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ABSTRACT 

 

The Service Component Definition Language (SCDL) and the Web Service Business Process Execution 

Language (WS-BPEL) are the standards de-facto used in the modeling and implementing of Service-

Component Architecture (SCA).  However, these powerful languages lack a formal foundation for the 

specification and verification of the SCA properties.  In this study, the use of Wright formal ADL and Ada 

programming language was proposed to check the behavioral properties of SCDL/WS-BPEL Service-

Component architectures.  To achieve this, the mapping of SCDL/WS-BPEL to the Wright formal ADL was 

suggested in order to verify the standard behavioral consistency of the source description.  As a second 

step, the target specification could be transformed into Ada to check the specific and dynamic behavioral 

properties of the SCDL/WS-BPEL source architecture. 
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1.  INTRODUCTION 
 

The Service-Component Architecture (SCA) technology [19] combines the advantages of 

component-based approach and service-oriented approach.  Indeed, the main idea behind this 

technology is to be able to build distributed applications which are independent of 

implementation technology and protocol.  SCA software architecture is generally described by a 

composite of services-components written by the Service Component Definition Language 

(SCDL) [19].  The latter is an XML based formatted language which allows expressing all the 

relations in this SCA composite.  The communication mechanisms of this SCA composite can be 

implemented by WSDL interfaces, Java class or WS-BPEL [3] process.  Where WS-BPEL (Web-

Service Business Process Execution Language) represents a convergence of two languages to 

compose web services: WSFL [17] of IBM and XLANG [21] of Microsoft.  This WS-BPEL 

(abbr.  BPEL) language offers a standard- based approach to build flexible business processes by 

the choreographing and orchestrating of multiple Web services.  In addition, it aims to model the 

behavior of component processes by specifying both executable and abstract business processes.  

It also defines an interoperable integration model that should facilitate the expansion of 

automated process integration both within and between businesses.   
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For several years now, the SCDL [19] and WS-BPEL [3] technologies appear as powerful 

complementary models for the development of service-component architectures.  However, they 

lack a formal foundation for the specification and verification of their structural, behavioural and 

qualitative properties [5].  As solutions for this problem, several works have been proposed to 

translate these source models into another which supports analysers.  For example, in our 

previous work [11] we proposed to map SCA to Acme/Armani for the verification of the 

structural and qualitative properties of an SCA software architecture.  For the verification of the 

WS-BPEL behavioral specifications, numerous works are presented to translate the WS-BPEL 

activities into a formal technique.  For example, the works presented in [23], [28] and [26] prose, 

respectively, to translate the WS-BPEL activities into LOTOS, FSP and PetriNet.   

 

In this work, we target a formal verification of the behavioral properties of SCDL/WS-BPEL 

service-component architectures.  To achieve this, the model transformation approach is used to 

translate an SCDL/WS-BPEL service-component architecture to an Ada concurrent program [25].  

In this study, the Wright formal ADL [2] is used as an intermediate modeling language.  The 

choice of these two languages in our verification approach is justified mainly by the following 

three factors:  

 

• The Wright ADL defines eleven standard properties related to the consistency of software 

architecture among which four -assimilated to behavioral contracts- are automated by our 

Wr2fdr tool [13, 20].  The latter contracts can be checked with the FDR2 model-checker 

[24].   

 

• The semantic rapprochement between the Wright process and the Ada task favors the 

formalization of the Wright configuration by an Ada concurrent program.   

 

• The presence of different analysis tools related to the detection of the dynamic and 

specific behavioral problems of an Ada program.  For example, SPIN, SMV, FLAVERS 

and INCA [7, 8] are four formal analysis tools of Ada concurrent programs and are 

complementary.   

 

The paper is structured as follows: Section 2 proposes an overview of our SCDL/WS-BPEL 

behavioral verification; Section 3 deals with our systematic rules allowing the translation of 

SCDL/WS-BPEL source software architecture to the Wright target software architecture; Section 

4 exhibits the translation rules of the Wright abstract architecture into the Ada concurrent 

program.  An overview of the main related works is presented in Section 5; Finally, Section 6 

provides a conclusion and possible future work. 

 

2.  PROPOSED APPROACH 
 

Our verification approach presented in Figure 1 can be considered as four consecutive steps.  

Firstly, we propose to use the SCDL language to describe the structural aspect of service-

component architecture, and the WS-BPEL language to describe the behavioral aspect of this 

architecture.  Secondly, a set of rules allowing the translation of an SCDL/WS-BPEL source 

architecture to Wright description is proposed.  Then, the Wright description obtained can be 

automatically translated into a CSP specification through our Wr2fdr tool.  Using the FDR2 

model checker, this CSP specification can be checked by the standard properties proposed by the 

Wright ADL.  Finally, a latest transformation of the Wright specification into an Ada concurrent 

program can be proposed.  This is favored by the verification of the dynamic and specific 

behavioral properties of the SCDL/WS-BPEL source software architecture.  Indeed, many are the 

tools that allow the analysis of the dynamic and specific properties of an Ada concurrent program.  
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For example, SPIN, SMV, FLAVERS and INCA [8] are four formal analysis tools of Ada 

concurrent programs and are complementary.   

 

Figure1.Verification approach 

 

3.  TRANSLATION OF SCDL/WS-BPEL TO WRIGHT  
 

This section is subdivided on two subsections: In Sub-section 3.1, we propose a set of rules 

allowing the translation of an SCDL/WS-BPEL architecture to a Wright specification.  This 

allows the verification of standard behavioral properties supported by the Wr2fdr tool 

accompanying the Wright ADL.  Then, a validation of this proposed approach will be proposed in 

subsection 3.2. 

 

3.1. Translation Rules 
 

Regarding the static aspect, An SCA software architecture is generally described in an XML 

SCDL file.  The latter expresses all the relations in a composite.  In this language, the basic 

deployment markup of a Web application is the composite.  An SCDL composite is an assembly 

of heterogeneous components.  Each SCDL component is based on a common set of abstractions 

such as services, references and properties.  In the context, services and references describe, 

respectively, what a component provides and what a component requires from its external 

environment.  These services and references can be matched with bindings.  Hence, each SCDL 

markup can be specified in Wright as follows:  

 

• An SCDL composite can be translated to a Wright configuration;  

 

• An SCDL component can be translated to a Wright component;  

 

• An SCDL component’s reference can be translated to a Wright port with the same name; 

 

• An SCDL component’s service can be translated to a Wright port with the same name;  

 

• An SCDL wire connects two SCA components.  Hence, we propose to translate an SCDL 

wire to a Wright connector that proposes two roles.   
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Concerning the translation of the WS-BPEL behavioral descriptions, we propose to translate each 

WS-BPEL process by a CSP process.  In this translation, each primitive activity is translated to a 

CSP event.  Since WS-BPEL provides three kinds of activities, we suggest translating each 

activity by a specific event as follows:  

 

• An <invoke> activity is used to initialize an appeal of an operation Oper.  This activity 

can be modeled in CSP by an initialized event as follows : _invokeOper  

 

• A <receive> activity is used to wait for a message from an external operation Oper.  This 

observed activity can be modeled in CSP by an observed event as follows: receiveOper  

 

• A <reply> activity is used to initialize a response to an external operation Oper.  This 

activity can be modeled in CSP by an initialized event as follows: _replyOper  

 

In addition to these communication primitive activities, WS-BPEL provides typical structured 

activities such as sequence, flow, terminate, if, switch, while, repeatUntil etc.  These control 

structures can express a causal relationship between multiple invocations by means of control and 

data flow links.  For the WS-BPEL control structures, we propose the following translation rules:  

 

• The <sequence> construct is used in WS-BPEL wherever a series of activities needs to 

occur sequentially, although they may be contained one or more times within looping or 

concurrent construct activities.  This <sequence> construct can be modeled in CSP by a 

set of events separated by the prefixing operator (->).   

 

• Concurrency in WS-BPEL permits us to model the concurrent transitions in the message 

sequence charts.  In WS-BPEL, this is specified using the <folw> construct.  However, 

the concurrency in CSP is modeled by the parallel composition operator (| |).  This 

operator is formally given as: If P and Q are processes then (P | | Q) represents the 

concurrent execution of P and Q.  Hence, using the CSP parallel operator (| |), we can 

model the WS-BPEL flow activities by a set of concurrent processes.   

 

• In WS-BPEL, the conditional branching introduces decision points to control the 

execution flow of a process.  Each conditional structure such as <if> or <switch> can be 

modeled in CSP by the adequate choice operator:  

-  ([ ]) deterministic choice operator: if the choice between these activities is an external 

choice.  In other words, if these activities are observed (receive activity).   

- (|~|) nondeterministic choice operator: if the choice between these activities is an 

internal choice.  In other words, if these activities are initialized (invoke or reply activity).   

 

• In WS-BPEL, as in most programming languages, loops are used to repeat activities.  

Each looping structure such as <forEach>, <while> or <repeatUntil> can be modeled in 

CSP by a recurrent process as follows:  P=… -> P. 

 

3.2.Validation  
 

The objective of this section is to validate our SCDL/BPEL transformation approach to Wright / 

CSP on an online Banking system.  This system offers its customers remote banking services.  To 

put it simply, we have retained the following services: visualization of balances, transfer of funds 

and loan request.  The proposed modeling includes the following two components (see Figure 2): 

 

• The AccountBank component provides a service for client authentication and a reference 

that triggers the three services offered above. 



International Journal on Web Service Computing (IJWSC), Vol.9, No.1, March 2018 

5 

• The DataBase component provides a service that executes requests from the 

AccountBank component. 

 
Figure2. Graphical description of the Banking system 

Our SourceForge repository [15] presents the complete description (SCDL and BPEL files) of 

this Banking system.  Listing 1 shows the Wright configuration corresponding to the translation 

of the SCDL / BPEL component assembly of this Banking system. 

 
Configuration BankingSystem  
Component AccountBank  

  Port client = receiveAuthenticate -> _replyAuthenticate -> TICK  

  Port reference = TICK |~| (_invokeVisualisation -> MovementsTicket -> TICK |~| 

_invokePret -> PretTicket -> TICK |~| _invokeTransfert-> TransfertTicket -> 

(TICK |~| _invokeVisualisation -> MovementsTicket -> TICK))  

  Computation = client.receiveAuthenticate -> _client.replyAuthenticate ->  

(TICK |~| (_reference.invokeVisualisation -> reference.MovementsTicket -> TICK 

|~|_reference.invokePret-> reference.PretTicket -> TICK |~| 

_reference.invokeTransfert-> reference.TransfertTicket -> (TICK |~| 

_reference.invokeVisualisation -> reference.MovementsTicket-> TICK)))  

 

Component DataBase  

  Port service = receiveVisualisation -> _replyVisualisation -> TICK [] 

receiveTransfert->_replyTransfert -> TICK [] receivePret -> _replyPret -> TICK 

  Computation = service.receiveVisualisation -> _service.replyVisualisation -> 

TICK [] service.receiveTransfert -> _service.replyTransfert -> TICK [] 

service.receivePret -> _service.replyPret-> TICK  

 

Connector Wire  

  Role Rreference = TICK |~|(_invokeVisualisation -> MovementsTicket -> TICK |~| 

_invokePret -> PretTicket -> TICK |~| _invokeTransfert-> TransfertTicket -> 

(TICK |~| _invokeVisualisation -> MovementsTicket -> TICK) )  

  Role Sservice = receiveVisualisation -> _replyVisualisation -> TICK [] 

receiveTransfert->_replyTransfert -> TICK [] receivePret -> _replyPret -> TICK  

  Glue= Rreference.invokeVisualisation -> _Sservice.receiveVisualisation -> 

Sservice.replyVisualisation -> _Rreference.MovementsTicket -> TICK [] 

Rreference.invokeTransfert -> _Sservice.receiveTransfert -> 

Sservice.replyTransfert -> _Rreference.TransfertTicket -> TICK [] 

Rreference.invokePret -> _Sservice.receivePret -> Sservice.replyPret -> 

_Rreference.PretTicket -> TICK  

 

Instances  

  A : AccountBank  

  B : DataBase  

  AB :Wire  

Attachments  

  A.reference As AB.Rreference  

  B.service As AB.Sservice  

End Configuration  

Listing 1. Wright configuration associated to the Banking system. 

Using our Wr2fdr tool [20] and the FDR2 model-checker, we have formally verified the 

consistency of two components (AccountBank and DataBase) and the non-blocking of the Wire 
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connector (see Figure 3).  However we detected an architectural error related to the non-

compatibility between these two components via the Wire connector. 

 

 

Figure 3. Verification with FDR2 model-checker 

 

4. TRANSLATION OF WRIGHT TO ADA  
 
The means to establish automatic connections between Wright and Ada are limited.  For example, 

Naumovich et al.  [18] offer a manual translation of Wright into Ada without explanation rules.  

In our previous work [6] we established a set of simple rules allowing translating Wright software 

architecture into Ada.  In this study, a significant improvement of our translation rules was 

proposed.  The main structural concepts treated in this paper are: configuration, component, 

connector, port, role, computation, glue, attachments, process, initialized event, observed event, 

successfully terminated event, prefixing operator, deterministic choice operator and 

nondeterministic choice operator.  To achieve this, we proposed an Ada package called 

ArchWright allowing the representation in Ada of the main structural concepts coming from the 

Wright ADL.  For this purpose, we benefited from using the Ada composite type “record” that 

groups one or more fields.  A field can be of any type, even a record.  In addition, the typing 

possibilities offered by the Ada language are profitably used for the translation of the Wright 

behavioral aspects. 

 

4.1. Component Translation  

 
A Wright component is a computation element with multiple ports.  Each port represents a point 

of interaction between the component and its environment.  A CSP process expresses the 

component properties and expectations seen through this port and is part of its behavior.  The 

computation specification provides a complete description of the behavior and properties of the 

component showing how ports are grouped and used.   

 

In this work, we propose to implement a Wright component with an Ada record compound with 

two fields:  

 

• Ports: it represents the component’s ports.  It is modeled by an array of CSPTask, where 

the CSPTask is the task type proposed to implement in Ada the CSP process (see Section 

3.4).   
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• Computation: it represents the component computation.  It can be modeled by a single 

CSPTask.   

 

Listing 2 illustrates the formalization of the Wright component by an Ada record type.  This new 

type represents a base type for all Wright component instances. 
  

type CompWright (portsNumber : natural) is record  

  Ports: array (portsNumber) of CSPTask;  

  Computaion: CSPTask;  

end record;  

Listing 2.  Formalization of Wright component in Ada 
 

Table 1 illustrates an example of an Ada implementation of a Wright component instance which 

proposes three ports: Input, Left and Right.   

 
Table 1. Translation of Wright component instance in Ada 

 

Wright  Component Implementation in Ada 
Component Filter  

Port Input=… 

Port Left =… 

Port Right=… 

Computation=… 

Instances 

SplitFilter : Filter 

SplitFilter : CompWright (3); 

       -- it have three ports 

SplitFilter := CompWright’(  

 Ports =>(1 => …,  --CSPTask of first port 

        2 => …,  --CSPTask of second port 

        3 => …); --CSPTask of third port 

 Computation => …;--CSPTask of computation 

);  

 

4.2. Connector Translation  
 
In Wright, connectors define patterns of interaction between components.  A Wright description 

of a connector consists of a set of connector roles and connector glue.  Each role specifies, by a 

CSP process, the behavior of a participant in the interaction.  However, the connector’s glue 

describes how the participants work together to create an interaction.   

 

In this work, we propose to formalize a Wright connector with an Ada record compound with two 

fields:  

 

• Roles: it represents the connector roles.  It is modeled by an array of CSPTask, where the 

CSPTasck is the task type proposed to implement the CSP process (See Section 3.4).   

 

• Glue: it represents the glue of the connector.  It can be modeled by a single CSPTask.   

 

Listing 3 illustrates the formalization of the Wright connector by an Ada record type.  This new 

type represents a base type for all Wright connector instances.   
 

type ConnectorWright (rolesNumber : natural) is record  

  Roles: array (rolesNumber) of CSPTask;  

  Glue: CSPTask;  

end record;  

 

Listing 3.  Formalization of Wright connector in Ada 

 

Table 2 shows an example of an Ada implementation of a Wright connector instance called Pipe 

that proposes two roles: Source and Sink. 
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Table 2.  Translation of Wright connector instance in Ada 

 
Wright  Connector Implementation in Ada 

Connector Channel 

 Role Source=… 

 Role Sink=…  

    Glue= … 

 

Instances 

Pipe : Channel 

Pipe : ConnectorWright (2); 

         -- it have 2 roles 

Pipe := ConnectorWright’( 

Roles => 

   (1=>…,     --CSPTask of the Source role 

    2 => …);  --CSPTask of the Sink role 

Glue=>…   ; --CSPTask of the glue 

); 

 

4.3. Configuration Translation  

 
A Wright configuration can be translated to an Ada concurrent program using the ArchWright 

package.  Table 3 illustrates the principle of the translation of a Wright configuration to an Ada 

concurrent program.  For traceability reasons, we keep the same identifiers used in the Wright 

specification.   
Table 3.  Translation of Wright configuration in Ada 

Wright  Connector Implementation in Ada 
Configuration FilterPipe 

 

Component Filter 

Port Input=… 

Port Output  =… 

Computation=… 

 

Connector Pipe 

 Role Source=… 

 Role Sink=…  

Glue= … 

 

Instances 

Filter1, Filter2 : Filtre  

Pipe1 : Pipe 

 

 

 

 

 

Attachments  

… 

… 

End Configuration 

with ArchWright; 

use ArchWright; 

procedure FilterPipe is  

 Filter1 :CompWright(2);-- it have two 

ports 

 Filter2 :CompWright(2);-- it have two 

ports 

 Pipe1 :ConnectorWright(2);--it have 2 

roles 

 Filter1 := CompWright’(  

  Ports =>(1=> …  , --CSPTask of first 

port 

         2=> … );--CSPTask of second 

port 

Computation =>…;--CSPTask of computation 

 ); 

 Filtre2:= Filtre1;  

-- Filtre1 and Filtre2 are derived  

-- from the same component 

 

 Pipe1 :ConnectorWright(2); 

   -- Pipe1 have 2 roles 

 Pipe1 := ConnectorWright’( 

  Roles => ( 

     1=>…,--CSPTask of the Source role 

     2=>…); --CSPTask of the Sink role 

 Glue=>…; --CSPTask of the glue 

 ); 

begin  

… 

… 

end FilterPipe ;  
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4.4. CSP Process Translation  

 
The Wright ADL is one of the first approaches allowing the description of the behavioral aspect 

of architectural elements.  Indeed, the behavior of a Wright component (respectively of a 

connector) is described locally through the ports (respectively roles) and, generally, through a 

computation (glue respectively) using a CSP process algebra.  In this algebra, a simple process 

can be a compound with a set of observed and initialized events separate with the CSP prefixing 

operator (�).   

 

Based on the similarity between the CSP process and the Ada task, we offer an intuitive 

correspondence provided below for translating a CSP process to an Ada task:  

 

• A CSP process leads to an Ada task;  

 

• A CSP event naturally corresponds to an Ada entry.  In order to differentiate between an 

observed and an initialized event, we propose to use the same prefixed notation used in 

CSP: an observed event is denoted by (e) and an initialized event is denoted by (_e)  

 

• The recursion operator can be translated by an Ada loop;  

 

• The CSP prefixing operator (� ) can be specified by the Ada sequential instruction;  

 

• The CSP successfully terminated event (denoted by TICK or §) can be implemented with 

the Ada “terminate” instruction.   

 

• The CSP nondeterministic (or internal) choice operator (denoted by Π or | ~|) allows the 

future evolution of a process to be defined as a choice between two sub-processes, but 

does not allow the environment any control over which one of the component processes 

will be selected.  This nondeterministic choice can be implemented in Ada with a simple 

conditional structure ( if ).  If we have multiple composite processes, the Ada conditional 

structure (case) can be used.   

 

• The CSP deterministic (or external) choice operator ([ ]) allows the future evolution of a 

process to be defined as a choice between two sub processes, and allows the environment 

to resolve the choice by communicating an initial event for one of the processes. This 

deterministic choice can be implemented with the Ada “select” instruction.   

 

 
Table 4 illustrates these proposed rules allowing the translation of a CSP specification to Ada.   

Table.4.  Translation of CSP specification to Ada 

 CSP Specification  Implementation in Ada  

 

P = _request ->  result -> §  

  

task P is  

 entry _request;   

 entry  result; 

end P ;  

task body P is  

 accept _request;  accept  result;   

end P;  

 

 

P1 | |P2 

if internCondition then   P1  

else     P2 

end if;  
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P1 | | P2 | | P3 

case internCondition is  

 when 1 => P1 ; 

 when 2 => P2 ; 

 when 3 => P3 ;  

end case ; 

 

     

P1 [ ] P2 [ ] TICK 

select P1;  

 or   P2;  

 or  terminate ; 

end select; 

 

4.5. Attachments Translation  
 

After the instances declaration, the attachments statement completes the Wright configuration.  

These attachments show which components participate in which interaction, binding a 

component’s port with a connector’s role.  

  

Each association between a component’s port and a connector’s role can be implemented in Ada 

by a sequence of entries call of the events specified in the interconnected port/role.  The general 

form of the entries call (event) is specified as follows: 

  

• If the port entry corresponds to an initialized event: we call this entry, then we call the 

similar entry of role (Component.port._event; Connector.role._event;).   

 

• Else, if this entry corresponds to an observed event, we call this entry after the call of the 

similar entry in the role (Connector.role.event; Component.port.event;). 

 

Table 5 shows an illustrative example of an attachment translation.   

 

Table 5.  Translation of Wright attachment to Ada 

Wright Configuration Ada implementation 

Configuration ClientServer 

… 

Component Client  

 Port caller =_request →     

              result → § 

…  

Connector cs  

 Role client =_send →  

              receive → §  

 Role server = …  

… 

Instances  

 c : Client  

 cls: cs  

 

Attachments  

 Client.  caller As cls.client 

… 

End Configuration 

with ArchWright; 

use ArchWright; 

procedure ClientServer is 

-- CSP Task of the caller port 

 task Client_caller  is  

   entry _request;  

   entry result; 

 end Client_caller  ;  

 task body Client_caller  is  

  accept _request; accept result;  

 end Client_caller  ; 

-- CSP Task of the client role 

 task Cls_client is  

  entry _send;  

  entry receive; 

 end Cls_client;  

 task body Cls_client is  

  accept _send;accept receive;  

 end Cls_client;  

-- CSP Task of the server role 

begin -– principal program 

 Client_caller._request; 

 Cls.client._send; 

 Cls.client.receive; 

 Client_caller.result ; 

end ClientServer ; 
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4.6. Validation 

Using the translation rules presented in the previous sections on the Banking system (See Section 

3.2), we obtained an Ada concurrent program available at [15].  Using an Ada analysis tool such 

as SPIN, SMV, FLAVERS and INCA [8], we can detect several errors in our Banking system.  In 

particular, using the FLAVERS toolset we detect that our source AccountBank component has a 

deadlock problem between its global behavior and its interface behaviors.  Indeed, its global 

behavior allows the call of two successive rendezvous of the AccountBank._invokeVisualisation 

entry; however, the behavior of this reference interface cannot accept these rendezvous.  To cover 

this error, we can replace the global BPEL of the AccountBank component by another compatible 

with its interfaces. 

 

5. RELATED WORKS  
 
The approach shared by most of the existing works in the field of Web services architectures 

consistency verification is the use of techniques and general tools such as B [1] and CSP [14].  To 

achieve this, numerous works offer more or less systematic translations of source architecture to 

the target model.  In this section, only the works related to the behavioral verification of the 

SCDL/WS-BPEL architectures are mentioned.   

 

Yeung proposes in [28] to translate the WS-BPEL web service to CSP to verify the behavior 

properties of web services architecture.  In this paper, formal verification can be carried out based 

on the notion of CSP trace-refinement and can take advantage of the FDR2 model checking.  

Another formal approach [9] similar to the one reported by Yeung [28] proposes to use the FSP 

formal language to check if a web service composition implemented inWS-BPEL satisfies a web 

service composition specification captured by Message Sequence Charts (MSCs).  Both theWS-

BPEL process and the MSC are translated to FSPs.  Each FSP represents a finite labelled 

transition system.  Using the LTSA model checking tool, this FSP target specification can check 

the safety and progress properties as well as properties expressed in the LTL logic.  In [10], 

Foster et al.  use this LTSA to check the compatibility of web service compositions in WS-BPEL.  

Since the semantics of Petri Nets is formally defined by mapping each WS-BPEL process to a 

Petri net, a formal model of WS-BPEL can be obtained.  This approach has been followed in 

several works.  For example, in [26] Verbeek et al.  formalize some WS-BPEL activities used for 

the orchestration of Web services as a class of Petri Net called workflow nets.  For this class of 

Petri nets, a verification tool named Wolfan has been developed.  This tool can verify properties 

such as the termination of a workflow net and detection of nodes that can never be activated.  The 

authors of [27] propose to map most of the basic and structured activities of WS-BPEL and the 

Web Service Choreography Interface (WSCI) to Coloured Petri Nets (CPN).  Choosing this CPN 

as a verification method relates to the work of Tsai and Xu [22]: CPN, as the intermediate formal 

basis, can be transformed to the input languages of existing analysis tools such as SPIN, SMV, 

SMC, and IOTA.  In [12] Hamel et Al.  propose to use the Event-B method to check the structural 

and behavioural properties of an SCA component assembly.  To achieve this, the B-Invariant and 

B-Event are profitably used to formalize the patterns proposed by Barros [4].  Using the ProB 

animator, Hamel et Al.  validate their formal approach on an event-B specification.  

  

6. CONCLUSION  
 

In this paper, an approach for verifying the behavioral coherence of SCDL/WS-BPEL 

component-service architectures has been proposed.  To achieve this, it has been proposed to map 

SCDL/WS-BPEL to the Wright ADL, thus allowing the checking of the standard properties 

supported by this ADL.  Indeed, the Wright ADL defines eleven standard properties related to the 
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consistency of software architecture, among which four, assimilated to behavioral contracts, are 

automated by the Wr2fdr tool.  The latter contracts can be checked with the FDR2 model checker.   

As a second step of our verification approach, the translation of the Wright specification to an 

Ada concurrent program has been put forward, which allows:  

• The validation of an abstract software architecture using dynamic analysis tools 

associated with Ada, such as test data generation and debugging.  Indeed, the execution 

of abstract software architecture with representative test data allows the validation of the 

future system in an early time.   

• The verification of specific properties on an abstract software architecture using several 

verification tools supporting the Ada concurrent language.  Indeed, many are the tools 

that allow the analysis of Ada concurrent programs.  For example, SPIN, SMV, 

FLAVERS and INCA [8] are four complementary approaches permitting the static 

analysis of Ada concurrent programs.  Indeed, vis-à-vis the specification of properties to 

be verified, the SMV and SPIN tools promote the property-oriented state, while INCA 

and FLAVERS promote the property- oriented trace.   

Our verification approach is validated on a set of uses cases available at our SourceForge 

repository [15].  Currently, we are extending this work by an automation of these translation rules 

using the ATL [16] model transformation language.   
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