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ABSTRACT 
 
Clustering algorithms play a pivotal role in discovering hidden patterns in unlabeled data, but their 

performance varies significantly across datasets with complex geometries. This paper explores the 

performance of various clustering techniques in identifying distinct circular clusters within the Synthetic 

Circle Data Set, a benchmark dataset designed to test algorithms on non-linear structures. We evaluate 

popular clustering methods, including k-means, DBSCAN, Gaussian Mixture Models, hierarchical 

clustering, and emerging techniques like Self Organizing Maps, Mean Shift Clustering and Spectral 

Clustering. Using metrics such as Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and 

Silhouette Score, along with detailed visualizations, we systematically compare the algorithms’ ability to 
recover the true circle-based clusters without prior labels. Our findings highlight the strengths and 

limitations of each method, revealing that density- and graph-based algorithms consistently outperform 

traditional techniques like k-means in handling circular patterns. 
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1. INTRODUCTION 

 

Clustering, an essential task in unsupervised machine learning, is widely used to discover 

underlying patterns and structures in unlabeled data. Despite its prevalence, clustering algorithms 
often face significant challenges when applied to datasets with complex geometries, such as non-

linear or concentric patterns. Traditional algorithms, like k-means, work well at clustering 

linearly separable data but frequently struggle to identify non-linear relationships. This limitation 

becomes a bigger issue in datasets with overlapping, circular, or nonconvex structures, where 
clustering boundaries are inherently non-Euclidean. Addressing these challenges requires 

evaluating advanced clustering algorithms that can adapt to such complexities. To analyze 

clustering performance on data with non-linear patterns, this study utilizes the Synthetic Circle 
Data Set from the UCI Machine Learning Repository—a benchmark dataset consisting of two-

dimensional points arranged into multiple circular clusters (Synthetic Circle Data Set, 2024) The 

simplicity of this data set makes it ideal for clustering evaluations, as its two-dimensional 
structure facilitates easy visualization and interpretation of the results. Each observation is 

already associated with a ground-truth label identifying the circle it belongs to, enabling rigorous 

comparisons between predicted clusters and true clusters. The overall goal is to assess whether 

clustering algorithms can identify the individual circles without access to the true labels during 
the clustering process. 
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Clustering algorithms differ significantly in their ability to adapt to such data complexities. 
Density-based methods like DBSCAN (Ester et al., 1996) are known for their ability to handle 

irregular cluster shapes and noise, while spectral clustering approaches leverage graph-based 

representations to uncover nonlinear patterns (Ng et al., 2001). Gaussian Mixture Models 

Reynolds, 2009) and hierarchical clustering methods (Johnson, 1967; Murtagh & Contreras, 
2012) offer flexibility in modeling and structuring clusters, but their performance can depend 

heavily on parameter tuning. Meanwhile, recent advances such as HDBSCAN (Campello et al., 

2015) aim to extend traditional density-based approaches by dynamically determining the number 
of clusters and addressing varying densities. These methods, along with foundational algorithms 

like k-means, form a robust foundation for evaluating clustering performance on the Synthetic 

Circle Data Set. 
 

The Synthetic Circle Data Set provides several advantages for this analysis. It has only 2 

features- the X and Y co-ordinates of the data point and the target variable is the "class" which is 

basically a label for which circle the data point belongs to. So overall, the data has only 3 
columns. This allows for easier visualizations that clearly illustrate the success or failure of 

different clustering methods. The circle label in the dataset facilitate quantitative evaluations 

using metrics like Adjusted Rand Index (Hubert & Arabie, 1985) and Silhouette Score 
(Rousseeuw, 1987), enabling objective comparisons of the quality of the clustering. By 

systematically analyzing and comparing clustering algorithms, this study seeks to identify 

methods that work well in recovering circular clusters while highlighting the limitations of 
others. Circular or arbitrarily shaped clusters are commonly encountered in fields such as 

biology, social networks, and geospatial analysis, and understanding which algorithms are best 

suited to these structures can enhance the effectiveness of clustering algorithms. 

 

1.1. Overall Research Goal and Novelty of this Work 
 
The overall objective of this study is to evaluate and compare the performance of various 

clustering algorithms on the Synthetic Circle Data Set, which is a dataset with non-linear, circular 

cluster structures. The goal here is to determine how well algorithms can recover true clusters 

(circles) without access to ground-truth labels, using metrics like ARI, NMI, and Silhouette 
Score. This study addresses a gap in clustering algorithms research by focusing on datasets with 

circular geometries, unlike traditional convex datasets like the Iris dataset. The Synthetic Circle 

Data Set from the UCI ML repository serves as a novel benchmark, enabling precise evaluation 
of clustering methods on non-linear patterns. The results highlight the effectiveness of density-

based and hierarchical methods for circular clusters and provide a practical framework for 

evaluating algorithms on non-linear geometries. This study offers actionable insights for real-

world applications in biology, geospatial analysis, and social networks, addressing clustering 
challenges often overlooked in traditional benchmarks. Thus, the overall question answered by 

this analysis can be summarized as- How effectively can clustering algorithms identify true 

clusters in data with non-linear, circular geometries without access to ground-truth labels? 
 

This paper contributes to the literature by providing a performance evaluation of clustering 

algorithms on data with non-linear structures, emphasizing their suitability for separating circular 
patterns. The insights gained from this analysis can guide practitioners in selecting the most 

effective methods for clustering on complex datasets, such as those encountered in biological, 

geographical, and social network analyses. Furthermore, the findings highlight the importance of 

aligning algorithm choice with the inherent geometry of the data, a consideration often 
overlooked in clustering applications. The rest of the paper is structured as follows: The 

Literature review section discusses the previous related work on the subject, the methodology 

section describes the dataset briefly describes each clustering algorithm, along with the 
evaluation metrics used to assess the performance of clustering algorithms, the results section 
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describes in detail the performance of each of the algorithms, and the Conclusion and Future 
work section mentions how the findings mentioned in this paper can be used for future analysis. 

 

2. LITERATURE REVIEW 
 

Clustering, as a fundamental unsupervised learning task, has been extensively studied, with 
significant progress seen in developing algorithms tailored to various data structures and 

application domains. However, challenges still exist in effectively clustering data with complex 

geometries, such as circular or concentric patterns. This section reviews key advancements in 
clustering algorithms, their application to non-linear and geometrically complex datasets, and 

how the Synthetic Circle Data Set provides a unique benchmark for comparing these methods. 

 

2.1. K-Means and its Limitations 
  

K-means clustering (MacQueen, 1967) remains one of the most popular clustering algorithms due 
to its simplicity and computational efficiency. However, it relies on Euclidean distance that 

makes it often unsuitable for non-convex or non-linear cluster shapes (Kanungo et al., 2002). 

Various extensions, such as kernel k-means (Schölkopf et al., 1998), try to overcome this 

limitation by mapping the data into a higher-dimensional feature space so that clusters may 
become linearly separable. Despite these advances, k-means is sensitive to initialization and the 

need to specify the number of clusters remain significant challenges. 

 

2.2. Density-Based Clustering 
 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (Ester et al., 1996) 
performs clustering by identifying clusters as dense regions of data points. Its ability to handle 

noise and detect arbitrarily shaped clusters makes it particularly effective for non-linear patterns. 

However, DBSCAN’s performance is highly sensitive to parameters like eps(the maximum 
distance between two samples for one to be considered as in the neighborhood of the other) and 

minsamples (the number of points, including the core point itself that must exist within an eps 

neighborhood for a point to be considered a core point) , and it struggles with datasets featuring 
varying densities. HDBSCAN (Campello et al., 2015) tries to addresses these limitations by 

dynamically adjusting density thresholds, making it well-suited for datasets with varying cluster 

densities. 

 

2.3. Hierarchical Clustering 
 
Hierarchical clustering techniques, including agglomerative (Johnson, 1967) and divisive 

approaches (Murtagh & Contreras, 2012), build tree-like structures (dendrograms) to represent 

data groupings at multiple levels of granularity. While these methods provide flexibility in cluster 

formation, they often rely on distance metrics that do not work well with non-linear patterns. 
Advances such as dynamic dendrogram cutting (Langfelder et al., 2008) aim to improve their 

utility for complex data. 

 

2.4. Gaussian Mixture Models 
 

Gaussian Mixture Models (GMMs) (Reynolds, 2009) offer a probabilistic approach to clustering, 
modeling data as a mixture of Gaussian distributions. GMMs excel at handling overlapping 

clusters and capturing soft memberships, but they assume that clusters follow Gaussian shapes, 

which may not hold for non-linear geometries like circles. Extensions, such as variational 
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Bayesian GMMs (Bishop, 2006), attempt to address these limitations by introducing more 
flexible priors. 

 

2.5. Spectral Clustering 
 

Spectral clustering (Ng et al., 2001) uses graph-based representations of data, using eigenvectors 

of the graph Laplacian to partition data into clusters. Its ability to handle non-linear and non-
convex patterns makes it a strong candidate for datasets like the Synthetic Circle Data Set. 

Despite its strengths, spectral clustering requires careful selection of similarity measures and 

parameters. 

 

2.6. Self-Organizing Maps 
 
Self-Organizing Maps (SOMs), introduced by Kohonen (1982), are unsupervised neural networks 

that project high-dimensional data onto a lower-dimensional grid while preserving topological 

relationships. SOMs have been widely used in clustering and visualization tasks across fields 

such as biology and healthcare (Vesanto & Alhoniemi, 2000).However, SOMs struggle with 
capturing highly non-linear or complex patterns due to their fixed grid topology, which may 

oversimplify relationships in intricate datasets. 

 

2.7. MeanShift Clustering 
 

MeanShift, a density-based clustering algorithm, identifies clusters by shifting data points toward 
regions of higher density (Fukunaga & Hostetler, 1975). Unlike Kmeans, it does not require the 

number of clusters to be predefined. However, despite its flexibility, MeanShift may perform 

poorly with non-linear or overlapping patterns, as it relies on the kernel bandwidth, which can fail 
to adapt dynamically to complex density distributions. 

 

2.8. Evaluation of Clustering Algorithms 
 

Several benchmark datasets, such as the Iris dataset (Fisher, 1936) and synthetic datasets (Blobs, 

Moons), have been used to evaluate clustering algorithms. However, these datasets often do not 
represent the geometric complexity of real-world data. The Synthetic Circle Data Set, by contrast, 

introduces a controlled environment where the true cluster shapes are circular, making it ideal for 

evaluating the ability of clustering algorithms to handle non-linear geometries. 

 
Metrics such as Adjusted Rand Index (ARI) (Hubert & Arabie, 1985), Normalized Mutual 

Information (NMI) (Vinh et al., 2010), and Silhouette Score (Rousseeuw, 1987) are widely used 

to quantify clustering performance. These metrics allow researchers to compare algorithms 
objectively, even across datasets with varying complexities. Existing benchmarks often fail to 

capture the intricacies of such patterns, leaving a gap in the evaluation of clustering methods 

tailored for non-linear data. This study addresses this gap by: 
 

1. Using the Synthetic Circle Data Set as a benchmark to evaluate clustering algorithms on 

non-linear geometries. 

2. Systematically comparing algorithms across multiple dimensions, including computational 
efficiency, clustering accuracy (ARI, NMI), and cluster separability (Silhouette Score), 

along with detailed visaulizations 
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3. Providing actionable insights into the strengths and limitations of each method, helping 
practitioners choose appropriate algorithms for real-world tasks involving complex data 

structures. 

 

2.9. Differences from current State of the Art 
 

The differences for the current analysis as compared to the existing literature can be summarized 

as: 
 

1. This analysis uses a non-linear dataset with predefined circular clusters, which are found to 

be rarely addressed in clustering evaluations. 
2. This analysis systematically compares a diverse range of algorithms (densitybased, 

hierarchical, probabilistic, graph-based, and neural-inspired) in a single framework 

3. It also emphasizes actionable insights for practitioners dealing with similar non-linear 

structures. 
 

3. METHODOLOGY 
 

This section outlines the methodology adopted for evaluating clustering algorithms on the 
Synthetic Circle Data Set. It includes details on the data set, the application of clustering 

algorithms, the evaluation metrics used, and the overall experimental setup. 

 

3.1. The Synthetic Circle Dataset 
 

This dataset comprises 10000 two-dimensional points arranged into 100 circles, each containing 
100 points, and it is available on the UCI Machine Learning Repository. It was designed to 

valuate clustering algorithms, by providing a clear and structured clustering challenge. Figure 1 

shows a sample of 5 records of the data, which contain only 3 features- the x-coordinate and the 

y-coordinate of the data point and the ’class’ label indicating which circle the data point belongs 
to, which can be between 0 to 99. Figure 2 shows a scatter plot of the data in 2 dimensions, 

clearly indicating the label of which data point belongs to which circle. These labels are used 

solely for evaluation purposes and are not provided as input to the clustering algorithms. The 
challenge for the algorithms is to identify each of these 100 circles as 100 separate clusters based 

purely on the x and y coordinates of the points. 

 

 
 

Figure 1: Sample of 5 records of the Synthetic Circle Dataset with 3 features 
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3.2. Clustering Algorithms 
 

A variety of clustering algorithms are applied to the dataset, chosen for their different approaches 

to handling non-linear and geometrically complex data:  
 

3.2.1. K-Means  
 

A centroid-based algorithm that partitions data into k clusters using Euclidean distance. It 
partitions data into k clusters by iteratively minimizing the within-cluster sum of squares. The 

algorithm  lternates between assigning each data point to the nearest centroid and updating the 

centroids based on the mean of the assigned points. The optimization goal is to minimize: 

 
 

where Ci is the ith cluster and μi is its centroid. 

 

3.2.2. DBSCAN 
 

A density-based algorithm that clusters points by identifying dense regions based on two 

parameters: ϵ(the radius of the neighborhood) and minPts (minimum number of points required 
for a dense region). Points are classified as core, border, or noise. The algorithmgrows clusters 

from core points by including points within ϵ that are directly or indirectly density- reachable. 

Mathematically, 
 

 
 

Figure 2: Scatter plot of the Synthetic Circle Dataset, representing 100 circles 

 

for a point p, the neighborhood is defined as 

 

N(p) = {q : dist(p, q) ≤ ϵ} 

 
and p becomes a core point if |N(p)| ≥ minPts. 

 

3.2.3. Hierarchical Clustering  
 

It organizes data into a dendrogram that represents nested groupings based on their similarity. It 

can be agglomerative, starting with each data point as its  luster, or divisive, starting with one 
large cluster. Clusters are merged or divided based on linkage criteria such as single-linkage 

(minimum distance between clusters), complete-linkage (maximum distance), or average-linkage 
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(mean distance). UsingWard’s method, the distance between clusters u and v after merging with 
cluster s is updated as: 

 
Where 

T = |u| + |v| + |s| 
 

3.2.4. Gaussian Mixture Model (GMM) 

 
It is a clustering algorithm based on the assumption that data is generated from a mixture of 

several Gaussian distributions with unknown parameters. The Expectation-Maximization (EM) 

algorithm estimates the parameters iteratively. The probability density function of the data is: 
 

 
 

where πk is the weight, μk is the mean, and Σk is the covariance matrix. GMM assigns points to 

clusters probabilistically, making it more flexible than hard clustering methods like k-means. 

 

3.2.5. Self-Organizing Maps (SOM)  
 

are a type of neural network used for clustering and dimensionality reduction. They project high-

dimensional data onto a low dimensional (usually 2D) grid, preserving topological relationships. 
During training, data points adjust the weights of the winning neuron and its neighbors using: 

 

wi(t + 1) = wi(t) + η(t)hci(t)[x(t) − wi(t)] 

 
where hci(t) is the neighborhood function, and η(t) is the learning rate. 

 

3.2.6. Spectral Clustering algorithm  
 

uses the eigen values of a graph Laplacian matrix derived from the data to form clusters. It 

embeds the data into a lower dimensional space, capturing the structure of the data graph, and 
applies a standard clustering algorithm like k-means. The normalized graph Laplacian is 

computed as: 

 

 
 

, where D is the degree matrix, and L = D −W is the unnormalized Laplacian with W as the 

adjacency matrix. This method is effective for capturing non-linear cluster structures. 

 

3.2.7. Mean Shift Clustering algorithm 

 

It identifies clusters by locating areas of high density in the feature space. Starting with 

random initial points, it iteratively shifts them toward the mean of their neighborhood defined 
by a kernel function, such as Gaussian. The update step for each point xi is given by: 
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Where K is the kernel function. 

 

Each algorithm is configured with parameters optimized for the data set, ensuring a fair 

comparison. The primary objective of this study is to evaluate how effectively clustering 
algorithms can recover the true circular clusters. Specifically, the algorithms are evaluated on 

the basis of grouping observations into clusters that correspond to the underlying circles in the 

dataset, and achieving this clustering without access to the ground-truth labels (circle_id), 
which are used only for evaluation. 

 

3.3. Evaluation Metrics 
 

To objectively compare the performance of the clustering algorithms, the following metrics 

are used: 
 

1. Adjusted Rand Index (ARI): Measures the similarity between the predicted clusters and 

the true labels, adjusted for chance. Values range from -1 (poor agreement) to 1 (perfect 

agreement). 
2. Normalized Mutual Information (NMI): Captures the shared information between the 

predicted and true clusters. NMI values range from 0 (no shared information) to 1 

(perfect match). 
3.  Silhouette Score: Evaluates cohesion within clusters and separation between clusters. 

Values range from -1 (poorly defined clusters) to 1(well-separated clusters).  

4. Visual Assessment: Scatter plots of the clustered data, with each data point colored 
according to its cluster, along with centroids of the cluster, are compared to see if the 

circles are correctly identified by each cluster. Additionally, a Voronoi diagram is also 

overlaid to visualize the partitioning of the feature space, illustrating the boundaries 

between clusters. This visualization allows for a direct comparison of the algorithm’s 
clustering results with the expected structure of the data, particularly highlighting its 

ability (or inability) to separate the circles. 

 

4. RESULTS 
 

The results demonstrate that density-based methods (DBSCAN, MeanShift) and Hierarchical 

Clustering are highly effective at identifying non-linear, circular clusters, outperforming 

traditional methods like k-means and Gaussian Mixture Models. This highlights the 
importance of choosing algorithms tailored to the data’s geometric complexity. The research 

also underscores the limitations of Self-Organizing Maps and Spectral Clustering for such 

tasks, offering valuable insights into their applicability. The detailed results for each of the 
clustering algorithms are highlighted in the next subsections. 

 

4.1. K-Means Algorithm 
 

As seen in the figure 3, the k-means algorithm does a decent job of separating each circle into 

its own cluster, but some of the circles are not clearly separated into distinct clusters. The 
Adjusted Rand Index (ARI) for the k-Means algorithm is 0.9688, the Normalized Mutual 

Information (NMI) is 0.99166 and Silhouette Score is 0.59042, highlighting the performance 

of the k-Means algorithm. 
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4.2. DBSCAN Algorithm 
 

As seen in the figure 4, the DBSCAN algorithm does a much better job of separating each 

circle into its own cluster, as all of the circles are clearly separated into distinct clusters. The 
Adjusted Rand Index (ARI) for the k-Means algorithm is 1.0, the Normalized Mutual 

Information (NMI) is 1.0 and Silhouette Score is 0.6085, highlighting the performance of the 

DBSCAN algorithm. 
 

4.3.Agglomerative Clustering Algorithm 
 
As seen in the figure 5, the Agglomerative Clustering algorithm also does a good job of 

separating each circle into its own cluster, as all of the circles are clearly separated into 

distinct clusters. The Adjusted Rand Index (ARI) for the k-Means algorithm is 1.0, the 
Normalized Mutual Information (NMI) is 1.0 and Silhouette Score is 0.6085, highlighting the 

performance of the DBSCAN algorithm. 

 

4.4. Gaussian Mixture Models algorithm 
 

As seen in the figure 6, the Gaussian Mixture models algorithm is able to separate most of the 
circles into its own cluster, while some of the circles are overlapping. 

 

 
 

Figure 3: Scatter plot of the kmeans algorithm. Most of the circles are separated into a different cluster, 

while come circles have overlapping clusters 

 

 
 

Figure 4: Scatter plot of the DBSCAN algorithm. All the circles are separated into a different cluster 
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The Adjusted Rand Index (ARI) for the GMM algorithm is 0.94630, the Normalized Mutual 
Information (NMI) is 0.98971 and Silhouette Score is 0.5688, highlighting the performance of 

the GMM algorithm. 

 

4.5. Spectral Clustering Algorithm 
 

As seen in the figure 4, the Spectral Clustering algorithm is unable to separate most of the 
circles into its own cluster. The Adjusted Rand Index (ARI) for the GMM algorithm is 0.2337, 

the Normalized Mutual Information (NMI) is 0.8195 and Silhouette Score is -0.14351, 

highlighting the performance of the Spectral Clustering algorithm.  

 

4.6. Self-Organizing Maps algorithm 
 
As seen in the figure 4, the Self-Organizing Maps algorithmis unable to separate most of the 

circles into its own cluster. The Adjusted Rand Index (ARI) for the SOM algorithm is 

0.597084, the Normalized Mutual Information (NMI) is 0.8788 and Silhouette Score is 

0.3216, highlighting the performance of the Spectral Clustering algorithm 
 

4.7. Mean Shift Clustering algorithm 
 

As seen in the figure 4, the Means Shift algorithm is able to perfectly separate all of the circles 

into its own cluster. The Adjusted Rand Index (ARI) for the SOM algorithm is 1.0, the 

Normalized Mutual Information (NMI) is 1.0 and Silhouette Score is 0.6085, highlighting the 
performance of the Spectral Clustering algorithm. 

 

 
 

Figure 6: Scatter plot of the GMM algorithm. Most of the circles are separated into a different cluster 
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Figure 7: Scatter plot of the Spectral clustering algorithm. Most of the circles are not separated into a 

different cluster 

 

 
 

Figure 8: Scatter plot of the SOM algorithm. Most of the circles are not separated into a different cluster 
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Figure 9: Scatter plot of the SOM algorithm. Most of the circles are not separated into a different cluster 

 

4.8. Overall Analysis 
 

Below is the table comparing the results of all algorithms – 

 
Table 1: Clustering Algorithm Performance Metrics 

 

 
 

The results in table 1 show that DBSCAN, Hierarchical Clustering, and MeanShift are the 
most effective algorithms for this dataset, primarily due to their ability to handle non-linear 

and circular patterns robustly. In contrast, algorithms like k-Means, GMM, SOMs, and 

Spectral Clustering are less suited to the dataset’s non-linear structure, requiring careful 
parameter tuning or fundamental modifications to achieve comparable performance. 

 

DBSCAN performs well likely because it excels at detecting arbitrarily shaped clusters, such 
as circles, and is robust to noise. Hierarchical Clustering (likely agglomerative) performs 

equally well because its bottom-up approach effectively captures the nested and non-linear 

structure of the data. Mean Shift also demonstrates strong performance due to its density-

based nature, which aligns well with the clustered circular geometry of the dataset. 
 

k-Means and Gaussian Mixture Models (GMM) perform slightly worse, with ARI values of 

0.97 and 0.95, respectively. While they capture most of the clusters correctly, they are not able 
to perfectly separating overlapping or noisy clusters as they rely on Euclidean distance and 

Gaussian assumptions. 

 

Self-Organizing Maps (SOMs) and Spectral Clustering perform poorly compared to the other 
methods. SOMs clearly fail to adapt to the exact circular structure, with an ARI of 0.60 and a 
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relatively low Silhouette Score of 0.32. This shows that while some clusters are correctly 
identified, others overlap or are misclassified. Spectral Clustering exhibits the weakest 

performance (ARI: 0.23, MI: 0.82, Silhouette: -0.14), likely because of challenges in 

configuring the graph similarity matrix or eigenvalue based partitioning for this dataset. 

 

4.9. Significance of the Results 
 
The significance of this analysis can highlighted by the fact that the results demonstrate that 

density-based methods (DBSCAN, Mean Shift) and Hierarchical Clustering are highly 

effective at identifying non-linear, circular clusters, outperforming traditional methods like k-

means and Gaussian Mixture Models. This highlights the importance of choosing algorithms 
tailored to the data’s geometric complexity. The research also underscores the limitations of 

Self-Organizing Maps and Spectral Clustering for such tasks, offering valuable insights into 

their applicability. 
 

This analysis thus demonstrates the importance of selecting the right clustering algorithm for 

datasets with circular or non-linear geometries. These results can have practical implications 
for domains like biology (e.g., detecting circular patterns in molecular structures), social 

networks (e.g., circular communities), and geospatial analysis (e.g., clustering geographic 

regions with circular features). This analysis shows that practitioners working with non-linear 

data should prioritize density- or hierarchical-based clustering approaches. The code used to 
perform the analysis and get all the resutls can be found on this github repository 

 

5. CONCLUSION & FUTURE WORK 
 
This study evaluated the performance of several clustering algorithms on the Synthetic Circle 

Data Set, focusing on their ability to identify circular clusters without prior knowledge of the 

true labels. future work could extend this analysis to higher dimensional or noisier datasets, 

where overlapping clusters and real-world complexities present additional challenges. 
Automated parameter tuning and enhancements to existing methods, such as custom distance 

metrics or graph representations, could further improve their adaptability. Applying these 

findings to real-world problems in biology, geospatial analysis, and social networks would 
validate their practical utility. This study provides a foundation for understanding and 

improving clustering performance on geometrically intricate datasets. 
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