 BSs.  
2. BSs are distributed according to a PPP in the plane. 
3. BSs are uniformly distributed over the considered area, either with 7 BS over a circular 

area equal to 7 hexagonal cells, or with 19 BS over a circular area equal to 19 hexagonal 
cells. 

4. The UE is randomly located in a circular cell (with the same area as the hexagonal cells). 
The interfering BS is located uniformly outside the cell with some different options: 

a. Semi-infinite with rate that matches the hexagonal grid. 

b. BSs are located outside the cell but inside a limiting circle and where the number 
of BSs matches the hexagonal cases, i.e. 6  or 18 and the corresponding network 
area equals that of 7 or 19 hexagonal cells. 

c. 6 BSs are located at the periphery of a circle with radius equal to the distance of 
the interfering BSs from the 7 hexagonal cell case.     

In the examples described below we choose the Cost-Hata path loss model with the parameters 
described in section 3.1. We further assume a transmission power of 2.0 kW and a noise power of 
8.283x10

-14
 W. This gives necessary parameters for the numerical calculations: 0024638.0=h and 

52249.3=a All the distances are measured in km. The diameter of the (hexagonal cells) are taken 
to be kmD 0.2= . 
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6.2 THE DEVIATED HEXAGONAL MODEL 

 

We shall also consider the following planning scenario for deploying BSs in a cellular network: 
An operator wants to deploy a network of macro BSs in a particular area. As a start, the operator 
takes a map of the area and marks the initial tentative BS locations according to a regular 
hexagonal pattern. Then each ideal BS site is inspected and typically moved from its initial 
location to a nearby location where it is more practical to put it. A simple statistical model for this 
process is that each BS is placed randomly in a disc of a certain radius centred at the initial 
“ideal” regular hexagonal BS locations, as illustrated in Figure 7. 

Figure 7.The deviated hexagonal model for selecting BS locations. Crosses indicate the “ideal” BS 

locations and the black dots the actual selected BS locations . 

The location of each BS is assumed to have a uniform probability distribution over the area 
covered by each disc and the cells are defined by the Voronoi tessellation based on the BS 
locations. This model is then more realistic than the regular hexagonal models. The BSs are 
placed more randomly and when the radius of the disc is large the generated BS locations are 
expected to look very similar to what is obtained with the PPP model. The performances 
measures obtained with the deviated hexagonal model are therefore expected to lie between the 
performances found with the regular hexagonal models and the PPP model. For small disc sizes, 
the performance should be similar to what it is for the regular hexagonal model. But as the disc 
sizes are increased, the performance is expected to approach the PPP performance. 

The main weakness of the PPP model is that BSs can be placed arbitrarily close together, whereas 
the minimum inter-BS distance can be controlled in the deviated hexagonal model. Hence, the 
accuracy of the PPP model can be tested by comparing its performances with those obtained with 
a deviated hexagonal model with large disc sizes, where the disc sizes are chosen to guarantee a 
certain minimum BS separation.

A simulation study was performed to compare the different analytical models with the deviated 
hexagonal model, and also to justify the numerical calculations. Both the numerical calculations 
and simulation was performed by applying the input parameters in 0above and we conclude 
excellent coincidence between the calculated and the simulated SINR distributions. 

6.3 PROBABILITY OF COVERAGE 

Below we give the coverage probability as a function of the threshold (in dB), which is also the 
CCDF of the SINR, for the various scenarios described above.  Four different values for the 
standard deviation of the shadowing have been chosen in the examples below. These are 0, 3, 6, 
and 9 dB for the different plots. 

In top left of Figure 8-Figure10 we show the results without any shadowing. This case gives the 
best performance of all the cases considered. This corresponds to the results presented in [1] 



International Journal of Wireless & Mobile Networks (IJWMN) Vol.9, No.3, June 2017 

 

90 

 

where the modelling is based on the assumption of having Rayleigh the faded channels.  When 
comparing the effect of shadowing we observe that the shape differs for the different value of the 
standard deviation. We observe that the coverage performance clearly decrease as function of 
increase of the shadowing. Also the shape of the coverage curves change depending of the 
shadowing, while for standard deviation of 0 and 3 dB have the typical s-shape, the plots with 9 
dB shows a more linear shape without any clear inflection points. 

In Figure 8 we compare the different types of cell structures from PPP, uniform location over 
circular area and the traditional hexagonal layout with 7 and 19 BSs and we observe the rather big 
difference between the hexagonal cases and the PPP model. The uniform distributed scenarios 
with 7 and 19 BSs (and with area equal to the corresponding hexagonal cases) give better 
performance than PPP but are well below the hexagonal cases.  The model with circular serving 
cell and where interfering BSs uniformly distributed outside the serving cell (lilac curves) gives 
coverage performance which is much in the middle between the hexagonal cases and the PPP 
model. It is likely that an actual effect of the interference is somehow between these two 
scenarios and therefore the uniform outside circular cell model in 4.3.2 actually will give good 
accordance with real deployments. 

One of the main drawbacks with the PPP modelling of locations of BSs is that there will be large 
probability of finding two BSs quite close to each other. This will not been seen in real networks. 
In the scenario with a circular cell and uniform distribution of interfering BSs outside the cell 
seem to a more realistic, and will secure that the interfering BSs at least have a minimum distance 
to the serving BS. (This case is the lilac curves in the upper figures.) 

  

  

Figure 8. Coverage probabilities for hexagonal, uniform and PPP scenarios with standard deviation of 

shadowing: 0 dB top left, 3dB top right, 6dB bottom left and 9dB bottom right. 

It is possible to improve the performance compared to the PPP by just limiting the network size 
and spreading the BS uniformly over the area. (This corresponds to the two green curves in the 
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upper diagrams.) However it might be questionable if such a reduction of the area of interfering 
BS will be realistic and give more accurate results. The two regular hexagonal cases, (blue and 
read curves in the upper diagrams) perform best. This is expected due to the regular fixed pattern 
where there is no possibility of having interfering BS at a closer distance than the fixed ones. 
Stochastic models allow for this to happen and therefore we also expect the overall interference to 
increase accordingly. 

In Figure 9 we compare the fixed hexagonal models with the stochastic models with circular cell 
and where the interfering base station is uniformly located outside the cell but limited by a disc 
with areal that of the interfering cells in the hexagonal cases. We observe that the stochastic 
models give slightly poorer performance than the hexagonal models as expected. However, it 
turns out that the uniform placing of BSs either on a particular circle or between two circles pretty 
much behaves as the fixed hexagonal cases. Especially the scenario where 6 BSs are uniformly 
distributed over the circumference with the same as the diameter for the hexagons (green curves) 
gives excellent accordance with the hexagonal 7 cell case for all value of the chosen shadowing 
parameter. (See the green upper curves in Figure 9 below.) 

 

 
 

  

Figure 9. Coverage probabilities for comparing hexagonal scenarios with standard deviation of shadowing: 

0 dB top left, 3dB top right, 6dB bottom left and 9dB bottom right . 

In Figure10  below we compare simulated deviated hexagonal scenarios with results from the 
analytical models. We consider the case where the actual location of BSs are uniformly drawn 
and placed in a disc surrounded the hexagons with radius of 0.9 km (see Figure 7 above) in the 
example shown in the figures. With this assumption around a quarter of the area are forbidden to 
put BSs, and moreover, two BSs will never be closer than at most 0.2 km. One observation is that 
the deviation from the fixed hexagonal scenarios is not very big although the differences are 
clearly visible, but much less than for the PPP model. It is reason to believe that the deviated 
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hexagonal BS model may be adapted to real deployment by adapting both the distance between 
hexagons and the disk radius for the deviation. For this particular case we see that the deviated 
hexagonal model with two rings of hexagons e.g. 19 BSs are quite good accordance with circular 
cell case where the interfering BS is located uniformly outside the cell (lover green and red 
curves in Figure10).       

 
 

 
 

Figure10 Coverage probabilities for comparing deviated hexagonal scenarios with s tandard deviation of 

shadowing: 0 dB top left, 3dB top right, 6dB bottom left and 9dB bottom right. 

Another interesting observation we may draw from the scenarios is that only quite a few users 
will get high bitrates. For instance as seen from Figure 5 a user needs to have SINR larger than 20 
dB to obtain normalised throughput of 5 or larger and the portion of users where this is possible is 
well below 20% for all the scenarios and cases considered and actual lies in the range 10-18%. 

6.4 COVERAGE FOR THE Β-GINIBRE POINT PROCESS 

Below in Figure 11, we show the coverage probability for case where the BSs are located in the 
plane according to a β-GPP for different parameters of the standard deviation of the shadowing. 
We observe that β-GPP converges to PPP case when the thinning parameter β gets small as 
expected. One observation, however, is that the β-GPP modelling of BSs does not give a broad 
variation of the coverage probabilities in terms of the thinning parameter β and cannot be used as 
a model BSs layout with quite regular layouts like classical hexagonal or deviation of hexagonal 
as depicted in Figure10 above. The increase in the coverage for the β-GPP compare to PPP BS 
layout is quite limited as seen from the different cases shown in the figure below. Hence, we man 
not expect that the β-GPP will “solve” the shortcomings by the traditional PPP modelling.  
Another issue is the heavy computing efforts to obtain the coverage probabilities for the β-GPP. 
While the PPP model is fast also for shadowing parameters larger than zero, the corresponding β-
GPP requires heavy computation of infinite products and sums and will typical have like 100 
times larger CPU-times.  
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Figure 11. Coverage probabilities for Poisson PP and Ginibre PP with standard deviation of shadowing: 0 

dB top left, 3dB top right, 6dB bottom left and 9dB bottom right. 

6.5 SPECTRUM EFFICIENCY 

In Figure 12 we have plotted the mean obtainable spectrum efficiency for the different scenarios 
as a function of the standard deviation of the shadowing. 

Since our examples is interference limited; i.e. it is the interference from surrounding BSs rather 
than the noise power that determines the SINR values we also expect the corresponding overall 
efficiency to be quite low. Generally we observe that the mean efficiency decrease with an 
increase of standard deviation of the shadowing. As expected the PPP model gives the worst 
performance where the mean efficiency drops from 1.09 to 0.811 for 9.0 dB shadowing standard 
deviation. For the 7 hexagonal cells scenario the corresponding decrease is from 1.83 to 1.53. All 
the other scenarios give values that are in between these two cases except for the scenario where 6 
BSs are randomly distributed over the circumference of a circle with the same diameter as the 
hexagons which gives a slight higher throughput. 

The β-GPP model shows similar performance for the spectrum efficiency as the PPP model but 
with some higher values as shown in Figure 12. For the β=1-GPP BSs layout the mean efficiency 
drops from 1.33 to 0.966 when the standard deviation of the shadowing increase from 0.0 for 9.0 
dB and this is roughly an increase of around 20% compared to the PPP model. 
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Figure 12. Mean Bitrate/Hz for the different scenarios as function of standard deviation of the shadowing. 

7. CONCLUSIONS 

In this paper we discuss and compare methods to analyse the influence of inter-cell interference 
have on the down link performance in cellular networks. The framework is based on classical 
methods to find the Laplace transform of the interference from neighbouring cells, and both fixed 
and random location of BSs are considered. It turns out that for Suzuki distributed fading the 
analysis is highly simplified, since the distribution of the SINR may be evaluated by real integral 
rather than a complex contour integral that would be necessary if the fading was assumed to be 
Log-normal. In case of Rayleigh fading only, the analysis is even more simplified. 

The modelling approach allows for both fixed and stochastic locations of BSs. The stochastic 
models are compared with a fixed hexagonal cell layout with 7, (i.e. one ring of interfering BSs) 
and 19 cells, (i.e. two rings of interfering BSs). All the proposed models require quite heavily 
numerical computation with numerical integration of multi-dimensional integrals.  

The different models are applied to quantify the effect of the interference in LTE networks where 
we have considered several scenarios ranging from fixed locations of BS to stochastic distribution 
of BSs based on PPPs. It turns out that the PPP distribution of BSs give the worst performance for 
the outage probabilities, while the fixed hexagonal grid with 7 or 19 BSs gives the best. The 
difference between these two scenarios is quite large while the scenario with uniform distribution 
of BS outside a circular cell gives coverage probabilities that are in between those two extremes. 
We believe that this model perhaps will give the best match of what is observed in real LTE 
networks. 

When it comes to the spectrum efficiency we also see big difference between the different cases 
where the PPP case give only around one bit per hertz on average, while the hexagonal give 
nearly 50% more. We also observe a decrease in the spectrum efficiency as a function of the 
standard deviation of the shadowing. Hence, this shows that the popular assumption of Rayleigh 
faded channels only, actually will give too optimistic cell performance. 
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APPENDIX 

Appendix- I. SOME PROPERTIES OF THE SUZUKI DISTRIBUTION  

 

The Suzuki distribution may be defined as the product 
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of the Suzuki distribution is exactly the Laplace transform of the Log-normal distribution, e.g. 
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Note that although the series (A-3) converges for fixed truncation parameter M , it is not possible 
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Similar the PDF of the Suzuki random variable is given by: 
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and now we take the corresponding truncated integral to be: 
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For the PDF we find the following bound of the truncation error: 
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By expanding the integral 

(A-6) in terms of the exponential series as above, we now obtain a similar (convergent) series: 
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 is given by (A-4) above. 

In Appendix-III below we show that it is possible to express the CCDF of Suzuki distribution as a 
complex contour integral: 
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where )(zG  is the Gamma function and { }iyaz
a

+==g  is a straight line parallel with imaginary 

axis with 0>a . Differentiation now gives the PDF as: 
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It turns out that the integral representations of )(xf
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 are suitable derive approximation 

based on the saddle point method, e.g. as found in the book of Wong [6]. For )(xf
S

 the ordinary 

saddle point method applies, while for )(
~
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S

 the corresponding integral will have a simple pole at 

0=z  so for the CCDF we apply the “saddle point near a pole” method described in detail in [6]. 

We find the following asymptotic approximations: 
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where 

 

2
ln))(log()(

22sz
xzzzzf +-G=  and 2)1()( sy ++¢=¢¢ zzf  (A-12) 

and where )(xrr =  is the solution of the (functional) equation  

 0ln)1()( 2 =+-+=¢ sy rxrrf  for which 1->r  (A-13) 
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And further 
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)1( +zy  will have poles at ,...3,2,1 ---=z , and hence the functional equation (A-13)gives multiple 
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It turns out that the asymptotic approximation )(
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 yields an excellent uniform approximation 
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for all values of s . 

Also the Laplace transform of the PDF and CCDF for the Suzuki distribution is readily obtained 
by integrals: 
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Contour integral expressions for the transforms )(ˆ yF
S

 and )(ˆ yf
S

 are possible to obtain by staring 

with (A-8)and (A-9) respectively. By using the fact that )1(
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and applying Euler's reflection formula
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where { }iyaz
a

+==g  is a straight line parallel with imaginary axis with 1<a . Similar we find  
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where { }iyaz
a

+==g  now taken as a straight line parallel with imaginary axis with 0<a . 

APPENDIX  II:CONTOUR INTEGRAL REPRESENTATION OF THE CCDF OF A SUZUKI 

DISTRIBUTED RANDOM VARIABLE   

 

We let the function )(xW  be defined by the complex contour integral 
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Suzuki distribution denoted )(
~

xFS
, given by (A-1) above. 

In fact if we instead use the (lower) incomplete Gamma function dtetMz t
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is the truncated CCDF defined by (A-2).  

APPENDIX III: SOME NUMERICALISSUES WHEN CALCULATING THE DISTRIBUTION OF 

SINR FOR SUZUKI DISTRIBUTED FADING   

For numerical calculations we take the truncated version of (60) by defining: 
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It is possible to expand the integral in some different ways. By applying the Taylor expansion 
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where ),( sug
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 is given by (A-4) in terms of the complementary error function. 
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where  
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and where ),( sug
k

 is given by (A-4). (Observe that for 1>u  and 0®s  we have 1),(
0

®suh  

and 0),( ®suh
k

 for 1³k .) 

An alternative to standard numerical integration of (A-17) we propose a procedure where we 
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approximate )(yH  by piecewise linear functions in the interval [ ]M,0 and then integrate over the 

Lognormal distribution. For a N  point approximation with the points { }Myyyy
NN

== - ,,...,,0
121

in 

increasing order we find the following approximation: 
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where ),( sug
k

 is given by (A-4) in terms of the complementary error function. 
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