
International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

DOI: 10.5121/ijwsc.2020.11201 1

A COMPARATIVE STUDY BETWEEN GRAPH-QL&

RESTFUL SERVICES IN API MANAGEMENT OF

STATELESS ARCHITECTURES

Mr.Sayan Guha and Mrs.Shreyasi Majumder

Data Architect, AI and Analytics Practice, Cognizant Technology Solutions, India

ABSTRACT

A stateless architecture design is a web architecture design that typically does not persist data in any

database and such applications also does not require any kind of backup storage. Data that flows through

a stateless service is data in transition and such data is never stored in any data store. The processing

requests that arrive to such architecture does not rely on information gathered or persisted from any

previous session. API (Application programming interface) which consists of subroutines, definitions &

procedures that can access data on the applications are the communication points between applications
and management of API endpoints using stateless architecture is less complex as there is no server side

retention of the client session and each client sends requisite information in each request to the server.

GraphQL and RESTful services are means of designing such API architecture. This paper discusses and

explains in detail both GraphQL and REST API architecture design and management methods and does an

analysis of the potential benefits of GraphQL over REST in Stateless architectural API designs.

KEYWORDS

API, RESTful, URI, GraphQL, Stateless, Schema Definition Language (SDL), HTTP, Mutation.

1. INTRODUCTION

Since inception of API based web services to aid seamless integration & data exchange across

applications on the foundations of stateless architecture, REST based API web services have been
the de-facto standard & preferred architectural style for design and management of the web

services.

Although there are scenarios, where performance of a web service API, tailored need of the data

consumer & ease of retrieval of data using one single API endpoint lays a strong underpinning for

using GRAPHQL as suitable alternative of REST for Web service computing.

 In this paper, we aim to perform a comparative analysis of scenarios where GRAPHQL could

evolve as an alternative architectural style for API based stateless application architectures. We

aimed to infer based on observations with variable data volumes simulating an experiment with
social media posts. We have performed the experiment across many iterations and factoring the

complexities of number of API endpoints & increasing data volume in each iteration to depict the

behavioural response of both GRAPHQL & REST in terms of throughput. The results depict
potential benefits of GRAPHQL over REST & identifies areas of further research and

improvement with GRAPHQL based approachWe have organized the remainder of the paper as

follows. In Section 2, we discussed API management in stateless architecture as a brief

introduction to the context. In Section 3, related work has been discussed in REST based API
management scenarios along with the shortcomings and security vulnerabilities. In Section 4, we

aim to provide a concise introduction to GRAPHQL based API management approach along with

http://airccse.org/journal/jwsc/current2020.html
https://doi.org/10.5121/ijwsc.2020.11201

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

2

resolution to the conventional problems encountered in REST based approach. We aimed to

explain the supported types of GRAPHQL & its usage scenarios to facilitate an appreciative
understanding of GRAPHQL objects and ease the understanding of to the experiment in the

subsequent Section 5.

 In Section 6, we present the performance evaluation results factoring the complexity of number

of API & increasing data volume and relative analysis of GRAPHQL Vs REST. We summarize

our work in Section 7.

2. API MANAGEMENT IN STATELESS ARCHITECTURE

MoussaTaifi et al (2016) [1] says the challenge of HPC (High Performance computing)

applications are required to be improved on the fronts of reliability and performance owing to the
existing difficulties for existing performance tuned APIs and provided a solution provided by

Stateless architecture at scale.

In a Stateless architecture, deploying APIs to multiple number of concurrent users and to multiple

servers is a good practice. Any server can handle any request as no session information is being

stored from previous sessions.

3. RELATED WORK

JacekKopecký et al (2016) [2] mentioned that the existing misuse HTTP protocols has paved the

way to RESTful services into the picture for effective API management. HTTP operations like
GET, PUT, POST, DELETE & PATCH are united under the umbrella of combined operations

under the name of “RESTfulness” adopting the acronym of REST invented by Roy Thomas

Fielding (2010) [3].

Roy Thomas Fielding (2010) [3] mentioned in his article that RESTful Web Services is a client-

server architectural style that provides a behavioural model for client applications and web

services. REST describes a number of design principles and constraints, such as stateless
communication and the use of uniform interfaces and self-descriptive messages applied in REST-

based services.

The services created in accordance to the style of REST architecture are typically referenced a
RESTful web services. The basic principle of a RESTful web service the exposure a set of

resources, i.e., any information source, uniquely identified by a Uniform Resource Identifier

(URI) and can be accessed through web. The below shows the working principle of RESTful
Web Service in API management.

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

3

Figure 1: Runtime architecture of RESTful Web Services Source: Website, phppot.com

3.1. Limitations of RESTful Services in Stateless Architecture

Below limitations exist while working with RESTful services in Stateless architectural
communications:

i. Incapability to heavyweight data transfer: According to FestimHalili et al (2018) [4] one of

the major drawbacks of RESTful Web Services lies in the incapability of handling heavy data
transfer. This inability actually makes REST services lightweight and rely on lightweight data

transfer over a common interface –the URL.

ii. Reliability on fixed data structures: REST relies on fixed data structures. In RESTful,

services making multiple calls to different REST endpoints is required and separate code to

transform & merge the data from each response is required before using them to render your
views. REST relies on the fixed data structures and iterative process to get the desired

response.

iii. Security challenges: API management done using REST has proven to be vulnerable to
security threats over the web. According to NishuPrasher (2018) [5] the possibilities of the

following security vulnerability possibilities in his thesis.

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

4

Table 1. REST Security vulnerability possibilities

Possibility Scenario

Injection Attacks &

message altering

Unreliable SQL injection into API by a
command

Security Assurance SQL injection, parameter & path

disclosure

Authentication-based

attacks

Inadequate authentication. Hacking of
web tokens.

Denial of service (DoS) and

buffer overflows

API key/ Access token hacking if no

threshold on too many requests

Cross-site scripting/cross-

site request forgery

Also known as, XSS attack. REST

APIs are vulnerable when

malevolent code is injected as input

to web services

Man-in-the-middle (MITM)

attacks

Absence of TLS layer security in a

REST API. Lack of transport level

encryption

Replay attacks and
spoofing.

REST APIs are vulnerable to spoofing
of the valid transactions and the

attacker could replay one valid

transactions as would like.

Insecure direct object

references.

REST APIs expose IDs to get

resources. This results in direct

exposure to internal objects

Sensitive data exposure. Non Encrypted data exposure

Missing function level

access control

Weak authentication validation in

sensitive request handlers

4. GRAPHQL IN API MANAGEMENT

GraphQL is an alternative and all new approach to interact with Web APIs. It is an open source

data manipulation and querying language for APIs. It is dynamic, single endpoint interactive
query based language to interact with APIs. Client systems using GraphQL can talk to the server

on exactly what they need, the queries are written to interact the web on exactly what is required -

nothing more or less.
As an alternative to conventional RESTful service, GraphQL developed by Facebook® in 2012 &

publicly released in 2015.

On 7 November 2018, Facebook® transferred the GraphQL project to the lately established

GraphQL Foundation, hosted by the non-profit Linux Foundation.

Olaf Hartig et al (2017) [6] in his conference paper explains GraphQL as new type of Web-based
data access interfaces that presents an alternative to the notion of REST-based interfaces & owing

to this advantages over REST, since its release GraphQL has gained significant momentum and

has been adopted by an increasing number of users.

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

5

4.1. GRAPHQL based API management – An alternative approach

Kristopher Sandoval (2017) [7] in his research blog discussed about the potential benefits of

using GraphQL. He also mentions that because GraphQL is extremely powerful, several

providers who need stable readability with quick speed and indexing have used it. Most of the use
cases for GraphQL are therefore those who require high data throughput with ease of sorting &

represented clearly by its highest profile users.

Data Fetching using Single Endpoint

Data Fetch using GraphQL is a paradigm shift compared to working with REST APIs. REST

APIs considered multiple specific endpoints to load the data. In GraphQL APIs typically a single

endpoint is exposed and which in turns out to be more flexible for the client system to decide
what data is actually needed. The below figure explains the difference of data fetch between

REST API and GRAPHQL APIs.

Figure 2: REST API Vs GraphQL API Source: Website, pinterest.com

Resolution to Underfetching&Overfetching

Overfetching means the API consumer downloads more information than actually required for his

custom need. In Rest API, the only way user obtains the data is by accessing multiple endpoints.

The Response might have additional information that the user requirement. This situation is
Overfetching.

Underfetching means API consumer downloads less information than actually required for his

custom need. In Rest API, the only way user obtains the data is by accessing multiple endpoints.
The Response might have less information that the user requirement. In this situation, the client

will make additional request until the retrieval of required information. This situation is

Underfetching.

In GraphQL client, obtain exactly the data they need from an API. The below figure explains a

sample GraphQL request query to fetch authors and relevant articles details in a single GraphQL

query. It does not require two separate endpoints.

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

6

Figure 3: GraphQL query to fetch students all classes in a school

Schema Definition Language (SDL)

Olaf Hartig et al (2019) [8] in his research paper has focussed on repurpose of schemas for graph
databases that are based on the Property Graph model based the Schema Definition Language

(SDL), originally meant as a language to define a so-called GraphQL schema that specifies

different types of objects that can be queried when accessing a particular Web API.

Therefore, the authors rearticulate definition of Schema Definition Language (SDL) from data

usage standpoint -GraphQL uses a schema to articulate the shape of the data graph. This schema

defines and describes a hierarchy of objects called types, populated from the backend database
storage.

Olaf Hartig et al (2018) [9] in his morning paper blog have put together many perspectives of

quantitative definition of GraphQL schemas. One of the most popularly used definition explains
GraphQL as edge-labelled multigraph where each node is associated with an object type and

comprising of dictionary of properties. Property keys derives their as field names from set F.

GraphQL schemas constructed over three sets: Fields (F), Arguments (A), and Types (T)
As per the authors GraphQL graph over (F, A, T) is a representation of a tuple

G = (N, E, τ, λ, r) where

• N is a set of nodes

• E is a set of edges of the form (u, f [α], v) where u, v € N, f € F and α is the partial mapping

from A to Values
• τ: N Oт is a function, which assigns a type to every node in the system.

• λ is a partial function that assigns a scalar value v € Values or a sequence [v1, v2...vn] of

scalar values where (vi € Values) of some pairs of the form (u, f [α]) where u € N, f € F and α
is the partial mapping from A to Values.

• r € N is the distinguished node called root node of the graph system.

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

7

Variety of Supported Type Definitions in GRAPHQL

In order to have a better understanding of our work about relative study of GRAPH-QL vis-à-vis

REST services in API management, we considered a quick appreciative recognition of various

supported type definitions associated with GRAPHQL & the related scenario of their application.

Table 2. GRAPHQL supported types

Type Type description Includes Definition

P
ri

m
it

iv
e

 t
yp

e

A
d

va
n

ce
d

 t

yp
e

H
e

te
ro

ge
n

eo
u

s
ty

p
e

D
a

ta
 r

et
ri

ev
a

l

In
se

rt
 /

 U
p

d
at

e

in
 A

P
I c

ha
n

ge

Scalar

Scalar types are the
primitive types,
single type for

every scalar type

Int Signed 32‐bit
integer.

X

Float

Signed double-
precision
floating-

point value.

X

String

UTF-8
compliant
character
sequence

X

Boolean

True / False OR
1/0 decision

enabling
type

X

ID

A unique
identifier

and is
serialized as

a string

X

Object

Either a field or
another object

type of a
combination

 Object type
can

constitute
another

Object type
along with

other
scalars

X X

Query

Object types by
means of which

data can be
retrieved from

multiple
variables for a

particular
schema

An explicit
mention of

the
required

fields
mentioned
in the query

X X X

Mutation

 API, which can alter
data, types

useful either by
inserting or

updating data
already in the

database.

Type
constitutes

"Create" & "
Update

type" within
Type

Mutation

X X

X

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

8

5. EXPERIMENT SCENARIO: RETREIVE SOCIAL MEDIA POST DATA

As we discussed the shortcomings of data fetching using REST API based calls & categorically
tried to explain the ease with which GRAPHQL has brought a paradigm shift to the fetching of

user and related data from any website using typically a single endpoint. In the experiment, we

have aimed to bring forth the advantage of right fetching of the data that is required compared the
limitations of over fetching and underfetching using REST API based GET calls.

GRAPHQL Based Query Engine

Based on all the work that has been accomplished with GRAPHQL, we conceptualize

GRAPHQL query engine would work as per the below block diagram.

Figure 4: Conceptual GRAPHQL Query Execution Engine

• Schema is a tailored type language, which will return results back to the user. The user/client

will request any number of fields and GRAPHQL server will return only the fields expected.

• The query optimization parser once parses the values, validated to be good by the schema

validator,

• The resolvers proceeds towards processing the query & will return requisite data fields only.

In the process of performing the experiment we have studied previous work of
JobineshPurushothaman (2018) [10] on his complete guide to building a polyglot GraphQL

Server lays down a foundational understanding to use GraphQL to its best for retrieving Social

Media Posts.

Our work derives inspiration from the same where he has provided lightweight understanding in

his paper.

In addition to the above, we have studied the work of Sebastian Eschweiler (2018) [11] on his

lightweight approach by which a server can be implemented of its own and can be made ready to

execute queries to retrieve data from any website.

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

9

All codes provided in the below example are not in executable state and only for educational

purpose used by the authors. It can help the reader to understand the approach to the retrieval but
is not a verbatim source code.

/ Provisioning of resolver functions for schema field & Type definitions

consttypeDefs = `

typequery{

post (id: Int!): Post
 user (id: Int!): User
 },

typepost {
Post_id: Int
 user: User
 title: String
 },

typeuser {
id: Int
 name: String
 email: String
 posts: [Post]
 },

`;

/ declare variable definitions for post and users for different users

/ Author names used for demo purpose

varpost = [
{

Post_id: 1,
user: 1,
title: ‘Sky is the limit’,
},

{

Post_id: 2,
user: 2,
title: 'Where knowledge is free and head is held high’
}

]

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

10

Figure 5: Sample code to create API endpoints to retrieve data using GRAPHQL

varuser = [
 {

User_id: 1,
name: 'ShreyasiMajumder’,
email: 'shmaj@yahoo.com’
},

{

id: 2,
name: ‘SayanGuha’,
email: 'sguha@yahoo.com’
}

];

/ Variables functions to getPost&getUser

vargetPost=function (root, {id})
{

returnpost.filter
 (post => {

 return post. Post_id === id;
}) [0];

};

vargetUser= function (root, {id})
 {

returnuser.filter
 (user => {

 return user. User_id === id;
 }) [0];
};

/ Provisioning of resolver functions for schema fields

const resolvers = {

query: {
post: getPost,
user: getUser,
},

User: {

posts: (user) => filter (post, {userId: user. id}),
},

Post: {

user: (post) => find (user, {postid: post.id}),
},

};

/ End of code required to create the API endpoints for data retrieval to work

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

11

The authors hereby also draws attention to the work by Erik Wittern et al (2018) [12] y on the

best utilization of GRAPHQL to query of the API endpoints. They mentioned to have analysed
corpuses for common schema characteristics, naming conventions, and worst-case response sizes.

Authors have extended the same understanding with the above case study, evaluated the retrieval
time for the same API endpoint, and made a comparitive study with RESTful service based data

retrieval in terms of throughput time.

Extending the code shared already in Figure 4, we depict the retrieval of data by user query.

Figure 6: Sample query to retrieve data from Social Media Website & related details of the user

The query would provide the results and related user details in one query and working with one

API endpoint

Figure 7: Data Output from the Data retrieval query obtained from one API endpoint

/ Sample query definition to get all Post info and user information for the post in a
single query

queryInfoPostUser {

post(id:1)
{

Post_id
title
user

{

User_id
name
email
}}

}

/ Sample query for data retrieval from a social media website & related details of the
user of the post

"data":
{
“post":
{"Post_id": 1,

"title":‘Sky is the limit’,
"user": {
"User_id": 1,
"name":'ShreyasiMajumder’,
"email":'shmaj@yahoo.com’
}}

}

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

12

6. PERFORMANCE EVALUATION: REST VS GRAPHQL

Our work in evaluation of performance of REST Vs GRAPHQL is most closely related to
MatheusSeabra et al (2019) [13] who has done a deep performance comparison study between

REST and GRAPHQL in his conference paper.

MatheusSeabra et al (2019) [13] mentioned that through research of performance metrics of

response time and the average transfer rate between the requests, it was possible to deduce the

particularities of each architectural model in terms of performance metrics. We observed that

migrating to GraphQL resulted in an increase in performance in two-thirds of the tested
application.

Authors have carried out a Proof of Concept not by migrating from REST to GRAPHQL but
creating sample API endpoints for REST and GRAPHQL and tested the same in open source

playground and tested the throughput in terms of response time for data retrieval in 3 iterations

i. Iteration1: We carried out Iteration1 with a data volume of 1,000 data records through one

REST API and one GRAPHQL API endpoints.

ii. Iteration 2: We carried out Iteration1 with a data volume of 10,000 data records through two

REST API and one GRAPHQL API endpoints.
iii. Iteration 3: We carried out Iteration1 with a data volume of 100,000 data records through

three REST API and one GRAPHQL API endpoints.

Performance evaluation for REST and GRAPHQL in the experiment based on the complexity

definition assumed by the authors as combination of data volume and API endpoint weightage as

below

Table 3. Complexity definition for Data retrieval & Data Volume (following the experiment scenario)

Complexity
Considerat

ion
Perspectiv

e

Technology
Platfor

m

No API
Endpoint

Considerat
ion

SI
M

P
LE

M
ED

IU
M

C
O

M
P

LE
X

Complexity of
Data

retrieval

REST

1 X

2 X

3 X

GRAPHQL

1 X

1 X

1 X

Complexity
Considerat

ion
Perspectiv

e

Technology
Platfor

m

Volume of
Data SI

M
P

LE

M
ED

IU
M

C
O

M
P

LE
X

Complexity of
Data

Volume (
no of

records)

REST

1000 X

10000 X

1000000 X

GRAPHQL

1000 X

10000 X

1000000 X

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

13

Performance evaluation in response time (throughput) is as below.

The results show:

Iteration 1: Approximately marginal or no difference when we considered one API endpoint for
both REST and GRAPHQL with the same volume of 1000 data records.

Iteration 2: 35percentage lesser response time using GRAPHQL where 10 times higher data
volume considered with respect to Iteration1 and our Iteration 2 was executed with 10000 data

records. In Iteration 2, we considered two API endpoints in REST compared to only one API

endpoint required in GRAPHQL.

Iteration 3: When we increase the volume of data 100 times to the initial volume and execute

Iteration 3 with 100,000 data records with three REST API endpoints being considered compared

to only one API endpoint as required GRAPHQL. The authors have observed an approximate
40% less response time required in the experiment results in GRAPHQL.

Figure 8: REST Experiment API Results

Left – Relationship between the three dimensions (Volume, No of APIs and REST Response

Time Right – Linear Trend of REST Response Time Plotted on data volume considered for three

iterations of the experiment

Figure 9: GRAPHQL Experiment API Results

Left – Relationship between the three dimensions (Volume, No of APIs and GRAPHQL

Response Time Right – Linear Trend of GRAPHQL Response Time Plotted on data volume

considered for three iterations of the experiment

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

14

The authors therefore considers

• The single API endpoint utilization in GRAPHQL as one of the key factors to determine the

ease of availability of data as well as the response time with a constant data volume.

• High data volume experiment to check the relationship between the No of API Endpoints Vs

the Response time to conclude and understand the implications of high volumes vs number of

API endpoints. REST services produces low performance in response time compared to
GRAPHQL.

Authors therefore share one more observation with only two parameters No of API Endpoints &

Response Time in REST and GRAPHQL testing the performance with only 1 Iteration in this
case viz. 100,000 data records, which confirms the understanding of linear increase of REST in

response time compared to GRAPHQL as below.

Figure 10: No. API Endpoints Vs Response time relationship for a high volume

7. LIMITATIONS AND AREAS OF IMPROVEMENT

The authors have observed that the performance of GRAPHQL considerably increases compared

to the REST based API framework in situations where considerable data volume is considered.

Researchers plausibly considers REST as the defacto standard in APIs, which have very less
number of entities. The trade-off between the cost and architectural decision will favour REST

with success & ease of use in simple request-response architectural designs.

GRAPHQL on the other hand suits situations where data is required at scale, large number of

entities are involved, and expected growth of the data is manifold. The response time in such

cases with only one API interfaced for data retrieval makes is relatively better choice for selection

over REST.

In the experiment, with a gradual increasing data volume, we have captured the performance of

GRAPHQL relative to REST. Our results depict GRAPHQL capabilities of data retrieval are
considerably better in such situation.

We have not considered the caching implications of GRAPHQL, which could turn out to be
costly, in cases where we need to write tailored GRAPHQL queries & therefore cannot store

results cached from previous data operations. Our work lies within the boundaries of potential

benefits of GRAPHQL in response time where data volume is huge and number of entities are

large. The GRAPHQL based technology platform have limitations in single request–response
based interaction & caching capabilities These areas of improvement of GRAPHQL ,we consider

as subject to further research.

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

15

8. CONCLUSION

As studied, we have observed that GRAPHQL is increasing acceptability as preferred API
management technology where performance metrics of response time and utilization of lesser

number of API endpoints are key measuring criteria with high data volume. We acknowledge that

REST has become an industry standard for companies and API management using REST
endpoints have matured over period of time and GRAPHQL have a learning curve associated

with it and with improved tooling functions over a period of time in future applications of

GRAPHQL in fields like Business Intelligence will increase manifold.

Our work, we trust will motivate upcoming avenues of future research where performance, data

driven design and performance flexibility with lesser API interaction would take precedence.

REFERENCES

[1] MoussaTaifi, Yuan Shi. &YasinCelik (2015) “JENERGY: A Fault Tolerant Stateless Architecture for

High Performance Computing”,

https://www.researchgate.net/publication/303837779_JENERGY_A_Fault_Tolerant_Stateless_Archit
ecture_for_Hig_Performance_Computing

[2] JacekKopecký, Paul Fremantle & Rich Boakes (2014) “A history and future of Web APIs”,

https://www.researchgate.net/publication/274527941_A_history_and_future_of_Web_APIs

[3] Roy Thomas Fielding (2014) “Architectural Styles and the Design of Network-based Software

Architectures”, https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

[4] FestimHalili&YasinCelik (2018) “Web Services: A Comparison of Soap and Rest Services”,

https://www.researchgate.net/publication/323456206_Web_Services_A_Comparison_of_Soap_and_

Rest_Services.

[5] NishuPrasher (2018) “Security Assurance of REST API based applications”,

https://ntnuopen.ntnu.no/ntnu-

xmlui/bitstream/handle/11250/2502569/19973_FULLTEXT.pdf?sequence=1&isAllowed=y.

[6] Olaf Hartig& Jorge Pérez (2017) “An Initial Analysis of Facebook's GraphQL Language”,

https://www.researchgate.net/publication/316686431_An_Initial_Analysis_of_Facebook's_GraphQL_

Language.

[7] Kristopher sandoval (2018) “7 Unique Benefits of Using GraphQL in Microservices”,

https://nordicapis.com/7-unique-benefits-of-using-graphql-in-microservices/

[8] Olaf Hartig& Jorge Pérez (2017) “An Initial Analysis of Facebook's GraphQL Language”,

https://www.researchgate.net/publication/316686431_An_Initial_Analysis_of_Facebook's_GraphQL_

Language.

 [9] Olaf Hartig& Jorge Pérez (2018) “Semantics and complexity of GraphQL”,

https://blog.acolyer.org/2018/05/21/semantics-and-complexity-of-graphql/

[10] JobineshPurushothaman (2018) “Building a Polyglot GraphQL Server”,

https://static.rainfocus.com/oracle/oow18/sess/1526618246355001wDNO/PF/DEV6113_Purushotha

man_15404417239460019Dyp.pdf.

[11] Sebastian Eschweiler (2018) “Creating a GraphQL Server with Node.js and Express”,
https://medium.com/codingthesmartway-com-blog/creating-a-graphql-server-with-node-js-and-

express-f6dddc5320e1

International Journal on Web Service Computing (IJWSC), Vol.11, No.2, June 2020

16

[12] Erik Wittern, Alan Cha, James C. Davis, Guillaume Baudart& Louis Mandel (2018) “An Empirical

Study of GraphQL Schemas”, https://arxiv.org/pdf/1907.13012.pdf

[13] MatheusSeabra, Marcos Felipe Nazário, & Gustavo Pinto (2019) “REST or GraphQL? A

Performance Comparative Study”,

https://www.researchgate.net/publication/335784769_REST_or_GraphQL_A_Performance_Compara

tive_Study

AUTHORS

SayanGuha completed his Bachelors in Electronics & Communication Engineering in

2006. He have been serving Information Technology industry supporting Data

Modelling & Architecture across business domains of Retail, Banking, and Insurance

& Telecom. He is currently working with Cognizant technology Solutions and his

area of interests are in the fields of Big Data Integration, API based data integration

& Advanced analytics.

ShreyasiMajumder completed her Bachelors in Computer Science & Engineering in

2005. She have been serving Information Technology industry supporting across

business domains Retail, Manufacturing, Insurance & Telecom business domains. She
is currently working with Cognizant Technology Solutions and her areas of interests

are in the fields of Business Intelligence, Design thinking, Big Data & API based data

integration and Advanced Analytics.

