
International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

DOI : 10.5121/ijwsc.2018.9101 1

MAPPING SCDL/BPEL TO ADA FOR FORMAL

VERIFICATION OF THE BEHAVIORAL

PROPERTIES OF SERVICE-COMPONENT

ARCHITECTURE

Sakka Rouis Taoufik
1
, Bhiri Mohamed Tahar

2
and Kmimech Mourad

3

1
LIPAH Laboratory, FST, University of Tunis El Manar, Tunisia

2
Miracl Laboratory, ISIMS, Technological Pole of Sfax, Tunisia

3
UR-OASIS Laboratory, ENIT, University of Tunis El Manar, Tunisia

ABSTRACT

The Service Component Definition Language (SCDL) and the Web Service Business Process Execution

Language (WS-BPEL) are the standards de-facto used in the modeling and implementing of Service-

Component Architecture (SCA). However, these powerful languages lack a formal foundation for the

specification and verification of the SCA properties. In this study, the use of Wright formal ADL and Ada

programming language was proposed to check the behavioral properties of SCDL/WS-BPEL Service-

Component architectures. To achieve this, the mapping of SCDL/WS-BPEL to the Wright formal ADL was

suggested in order to verify the standard behavioral consistency of the source description. As a second

step, the target specification could be transformed into Ada to check the specific and dynamic behavioral

properties of the SCDL/WS-BPEL source architecture.

KEYWORDS

Service-Component Architecture, Behavioral Verification, SCDL, WS-BPEL, Model-Checker, FDR2, Ada

Concurrent Program

1. INTRODUCTION

The Service-Component Architecture (SCA) technology [19] combines the advantages of

component-based approach and service-oriented approach. Indeed, the main idea behind this

technology is to be able to build distributed applications which are independent of

implementation technology and protocol. SCA software architecture is generally described by a

composite of services-components written by the Service Component Definition Language

(SCDL) [19]. The latter is an XML based formatted language which allows expressing all the

relations in this SCA composite. The communication mechanisms of this SCA composite can be

implemented by WSDL interfaces, Java class or WS-BPEL [3] process. Where WS-BPEL (Web-

Service Business Process Execution Language) represents a convergence of two languages to

compose web services: WSFL [17] of IBM and XLANG [21] of Microsoft. This WS-BPEL

(abbr. BPEL) language offers a standard- based approach to build flexible business processes by

the choreographing and orchestrating of multiple Web services. In addition, it aims to model the

behavior of component processes by specifying both executable and abstract business processes.

It also defines an interoperable integration model that should facilitate the expansion of

automated process integration both within and between businesses.

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

2

For several years now, the SCDL [19] and WS-BPEL [3] technologies appear as powerful

complementary models for the development of service-component architectures. However, they

lack a formal foundation for the specification and verification of their structural, behavioural and

qualitative properties [5]. As solutions for this problem, several works have been proposed to

translate these source models into another which supports analysers. For example, in our

previous work [11] we proposed to map SCA to Acme/Armani for the verification of the

structural and qualitative properties of an SCA software architecture. For the verification of the

WS-BPEL behavioral specifications, numerous works are presented to translate the WS-BPEL

activities into a formal technique. For example, the works presented in [23], [28] and [26] prose,

respectively, to translate the WS-BPEL activities into LOTOS, FSP and PetriNet.

In this work, we target a formal verification of the behavioral properties of SCDL/WS-BPEL

service-component architectures. To achieve this, the model transformation approach is used to

translate an SCDL/WS-BPEL service-component architecture to an Ada concurrent program [25].

In this study, the Wright formal ADL [2] is used as an intermediate modeling language. The

choice of these two languages in our verification approach is justified mainly by the following

three factors:

• The Wright ADL defines eleven standard properties related to the consistency of software

architecture among which four -assimilated to behavioral contracts- are automated by our

Wr2fdr tool [13, 20]. The latter contracts can be checked with the FDR2 model-checker

[24].

• The semantic rapprochement between the Wright process and the Ada task favors the

formalization of the Wright configuration by an Ada concurrent program.

• The presence of different analysis tools related to the detection of the dynamic and

specific behavioral problems of an Ada program. For example, SPIN, SMV, FLAVERS

and INCA [7, 8] are four formal analysis tools of Ada concurrent programs and are

complementary.

The paper is structured as follows: Section 2 proposes an overview of our SCDL/WS-BPEL

behavioral verification; Section 3 deals with our systematic rules allowing the translation of

SCDL/WS-BPEL source software architecture to the Wright target software architecture; Section

4 exhibits the translation rules of the Wright abstract architecture into the Ada concurrent

program. An overview of the main related works is presented in Section 5; Finally, Section 6

provides a conclusion and possible future work.

2. PROPOSED APPROACH

Our verification approach presented in Figure 1 can be considered as four consecutive steps.

Firstly, we propose to use the SCDL language to describe the structural aspect of service-

component architecture, and the WS-BPEL language to describe the behavioral aspect of this

architecture. Secondly, a set of rules allowing the translation of an SCDL/WS-BPEL source

architecture to Wright description is proposed. Then, the Wright description obtained can be

automatically translated into a CSP specification through our Wr2fdr tool. Using the FDR2

model checker, this CSP specification can be checked by the standard properties proposed by the

Wright ADL. Finally, a latest transformation of the Wright specification into an Ada concurrent

program can be proposed. This is favored by the verification of the dynamic and specific

behavioral properties of the SCDL/WS-BPEL source software architecture. Indeed, many are the

tools that allow the analysis of the dynamic and specific properties of an Ada concurrent program.

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

3

For example, SPIN, SMV, FLAVERS and INCA [8] are four formal analysis tools of Ada

concurrent programs and are complementary.

Figure1.Verification approach

3. TRANSLATION OF SCDL/WS-BPEL TO WRIGHT

This section is subdivided on two subsections: In Sub-section 3.1, we propose a set of rules

allowing the translation of an SCDL/WS-BPEL architecture to a Wright specification. This

allows the verification of standard behavioral properties supported by the Wr2fdr tool

accompanying the Wright ADL. Then, a validation of this proposed approach will be proposed in

subsection 3.2.

3.1. Translation Rules

Regarding the static aspect, An SCA software architecture is generally described in an XML

SCDL file. The latter expresses all the relations in a composite. In this language, the basic

deployment markup of a Web application is the composite. An SCDL composite is an assembly

of heterogeneous components. Each SCDL component is based on a common set of abstractions

such as services, references and properties. In the context, services and references describe,

respectively, what a component provides and what a component requires from its external

environment. These services and references can be matched with bindings. Hence, each SCDL

markup can be specified in Wright as follows:

• An SCDL composite can be translated to a Wright configuration;

• An SCDL component can be translated to a Wright component;

• An SCDL component’s reference can be translated to a Wright port with the same name;

• An SCDL component’s service can be translated to a Wright port with the same name;

• An SCDL wire connects two SCA components. Hence, we propose to translate an SCDL

wire to a Wright connector that proposes two roles.

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

4

Concerning the translation of the WS-BPEL behavioral descriptions, we propose to translate each

WS-BPEL process by a CSP process. In this translation, each primitive activity is translated to a

CSP event. Since WS-BPEL provides three kinds of activities, we suggest translating each

activity by a specific event as follows:

• An <invoke> activity is used to initialize an appeal of an operation Oper. This activity

can be modeled in CSP by an initialized event as follows : _invokeOper

• A <receive> activity is used to wait for a message from an external operation Oper. This

observed activity can be modeled in CSP by an observed event as follows: receiveOper

• A <reply> activity is used to initialize a response to an external operation Oper. This

activity can be modeled in CSP by an initialized event as follows: _replyOper

In addition to these communication primitive activities, WS-BPEL provides typical structured

activities such as sequence, flow, terminate, if, switch, while, repeatUntil etc. These control

structures can express a causal relationship between multiple invocations by means of control and

data flow links. For the WS-BPEL control structures, we propose the following translation rules:

• The <sequence> construct is used in WS-BPEL wherever a series of activities needs to

occur sequentially, although they may be contained one or more times within looping or

concurrent construct activities. This <sequence> construct can be modeled in CSP by a

set of events separated by the prefixing operator (->).

• Concurrency in WS-BPEL permits us to model the concurrent transitions in the message

sequence charts. In WS-BPEL, this is specified using the <folw> construct. However,

the concurrency in CSP is modeled by the parallel composition operator (| |). This

operator is formally given as: If P and Q are processes then (P | | Q) represents the

concurrent execution of P and Q. Hence, using the CSP parallel operator (| |), we can

model the WS-BPEL flow activities by a set of concurrent processes.

• In WS-BPEL, the conditional branching introduces decision points to control the

execution flow of a process. Each conditional structure such as <if> or <switch> can be

modeled in CSP by the adequate choice operator:

- ([]) deterministic choice operator: if the choice between these activities is an external

choice. In other words, if these activities are observed (receive activity).

- (|~|) nondeterministic choice operator: if the choice between these activities is an

internal choice. In other words, if these activities are initialized (invoke or reply activity).

• In WS-BPEL, as in most programming languages, loops are used to repeat activities.

Each looping structure such as <forEach>, <while> or <repeatUntil> can be modeled in

CSP by a recurrent process as follows: P=… -> P.

3.2.Validation

The objective of this section is to validate our SCDL/BPEL transformation approach to Wright /

CSP on an online Banking system. This system offers its customers remote banking services. To

put it simply, we have retained the following services: visualization of balances, transfer of funds

and loan request. The proposed modeling includes the following two components (see Figure 2):

• The AccountBank component provides a service for client authentication and a reference

that triggers the three services offered above.

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

5

• The DataBase component provides a service that executes requests from the

AccountBank component.

Figure2. Graphical description of the Banking system

Our SourceForge repository [15] presents the complete description (SCDL and BPEL files) of

this Banking system. Listing 1 shows the Wright configuration corresponding to the translation

of the SCDL / BPEL component assembly of this Banking system.

Configuration BankingSystem
Component AccountBank

 Port client = receiveAuthenticate -> _replyAuthenticate -> TICK

 Port reference = TICK |~| (_invokeVisualisation -> MovementsTicket -> TICK |~|

_invokePret -> PretTicket -> TICK |~| _invokeTransfert-> TransfertTicket ->

(TICK |~| _invokeVisualisation -> MovementsTicket -> TICK))

 Computation = client.receiveAuthenticate -> _client.replyAuthenticate ->

(TICK |~| (_reference.invokeVisualisation -> reference.MovementsTicket -> TICK

|~|_reference.invokePret-> reference.PretTicket -> TICK |~|

_reference.invokeTransfert-> reference.TransfertTicket -> (TICK |~|

_reference.invokeVisualisation -> reference.MovementsTicket-> TICK)))

Component DataBase

 Port service = receiveVisualisation -> _replyVisualisation -> TICK []

receiveTransfert->_replyTransfert -> TICK [] receivePret -> _replyPret -> TICK

 Computation = service.receiveVisualisation -> _service.replyVisualisation ->

TICK [] service.receiveTransfert -> _service.replyTransfert -> TICK []

service.receivePret -> _service.replyPret-> TICK

Connector Wire

 Role Rreference = TICK |~|(_invokeVisualisation -> MovementsTicket -> TICK |~|

_invokePret -> PretTicket -> TICK |~| _invokeTransfert-> TransfertTicket ->

(TICK |~| _invokeVisualisation -> MovementsTicket -> TICK))

 Role Sservice = receiveVisualisation -> _replyVisualisation -> TICK []

receiveTransfert->_replyTransfert -> TICK [] receivePret -> _replyPret -> TICK

 Glue= Rreference.invokeVisualisation -> _Sservice.receiveVisualisation ->

Sservice.replyVisualisation -> _Rreference.MovementsTicket -> TICK []

Rreference.invokeTransfert -> _Sservice.receiveTransfert ->

Sservice.replyTransfert -> _Rreference.TransfertTicket -> TICK []

Rreference.invokePret -> _Sservice.receivePret -> Sservice.replyPret ->

_Rreference.PretTicket -> TICK

Instances

 A : AccountBank

 B : DataBase

 AB :Wire

Attachments

 A.reference As AB.Rreference

 B.service As AB.Sservice

End Configuration

Listing 1. Wright configuration associated to the Banking system.

Using our Wr2fdr tool [20] and the FDR2 model-checker, we have formally verified the

consistency of two components (AccountBank and DataBase) and the non-blocking of the Wire

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

6

connector (see Figure 3). However we detected an architectural error related to the non-

compatibility between these two components via the Wire connector.

Figure 3. Verification with FDR2 model-checker

4. TRANSLATION OF WRIGHT TO ADA

The means to establish automatic connections between Wright and Ada are limited. For example,

Naumovich et al. [18] offer a manual translation of Wright into Ada without explanation rules.

In our previous work [6] we established a set of simple rules allowing translating Wright software

architecture into Ada. In this study, a significant improvement of our translation rules was

proposed. The main structural concepts treated in this paper are: configuration, component,

connector, port, role, computation, glue, attachments, process, initialized event, observed event,

successfully terminated event, prefixing operator, deterministic choice operator and

nondeterministic choice operator. To achieve this, we proposed an Ada package called

ArchWright allowing the representation in Ada of the main structural concepts coming from the

Wright ADL. For this purpose, we benefited from using the Ada composite type “record” that

groups one or more fields. A field can be of any type, even a record. In addition, the typing

possibilities offered by the Ada language are profitably used for the translation of the Wright

behavioral aspects.

4.1. Component Translation

A Wright component is a computation element with multiple ports. Each port represents a point

of interaction between the component and its environment. A CSP process expresses the

component properties and expectations seen through this port and is part of its behavior. The

computation specification provides a complete description of the behavior and properties of the

component showing how ports are grouped and used.

In this work, we propose to implement a Wright component with an Ada record compound with

two fields:

• Ports: it represents the component’s ports. It is modeled by an array of CSPTask, where

the CSPTask is the task type proposed to implement in Ada the CSP process (see Section

3.4).

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

7

• Computation: it represents the component computation. It can be modeled by a single

CSPTask.

Listing 2 illustrates the formalization of the Wright component by an Ada record type. This new

type represents a base type for all Wright component instances.

type CompWright (portsNumber : natural) is record

 Ports: array (portsNumber) of CSPTask;

 Computaion: CSPTask;

end record;

Listing 2. Formalization of Wright component in Ada

Table 1 illustrates an example of an Ada implementation of a Wright component instance which

proposes three ports: Input, Left and Right.

Table 1. Translation of Wright component instance in Ada

Wright Component Implementation in Ada
Component Filter

Port Input=…

Port Left =…

Port Right=…

Computation=…

Instances

SplitFilter : Filter

SplitFilter : CompWright (3);

 -- it have three ports

SplitFilter := CompWright’(

 Ports =>(1 => …, --CSPTask of first port

 2 => …, --CSPTask of second port

 3 => …); --CSPTask of third port

 Computation => …;--CSPTask of computation

);

4.2. Connector Translation

In Wright, connectors define patterns of interaction between components. A Wright description

of a connector consists of a set of connector roles and connector glue. Each role specifies, by a

CSP process, the behavior of a participant in the interaction. However, the connector’s glue

describes how the participants work together to create an interaction.

In this work, we propose to formalize a Wright connector with an Ada record compound with two

fields:

• Roles: it represents the connector roles. It is modeled by an array of CSPTask, where the

CSPTasck is the task type proposed to implement the CSP process (See Section 3.4).

• Glue: it represents the glue of the connector. It can be modeled by a single CSPTask.

Listing 3 illustrates the formalization of the Wright connector by an Ada record type. This new

type represents a base type for all Wright connector instances.

type ConnectorWright (rolesNumber : natural) is record

 Roles: array (rolesNumber) of CSPTask;

 Glue: CSPTask;

end record;

Listing 3. Formalization of Wright connector in Ada

Table 2 shows an example of an Ada implementation of a Wright connector instance called Pipe

that proposes two roles: Source and Sink.

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

8

Table 2. Translation of Wright connector instance in Ada

Wright Connector Implementation in Ada

Connector Channel

 Role Source=…

 Role Sink=…

 Glue= …

Instances

Pipe : Channel

Pipe : ConnectorWright (2);

 -- it have 2 roles

Pipe := ConnectorWright’(

Roles =>

 (1=>…, --CSPTask of the Source role

 2 => …); --CSPTask of the Sink role

Glue=>… ; --CSPTask of the glue

);

4.3. Configuration Translation

A Wright configuration can be translated to an Ada concurrent program using the ArchWright

package. Table 3 illustrates the principle of the translation of a Wright configuration to an Ada

concurrent program. For traceability reasons, we keep the same identifiers used in the Wright

specification.
Table 3. Translation of Wright configuration in Ada

Wright Connector Implementation in Ada
Configuration FilterPipe

Component Filter

Port Input=…

Port Output =…

Computation=…

Connector Pipe

 Role Source=…

 Role Sink=…

Glue= …

Instances

Filter1, Filter2 : Filtre

Pipe1 : Pipe

Attachments

…

…

End Configuration

with ArchWright;

use ArchWright;

procedure FilterPipe is

 Filter1 :CompWright(2);-- it have two

ports

 Filter2 :CompWright(2);-- it have two

ports

 Pipe1 :ConnectorWright(2);--it have 2

roles

 Filter1 := CompWright’(

 Ports =>(1=> … , --CSPTask of first

port

 2=> …);--CSPTask of second

port

Computation =>…;--CSPTask of computation

);

 Filtre2:= Filtre1;

-- Filtre1 and Filtre2 are derived

-- from the same component

 Pipe1 :ConnectorWright(2);

 -- Pipe1 have 2 roles

 Pipe1 := ConnectorWright’(

 Roles => (

 1=>…,--CSPTask of the Source role

 2=>…); --CSPTask of the Sink role

 Glue=>…; --CSPTask of the glue

);

begin

…

…

end FilterPipe ;

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

9

4.4. CSP Process Translation

The Wright ADL is one of the first approaches allowing the description of the behavioral aspect

of architectural elements. Indeed, the behavior of a Wright component (respectively of a

connector) is described locally through the ports (respectively roles) and, generally, through a

computation (glue respectively) using a CSP process algebra. In this algebra, a simple process

can be a compound with a set of observed and initialized events separate with the CSP prefixing

operator (�).

Based on the similarity between the CSP process and the Ada task, we offer an intuitive

correspondence provided below for translating a CSP process to an Ada task:

• A CSP process leads to an Ada task;

• A CSP event naturally corresponds to an Ada entry. In order to differentiate between an

observed and an initialized event, we propose to use the same prefixed notation used in

CSP: an observed event is denoted by (e) and an initialized event is denoted by (_e)

• The recursion operator can be translated by an Ada loop;

• The CSP prefixing operator (�) can be specified by the Ada sequential instruction;

• The CSP successfully terminated event (denoted by TICK or §) can be implemented with

the Ada “terminate” instruction.

• The CSP nondeterministic (or internal) choice operator (denoted by Π or | ~|) allows the

future evolution of a process to be defined as a choice between two sub-processes, but

does not allow the environment any control over which one of the component processes

will be selected. This nondeterministic choice can be implemented in Ada with a simple

conditional structure (if). If we have multiple composite processes, the Ada conditional

structure (case) can be used.

• The CSP deterministic (or external) choice operator ([]) allows the future evolution of a

process to be defined as a choice between two sub processes, and allows the environment

to resolve the choice by communicating an initial event for one of the processes. This

deterministic choice can be implemented with the Ada “select” instruction.

Table 4 illustrates these proposed rules allowing the translation of a CSP specification to Ada.

Table.4. Translation of CSP specification to Ada

 CSP Specification Implementation in Ada

P = _request -> result -> §

task P is

 entry _request;

 entry result;

end P ;

task body P is

 accept _request; accept result;

end P;

P1 | |P2

if internCondition then P1

else P2

end if;

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

10

P1 | | P2 | | P3

case internCondition is

 when 1 => P1 ;

 when 2 => P2 ;

 when 3 => P3 ;

end case ;

P1 [] P2 [] TICK

select P1;

 or P2;

 or terminate ;

end select;

4.5. Attachments Translation

After the instances declaration, the attachments statement completes the Wright configuration.

These attachments show which components participate in which interaction, binding a

component’s port with a connector’s role.

Each association between a component’s port and a connector’s role can be implemented in Ada

by a sequence of entries call of the events specified in the interconnected port/role. The general

form of the entries call (event) is specified as follows:

• If the port entry corresponds to an initialized event: we call this entry, then we call the

similar entry of role (Component.port._event; Connector.role._event;).

• Else, if this entry corresponds to an observed event, we call this entry after the call of the

similar entry in the role (Connector.role.event; Component.port.event;).

Table 5 shows an illustrative example of an attachment translation.

Table 5. Translation of Wright attachment to Ada

Wright Configuration Ada implementation

Configuration ClientServer

…

Component Client

 Port caller =_request →

 result → §

…

Connector cs

 Role client =_send →

 receive → §

 Role server = …

…

Instances

 c : Client

 cls: cs

Attachments

 Client. caller As cls.client

…

End Configuration

with ArchWright;

use ArchWright;

procedure ClientServer is

-- CSP Task of the caller port

 task Client_caller is

 entry _request;

 entry result;

 end Client_caller ;

 task body Client_caller is

 accept _request; accept result;

 end Client_caller ;

-- CSP Task of the client role

 task Cls_client is

 entry _send;

 entry receive;

 end Cls_client;

 task body Cls_client is

 accept _send;accept receive;

 end Cls_client;

-- CSP Task of the server role

begin -– principal program

 Client_caller._request;

 Cls.client._send;

 Cls.client.receive;

 Client_caller.result ;

end ClientServer ;

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

11

4.6. Validation

Using the translation rules presented in the previous sections on the Banking system (See Section

3.2), we obtained an Ada concurrent program available at [15]. Using an Ada analysis tool such

as SPIN, SMV, FLAVERS and INCA [8], we can detect several errors in our Banking system. In

particular, using the FLAVERS toolset we detect that our source AccountBank component has a

deadlock problem between its global behavior and its interface behaviors. Indeed, its global

behavior allows the call of two successive rendezvous of the AccountBank._invokeVisualisation

entry; however, the behavior of this reference interface cannot accept these rendezvous. To cover

this error, we can replace the global BPEL of the AccountBank component by another compatible

with its interfaces.

5. RELATED WORKS

The approach shared by most of the existing works in the field of Web services architectures

consistency verification is the use of techniques and general tools such as B [1] and CSP [14]. To

achieve this, numerous works offer more or less systematic translations of source architecture to

the target model. In this section, only the works related to the behavioral verification of the

SCDL/WS-BPEL architectures are mentioned.

Yeung proposes in [28] to translate the WS-BPEL web service to CSP to verify the behavior

properties of web services architecture. In this paper, formal verification can be carried out based

on the notion of CSP trace-refinement and can take advantage of the FDR2 model checking.

Another formal approach [9] similar to the one reported by Yeung [28] proposes to use the FSP

formal language to check if a web service composition implemented inWS-BPEL satisfies a web

service composition specification captured by Message Sequence Charts (MSCs). Both theWS-

BPEL process and the MSC are translated to FSPs. Each FSP represents a finite labelled

transition system. Using the LTSA model checking tool, this FSP target specification can check

the safety and progress properties as well as properties expressed in the LTL logic. In [10],

Foster et al. use this LTSA to check the compatibility of web service compositions in WS-BPEL.

Since the semantics of Petri Nets is formally defined by mapping each WS-BPEL process to a

Petri net, a formal model of WS-BPEL can be obtained. This approach has been followed in

several works. For example, in [26] Verbeek et al. formalize some WS-BPEL activities used for

the orchestration of Web services as a class of Petri Net called workflow nets. For this class of

Petri nets, a verification tool named Wolfan has been developed. This tool can verify properties

such as the termination of a workflow net and detection of nodes that can never be activated. The

authors of [27] propose to map most of the basic and structured activities of WS-BPEL and the

Web Service Choreography Interface (WSCI) to Coloured Petri Nets (CPN). Choosing this CPN

as a verification method relates to the work of Tsai and Xu [22]: CPN, as the intermediate formal

basis, can be transformed to the input languages of existing analysis tools such as SPIN, SMV,

SMC, and IOTA. In [12] Hamel et Al. propose to use the Event-B method to check the structural

and behavioural properties of an SCA component assembly. To achieve this, the B-Invariant and

B-Event are profitably used to formalize the patterns proposed by Barros [4]. Using the ProB

animator, Hamel et Al. validate their formal approach on an event-B specification.

6. CONCLUSION

In this paper, an approach for verifying the behavioral coherence of SCDL/WS-BPEL

component-service architectures has been proposed. To achieve this, it has been proposed to map

SCDL/WS-BPEL to the Wright ADL, thus allowing the checking of the standard properties

supported by this ADL. Indeed, the Wright ADL defines eleven standard properties related to the

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

12

consistency of software architecture, among which four, assimilated to behavioral contracts, are

automated by the Wr2fdr tool. The latter contracts can be checked with the FDR2 model checker.

As a second step of our verification approach, the translation of the Wright specification to an

Ada concurrent program has been put forward, which allows:

• The validation of an abstract software architecture using dynamic analysis tools

associated with Ada, such as test data generation and debugging. Indeed, the execution

of abstract software architecture with representative test data allows the validation of the

future system in an early time.

• The verification of specific properties on an abstract software architecture using several

verification tools supporting the Ada concurrent language. Indeed, many are the tools

that allow the analysis of Ada concurrent programs. For example, SPIN, SMV,

FLAVERS and INCA [8] are four complementary approaches permitting the static

analysis of Ada concurrent programs. Indeed, vis-à-vis the specification of properties to

be verified, the SMV and SPIN tools promote the property-oriented state, while INCA

and FLAVERS promote the property- oriented trace.

Our verification approach is validated on a set of uses cases available at our SourceForge

repository [15]. Currently, we are extending this work by an automation of these translation rules

using the ATL [16] model transformation language.

REFERENCES

[1] Abrial J. R.: The B-Book, Assigning Programs to Meanings. Cambridge University Press. (1996).

[2] Allen R.: A Formal Approach to Software Architecture. Phd Thesis, Carnegie Mellon University,

(1997).

[3] Andrews T., Curbera F., Dholakia H., Goland Y., Klein J., Leymann F., Liu K., Roller D., Smith D.,

Thatte S., Trickovic I., and Weerawarana S.: Business Process Execution Language for Web Services,

(2005).

[4] Barros O.: Business Process Patterns and Frameworks: Reusing Knowledge in Process Innovation.

Business Process Management Journal, (2007). Vol.13, N°1, pp. 47- 69.

[5] Beugnard A., Jézéquel J. M., Plouzeau N. and Watkins D.: Making components contract aware. In

IEEE Software, (July 1999), pp 38-45.

[6] Bhiri M. T., Fourati F., Kmimech M., Graiet M.. Transformation exogène de Wright vers Ada.

Technique et Science Informatiques, Vol. 31, No. 7, (2012), pp.839-868

[7] Cobleigh J. M., Clarke L. A. and Osterweil L. J.: FLAVERS: a Finite State Verification Technique

for Software Systems’. IBM Systems Journal, (2002), vol. 41, n° 1, pp. 140-165.

[8] Dwyer M. B., Pasarean S. C. and Corbett J. C.: Translating ADA programs for Model checking: A

tutorial’, Technical Report 12, Kansas State University. (1998).

[9] Foster H., Uchitel S. Magee J. and Kramer J.: Model-based verification of web service compositions.

In Proceedings of 18th IEEE International Conference on Automated Software Engineering, pp. 152-

163, Montreal, Canada, (October 2003). IEEE.

[10] Foster H., Uchitel S. Magee J. and Kramer J and Magee J.: Compatibility verification for web

service choreography. In Proceedings of the IEEE International Conference on Web Services, pp.

738-741, San Diego, CA, USA, (June 2004). IEEE.

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

13

[11] Haddad I., Kmimech M., Sakka Rouis T., and Bhiri M. T.: Towards a practical approach to check

service component architecture. In 11th International Conference on Semantics, Knowledge and

Grid, (2015), pp. 65–72. IEEE.

[12] Hamel L., M. Graiet G., M. Kmimech M.: Formal modeling for verifying SCA composion. RCIS

conference, (2015), pp. 193-204.

[13] Hammami M., Bhiri M. T., Kmimech M. and Graiet M.. : Traduction de Wright en CSP pour la

vérification par le model-checking. 6 ème conférence francophone sur les architectures logicielles,

Montpellier. (2012). [14]Hoare C. A. R.: Communicating Sequential Processes. Prentice Hall

(1985).

[15] https://sourceforge.net/projects/SCA2WrightToAda

[16] Jouault F., Allilaire F., Bézivin J. and Kurtev I.: Atl: A model transformation tool. Sci. Comput.

Program. (2008) vol. 72, n° 1-2, pp. 31-39.

[17] Leymann F.: Web services ow language (WSFL 1.0), May 2001.

[18] Naumovich G., Avrunin G. S., Clarke L. A. and Osterweil L. J., Applying static analysis to

software architectures’. ACM SIGSOFT 1997, Software Engineering Notes, vol. 22, n° 6, (1997),

pp. 77-93.

[19] OASIS. Service Component Architecture Assembly Model Specification Version 1.1. Oasis.

https://www.oasis-open.org/standards, (July 2017).

[20] Sakka Rouis T., Bhiri M. T., Kmimech M and Moussa F.: Wr2Fdr Tool Maintenance for models

Checking. Proceeding in 16th International Conference on Intelligent Software Methodologies,

Tools, and Techniques (2017), Kitakyushu, Japan.

[21] Thatte S.: XLANG: Web Services for Business Process Desig. Corporation, 2001.

[22] Tsai J. J. P. and Xu K.: An empirical evaluation of deadlock detection in software architecture

specifications, Annals of Software Engineering, 7, (1999). pp. 95-126.

[23] Tremblay G. and Chae J.: Towards specifying contracts and protocols for web services. In H. Mili

and F. Khendek, editors, Proceedings of the MCeTech Montreal Conference on eTechnologies,

Montreal, Canada, (January 2005). pp. 73-85.

[24] The Formal Systems Website, vendor for the FDR2. http://www.fsel.com/

[25] Taft S. T., Duff R. A., Brukardt R. L., Ploedereder E. and Leroy P.: Ada 2005 Reference Manual.

(2005)

[26] Verbeek H. M. W. and. Van Der Aalst W. M. P.: Analyzing BPEL processes using Petri nets. In

D. Marinescu, editor, Proceedings of the Second International Workshop on Applications of Petri

Nets to Coordination, Workow and Business Process Management, pp. 59-78, Miami, FL, USA,

(October 2005).

[27] Yang Y., Tan Q., Yu J., and Liu F.: Transformation BPEL to CP-nets for verifying web services

composition. In Proceedings of the International Conference on Next Generation Web Services

Practices, Seoul, Korea, (August 2005). IEEE.

[28] Yeung W. L.: Mapping ws-cdl and BPEL into csp for behavioural specification and verification of

web services. ECOWS, IEEE Computer, (2006), pp. 297-305.

International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018

14

AUTHORS

Taoufik Sakka Rouis is a doctor in computer science and member at the LIPAH laboratory (Tunisia). He

received his Ph.D’s degree in Computer Science from the University of Manouba. His main research

interests are component-based software engineering and formal verification of service-component

architectures.

Moahamed Tahar Bhiri is a professor at the Faculty of Sciences of Sfax (Tunisia). He led numerous

studies on the subject of Object, Component and transformation models. He uses the formal models such as

Wright, Acme, B, Event-B and CSP to check the consistancy of the UML2.0 diagrams. Currently, he is

interested in the integration of competition in the Event-B method.

Mourad Kmimech is an associate professor at the High School of Computer Science and Mathematics,

Monastir University. He holds a Ph.D. (2010) in software engineering from the University of Pau and Pays

of the Adour, France. His research interests include service computing, service component architecture

(SCA), services reliability/flexibility and formal verification.

