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This paper introduces a novel method for estimating the Average Treat-
ment Effect (ATE) in observational causal inference studies by calculating
cluster-specific ATEs and taking aweighted average across clusters. Instead
of directly applying Inverse Propensity Weighting (IPW), this approach
leverages clustering to address issues such as positivity violations and
extreme weights, which often arise when propensity scores are near 0 or
1. Each cluster is formed based on covariates, and the ATE is estimated
for each cluster using propensity score weighting. The overall ATE is then
calculated as a weighted average of the cluster-specific ATEs, where the
weights are based on the average propensity score within each cluster. This
method effectively captures treatment effect heterogeneity and mitigates
the instability caused by extreme individual weights. Simulations on syn-
thetic data and real-world datasets demonstrate the superiority of this
method in producing more stable and reliable treatment effect estimates
compared to traditional IPW.
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1 Introduction

Causal inference is the process of determining the causal effect of a treatment, policy, or
intervention on an outcome of interest. Unlike traditional correlational analyses, causal
inference seeks to establish cause-and-effect relationships by adjusting for confounding
variables that might influence both the treatment and the outcome. This is critical in
observational studies where randomized control trials (RCTs)—the gold standard for
establishing causality—are not possible.
Inverse Propensity Weighting (IPW) is a widely used method in causal inference

for estimating treatment effects in observational studies, where randomization is not
possible. In such settings, individuals self-select into treatment or control groups, and
confounding variables may influence both the treatment assignment and the outcome.
IPW helps to address this bias by weighting individuals according to the probability
of receiving treatment, known as the propensity score. The goal of IPW is to create a
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pseudo-population where the distribution of covariates is balanced between treated
and untreated individuals, making the treatment assignment independent of the
covariates. For example, in an observational study comparing two drug treatments for
heart disease, where researchers want to estimate the effect of a new drug or treatment
on patient outcomes, patients may not be randomly assigned to treatments and thus
the overall results of the study may not be reliable. IPW can adjust for differences
in patient characteristics (such as age, severity of illness, or prior health conditions,
etc.) by reweighting the data, ensuring that the treatment groups are comparable, and
allowing for an unbiased estimate of the treatment effect.

The propensity score is defined as the probability of receiving the treatment(such as
a new drug) given the observed covariates, often estimated using logistic regression.
The propensity score e(X) for an individual with covariates X, where the treatment is
denoted by T is

e(X) = P(T = 1|X)

.

In many applications of IPW, logistic regression is employed to estimate the
propensity score. Logistic regression models the relationship between the covariates
X and the binary treatment T, and it provides a flexible and interpretable way to
calculate the probability of treatment assignment. The estimated propensity scores
from the logistic regression model can then be used to compute weights for each
individual in the dataset.

The weights are computed as follows:

wi =

{
1

e(Xi)
if Ti = 1

1
1−e(Xi)

if Ti = 0

Thus:

• Treated individuals (T = 1) are weighted by 1
e(Xi)

, which gives more weight to
those who were unlikely to be treated.

• Control individuals (T = 0) are weighted by 1
1−e(Xi)

which gives more weight to
those who were unlikely to be in the control group.

The ATE is then estimated as using the weighted outcome means as :

ÂTEIPW =
1
n

n

∑
i=1

wi (TiYi − (1 − Ti)Yi)

where :

• Ti is the treatment indicator(1 if treated, 0 if control)

• Yi is the observed outcome.

• e(Xi) is the estimated propensity score for individual i.
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While IPW thus reweights observations based on their propensity scores, (i.e. —the
probability of receiving treatment given a set of covariates), thereby mimicing the
conditions of a randomized trial. However, in practical applications, traditional IPW
often suffers from positivity violations and high variance in the weights. Positivity
violations occur when certain subgroups are almost always treated or almost never
treated, leading to extreme propensity scores near 0 or 1, which result in excessively
large weights and unstable Average Treatment Effect (ATE) estimates [2][3].
Several methods have been proposed to address these issues, such as trimming

extreme weights [4] or using machine learning methods to estimate propensity scores
more flexibly [5]. While these approaches are promising, they either discard obser-
vations or fail to fully stabilize the variance in estimates, especially in datasets where
treatment groups are small or covariate distributions are highly skewed.

To address these challenges, we propose a new method that builds upon traditional
IPW by addressing these limitations through cluster-specific ATE estimation. Instead
of applying IPW directly to the entire population, we first cluster individuals based
on their covariates using a suitable clustering algorithm (e.g., k-means or hierarchical
clustering). Within each cluster, the ATE is calculated by comparing the weighted
outcomes between treated and untreated individuals in the traditional IPW manner.
The overall ATE is then obtained by taking a weighted average of the cluster-specific
ATEs, where the weights are derived from the average propensity score within each
cluster. This stabilizes extreme weights, mitigates positivity violations, and reduces
variance.

This method has several advantages:

• Captures treatment effect heterogeneity: By estimating ATEs within clusters, this
approach captures variations in treatment effects across subgroups with similar
covariate profiles.

• Mitigates extreme weights: Using average propensity scores at the cluster level
reduces the influence of extreme individual weights, leading to more stable ATE
estimates.

• Improved stability: The weighting at the cluster level mitigates the impact of
extreme weights caused by positivity violations, where some individuals have
very low or very high likelihoods of receiving treatment.

By aggregating the cluster-specific ATEs into an overall ATE, we not only stabilize the
estimates but also capture treatment effect heterogeneity across different subgroups.
This technique is especially useful in datasets with high levels of heterogeneity, where
a single ATE estimate may not accurately reflect the variation in treatment effects.

Through a series of simulations on synthetic datasets, as well as applications to real-
world datasets, we demonstrate that this method provides more robust ATE estimates
with lower bias and variance compared to traditional IPW. Additionally, the use of
cluster-specific ATEs offers insights into how treatment effects vary across different
subgroups, providing a more nuanced understanding of the data. This makes the
method particularly valuable in fields like healthcare, economics, and social sciences,
where treatment effects often differ across populations.

For the synthetic datasets, we demonstrate that the cluster-specific IPW technique
is more accurate in estimating the average treatment effect(which is already known)
as compared to the traditional IPW technique, and for real-life datasets, we compare
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variousmetrics relating to stability and robustness of the ATE estimates to highlight the
superiority of the cluster-specific IPW technique over the traditional IPW technique.

The rest of the paper is structured as follows: The literature review section presents
the existing techniques that address this problem, the methodology section describes
in detail the cluster-specific hybrid weighting technique, the results section describes
the results of using this technique on a synthetic dataset and a real-life dataset, and
the conclusion and future work section mentions about how this technique can be
explored further.

2 Literature Review

Causal inference methods, particularly Inverse Propensity Weighting (IPW), have
become fundamental tools in observational studies where randomization is absent.
In observational studies, estimating the Average Treatment Effect (ATE) often

involves adjusting for confounding variables to account for biases in treatment
assignment. A common approach is Inverse Propensity Weighting (IPW), which
creates a pseudo-population where treatment assignment is independent of covariates
by weighting individuals according to their propensity scores. Introduced by
Rosenbaum and Rubin [1], propensity score weighting has become a fundamental
technique for addressing confounding. However, traditional IPW methods are prone
to instability due to extreme weights, which occur when propensity scores are close to
0 or 1, leading to high variance in the ATE estimates [2].

The challenge of extreme weights has been widely documented. Kang and Schafer
[3] highlighted the sensitivity of IPW to model misspecification, especially when
propensity scores are poorly estimated, causing extreme weights to disproportionately
influence the results. Similarly, Robins et al. [4] noted that when positivity violations
(i.e., individuals with covariates that make treatment assignment highly unlikely)
occur, the ATE estimates become unstable, reducing the reliability of the findings.
To mitigate these issues, several extensions of IPW have been proposed, including
trimming extreme weights [5] and stabilized weights [6], where propensity scores are
modified to reduce the influence of extreme values. However, these methods do not
fully resolve the problem of treatment effect heterogeneity across subgroups.

The growing recognition of treatment effect heterogeneity has led to the develop-
ment of clustering-based techniques, which aim to estimate cluster-specific treatment
effects and capture variations in treatment response across different subpopulations.
Crump et al. [7] explored the idea of restricting the analysis to a subset of the
population where treatment effect estimation is more reliable, but this does not
generalize to estimating the ATE for the entire population. More recently, Athey and
Imbens [8] introduced methods such as Causal Trees, which partition the population
into subgroups and estimate treatment effects for each subgroup. Although this
approach improves the estimation of heterogeneous effects, it does not address the
instability caused by extreme weights in IPW.

In response to these challenges, the Cluster-Specific ATE Estimation method builds
on the idea of subgroup analysis by clustering individuals based on their covariates
and calculating treatment effects within each cluster. This technique leverages the
strengths of traditional IPW while mitigating the impact of extreme weights by
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estimating cluster-level propensity scores and taking a weighted average of the
cluster-specific ATEs. This method reduces the sensitivity to extreme propensity
scores, leading to more stable estimates [9]. By focusing on cluster-specific treatment
effect heterogeneity, the method also addresses limitations associated with traditional
IPW approaches that assume a homogeneous treatment effect across all individuals.

Recent advances in causal inference, such as Bayesian causal forests [10] and meta-
learners [11], have emphasized the importance of improving model robustness in the
presence of complex data structures. The Cluster-Specific ATE Estimation method
complements these innovations by providing a framework that combines propen-
sity score weighting with clustering to improve ATE estimation, particularly when
positivity violations and high variance are present.

Thus, the proposed method fills an important gap in the literature by offering a
solution that addresses both extreme weight sensitivity and treatment effect hetero-
geneity. As observational studies continue to be a cornerstone of causal inference
in fields such as healthcare and economics, developing more robust approaches like
the Cluster-Specific ATE Estimation will enhance the reliability of treatment effect
estimates in practical applications.
This paper contributes to literature on causal inference by introducing a hybrid

approach that combines the strengths of individual-level and cluster-level weighting
methods. By addressing the limitations of traditional IPW, particularly in cases of
positivity violations and high variance, this technique provides a more robust frame-
work for estimating treatment effects in observational studies. Its applicability across
different domains, including healthcare, social sciences, and economics, makes it a
valuable tool for researchers and practitioners alike.

3 Methodology

In this section, we describe the methodology for evaluating the Cluster-Specific ATE
Estimation with Propensity Score Weighting method and compares its performance
with the traditional Inverse Probability Weighting (IPW) method. This comparison is
based on a series of experiments using synthetic datasets with varying true Average
Treatment Effects (ATEs) and introducing positivity violations. The overall goal is
to demonstrate the robustness of the clustering-based method in scenarios where
traditional IPW may fail due to extreme propensity score weights.

3.1 Varying the True ATE:

To test the performance of both methods across different treatment effect magnitudes,
we generate a list of true ATE values ranging from 1 to 100. Each of these ATE
values represents the actual treatment effect for a different synthetic dataset. By
systematically increasing the true ATE, we can observe how each method performs in
terms of bias, variance, and stability across a broad range of scenarios. This ensures
that the results are not biased toward a specific ATE value and that the conclusions
are robust. For each true ATE value, τ ∈ 1, 2, 3, .....100 we generate a synthetic dataset
and calculate the ATE using both methods.
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3.2 Synthetic Data Generation with Positivity Violations:

Each synthetic dataset consists of 15,000 observations and 8 covariates X1, X2, X3, ....X8.
The covariates are generated from normal distributions, and the treatment assignment
is determined based on a logisticmodel. To introduce positivity violations and simulate
real-world challenges, we deliberately manipulate the treatment assignments for some
observations, creating situations where individuals with very low propensity scores
receive treatment, and individuals with very high propensity scores do not. This
ensures that extreme weights will be present in the traditional IPW method.

The data generation process is as follows:

• Covariates X1, X2, X3, ....X8 are drawn from normal distributions.

• We choose 3 of these covariates- X1, X2, X3 which affect both the outcome and
the treatment. The propensity score P(T = 1|X1, X2, X3) is calculated using a
logistic function of X1, X2 and X3.

• Treatment assignment T is based on the propensity score, with the probability of
treatment equal to the propensity score, but positivity violations are introduced
by forcing treatment for individuals with low propensity scores and forcing
control for individuals with high propensity scores.

• The outcome Y is generated as a linear combination of the covariates and the
treatment effect, with the true ATE being systematically varied from 1 to 100
across datasets.

3.3 Propensity Score Estimation and IPWWeights

Once the synthetic data is generated, the propensity scores are estimated using a logistic
regression model that predicts treatment assignment based on the covariates. The
propensity scores e(Xi) are then used to calculate the weights for both the traditional
IPW method and the cluster-specific method.

For the traditional IPW, the weights wi are calculated as follows:

wi =

{
1

e(Xi)
if Ti = 1

1
1−e(Xi)

if Ti = 0

These weights are then used to estimate the ATE using the traditional IPW formula:

τ̂IPW =
∑N

i=1 wiYiTi

∑N
i=1 wiTi

− ∑N
i=1 wiYi(1 − Ti)

∑N
i=1 wi(1 − Ti)

3.4 Cluster-Specific ATE Estimation

For the Cluster-Specific ATE Estimation, we first apply k-means clustering to group
individuals based on their covariates. The number of cluster k is set to 10 based on
exploratory analysis, and each cluster contains individuals with similar covariate
values. Within each cluster, the ATE is estimated using the traditional IPW formula
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but applied to the individuals within that cluster. The overall ATE is then calculated
as a weighted average of the cluster-specific ATEs, where the weights are based on the
average propensity score within each cluster:

OverallATE =
∑C

c=1(ATEc ∗ avg_propensityc ∗ nc)

∑C
c=1(avg_propensityc ∗ nc)

where:

• ATEc is the ATE for cluster c.

• avg_propensityc is the average of all propensity scores in cluster c.

• C is the total number of clusters.

This method accounts for treatment effect heterogeneity across clusters and
stabilizes the ATE estimation by reducing the impact of extreme weights. For the
synthetic dataset, where the true ATE is known, we calculate the ATE estimate
using the traditional IPW method and compare it with the ATE calculated using the
cluster-specific ATE method.

The results of this methodology provide insights into the robustness and sta-
bility of the clustering-based method compared to traditional IPW, particularly in
cases with positivity violations and extreme weights. By systematically varying
the true ATE and generating multiple synthetic datasets, we demonstrate that
the Cluster-Specific ATE Estimation consistently outperforms traditional IPW in
terms of lower variance, reduced bias, and fewer extreme weights, making it a
more reliablemethod for estimating treatment effects in complex observational studies.

3.5 Application on Real-life datasets:

In addition to testing the Cluster-Specific ATE Estimation technique on synthetic data,
the methodology extends to real-life datasets to assess its effectiveness in practical
scenarios where the true ATE is unknown. This section describes how the method is
applied to real-world data and what metrics are compared for the traditional Inverse
Propensity Weighting (IPW) technique and the cluster-specific IPW technique.

The following metrics are evaluated and compared for the traditional IPW technique
to the cluster-specific technique:

• Variance of the ATE Estimates: The variance of the ATE estimates is calculated
using bootstrapping to assess the stability of the estimates. A lower variance
indicates a more stable and reliable method. This is calculated in a similar way
to how the variance was calculated for the synthetic datasets

• 95 % confidence interval for the estimted ATE: While estimating the ATE using
both the traditional IPW method and the cluster-specific method, we also calcu-
late the 95 % C.I. around the estimated ATE by taking 1000 bootstrap samples
of data, calculating the estimated ATE in each sample, and then calculating the
2.5th and the 97.5th percentiles. Narrower confidence intervals suggest a higher
precision for the ATE estimates.
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• Effective Sample Size (ESS): The effective sample size reflects how much infor-
mation is retained after applying the inverse propensity weights. A smaller ESS
indicates that the estimator is relying on a small subset of the data, which could
lead to greater variability and less reliable estimates. The ESS is calculated as :

ESS =
(∑n

i=1 wi)
2

∑n
i=1 w2

i
(1)

A higher ESS indicates that the method makes better use of the available data.
The hybrid method should typically result in a higher ESS than traditional IPW.

• Number of ExtremeWeights: The number of extremeweights (defined asweights
greater than 10 times the mean weight) is counted to determine how prone
each method is to instability caused by extreme propensity scores. The Cluster-
Specific ATE method is expected to produce fewer extreme weights compared to
traditional IPW.

3.6 Expected Outcomes on Real-life datasets:

It is hypothesized that the Cluster-Specific ATE Estimation technique will outperform
traditional IPW in real-life datasets by providing

• More stable ATE estimates, with lower variance, narrower 95 % confidence
interval band, and a higher effective sample sizes.

• Fewer extreme weights, leading to more reliable estimates of treatment effects,
especially in datasets with positivity violations.

By applying this method to a diverse set of real-life datasets and comparing the re-
sults with traditional IPW, the paper demonstrates the generalizability and robustness
of the Cluster-Specific ATE Estimation approach in observational studies.

4 Results

4.1 Evaluation on Synthetic Datasets

For evaluation of this technique on a synthetic dataset, we create a list of true ATE
values ranging from 1 to 100. Traditional IPW estimates are computed as a benchmark
for comparison. For each ATE, value, we create a synthetic dataset with this ATE
value and compare the performance of traditional IPW technique to the cluster-specific
technique. For a given value of true ATE, The synthetic data for this technique is
created as follows:

We generate 15000 observations of 8 covariates X1, X2, X3, ..., X8, 3 out of which are
influential observations, X1, X2, X3, which affect both the treatment probability and the
outcome. The probability of receiving the treatment is modeled as a logistic function
of the covariates:

P(T = 1|X) =
1

1 + exp(−(2.5 ∗ X1 − 0.25 ∗ X2 + 0.5 ∗ X3 − 3))
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The treatment assignment variable, T is assigned as 1 or 0 where the probability of
treatment being 1 is the probability calculated in the above equation. The true effect is
The outcome Y is then simulated as a linear combination of the covariates, treatment
and the True ATE as :

Y = (TrueATE) ∗ T + 0.5 ∗ X1 ∗ X2 + 0.3 ∗ X3 + ϵ

where ϵ ∼ N (0, 1)

3. Propensity Score Estimation The propensity scores are estimated using a logistic
regression model:

P(T = 1|X) =
1

(1 + exp(−(β0 + β1 ∗ X1 + β2 ∗ X2 + .... + β8 ∗ X8))))

where β is a vector of of coefficients estimated by maximum likelihood. For each
scenario, the propensity scores are used to calculate inverse probability weights:

wi =
1

(P(T = 1|Xi) ∗ Ti + (1 − P(T = 1|Xi)) ∗ (1 − Ti))

These weights are then used in the calculation of the IPW ATE estimate.

Figure 1: Distribution of propensity scores for a synthetic dataset where actual ATE = 10. We can clearly
see that a large number of propensity scores are close to 0 or close to 1, leading to positivity
violation.

As an illustration for positivity violation for synthetic datasets, for one of the true
ATE values, ATE = 10, figure 1 shows that majority of the propensity scores are
concentrated around 0 or 1, clearly showing positivity violation for this dataset.

For each synthetic dataset created using a different true ATE value from 1 to 75, we
calculate the ATE estimate using the traditional IPW method and the cluster-specific
IPW method, and compare the results. As illustrated in figure 2, we clearly see that
the ATE estimate calculated using the cluster-specific method is much closer to the
actual ATE as compared to the traditional IPW method. For lower values of true
ATE, even though the ATE estimated using traditional method is somewhat closer to
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the true ATE as compared to the cluster-specific method(this can be due to effect of
noise outweighing the ATE effect for lower values of true ATE), for higher values, the
cluster-specific method clearly outperforms. Thus, we are clearly able to demonstrate
the superiority of the cluster-specific method over the traditional IPW method.

Figure 2: Comparison of True ATE to the estimated ATE using the traditional IPW technique and the
Cluster-Specific IPW technique. We can clearly see that the Cluster-Specific technique is much
closer than the traditional IPW technique in estimating the true ATE.

4.2 Evaluation on Real life Datasets

We use the Default of Credit Card Clients dataset from the UCI ML repository to test
the effectiveness of this technique on a real life dataset. This dataset is regarding the
case of customers’ default payments on credit card in Taiwan. We have data of 30,000
customers across 25 columns, with demographic information such as Gender, Age,
Education level, marital status, credit card balance limit, billed amount and amount
paid, and payment status for each of the last 6 months, and the outcome variable is
the binary flag of whether the customer defaulted on the payment for the next month.
Here, the treatment variable is defined as whether the customer’s total billed

amount for the last 6 months is more than 50% of the customer’s balance limit for
the credit card. The goal here for this dataset is to estimate the effect of high credit
limit utilization on the probability of defaulting on the next month. We apply the
Cluster-Specific ATE Estimation technique to estimate the effect of high utilization
on default rates and compare the results with the traditional Inverse Probability
Weighting (IPW) method.

4.2.1 Defining Treatment and Outcome Variables:

Treatment Variable: The treatment variable represents high credit utilization, which is
computed as the sum of the billing amounts for the first six months (BILL_AMT1 to
BILL_AMT6) divided by the credit limit (LIMIT_BAL). Customers with a utilization
rate exceeding 50% are categorized as receiving the treatment (T = 1), indicating high
utilization, while those below the threshold are assigned as control (T = 0).
Outcome Variable: The outcome of interest is whether the customer defaults on

their credit card payment in the next month (default.payment.next.month), with 1
indicating default and 0 indicating no default.
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4.2.2 Covariates and Propensity Score Estimation

We use a range of demographic and financial covariates to estimate the propensity
scores and cluster the individuals. The covariates include:
Demographics: Age, Sex, Education, and Marital Status. Credit and Payment His-

tory: Past payment behavior (PAY_0 to PAY_6), credit limit (LIMIT_BAL), and pre-
vious billing amounts (BILL_AMT1 to BILL_AMT6). A logistic regression model is
used to estimate the propensity score, which is the probability that a customer falls
into the treatment group (high credit utilization) based on their covariates.
We plot the distribution of propensity scores for the default of credit card clients

dataset and we can clearly see in figure 3 that majority of the propensity scores are
very close to 0 or very close to 1, thus indicating positivity violation, which makes
this dataset a suitable candiate for comparing the performance of cluster-specific IPW
technique to traditional IPW technique.

4.2.3 Clustering

To account for heterogeneity in treatment effects, we apply k-means clustering on
the covariates. The goal of clustering is to group individuals with similar credit and
demographic profiles into distinct clusters. Each cluster represents a subgroup of
customers who share similar risk factors and credit behavior patterns.

4.2.4 Cluster-Specific ATE Estimation

After clustering the customers, we compute the Average Treatment Effect (ATE) for
each cluster. The ATE is calculated by comparing the weighted outcomes between
the treated and untreated individuals within each cluster. The weights are derived
from the individual propensity scores, adjusting for confounding factors between the
treated and untreated groups.

Once the cluster-specific ATEs are computed, the overall ATE is obtained by taking
a weighted average of the cluster-specific ATEs, where the weights are the number of
individuals in each cluster.

4.2.5 Comparison with Traditional IPW

For comparison, we also estimate the ATE using the traditional IPW method, where
the propensity score is used to compute individual-level weights. The traditional IPW
method directly compares treated and untreated customers without accounting for
potential heterogeneity in treatment effects across different clusters.

4.2.6 Performance Metrics

We evaluate the performance of the Cluster-Specific ATE Estimation and Traditional
IPW methods using the following metrics:

• Estimated ATE: The estimated treatment effect of high credit utilization on
default rates.

• Variance of ATE: Variance is assessed through bootstrapping to evaluate the
stability of the ATE estimates.
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• 95 % confidence interval of the ATE estimates: The 95 % C.I. around the ATE
estimates using both methods is calculated by taking 1000 bootstrap samples
and calculating the 2.5 and the 97.5 percentiles of the ATE estimates.

• Effective Sample Size (ESS): The ESS is computed to measure the efficiency of
the weighting schemes in both methods.

• Number of Extreme Weights : We calculate the number of extreme weights
(weights greater than 10 times the mean) to assess the stability of the methods.

Figure 3: Distribution of propensity scores for a Credit card default dataset. We can clearly see that a
large number of propensity scores are close to 0 or close to 1, leading to positivity violation.

Using the IPW method to estimate the propensity scores, we can see in the graph
below that a majority of the propensity scores are near 0 or 1, leading to positivity
assumption violation and high variance violation, making this dataset a suitable
candidate for the cluster-specific IPW technique. We perform clustering and ATE
estimation in a similar method, and below are the results of the analysis:

Metric Traditional IPW
technique

Cluster-specific
IPW technique

Column 4

ATE(Actual ATE
unknown)

0.2099 -0.0319 Actual ATE un-
known

95 % C.I. for ATE [0.1303, 0.2663] [-0.0404, -0.0229] Lower is better
Effective Sample
Size

2321.98 18275.38 Higher is better

Variance of ATE 0.0014 2.001E-05 Lower is better
Number of ex-
treme weights

6969 0 Lower is better

Table 1: Comparison of metrics for Credit Card default dataset

For these metrics, as we do not know the actual ATE for this dataset, we cannot
comment on which estimated ATE is correct, however, for all the other metrics, we can
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clearly see that for each of the performance metric, the cluster-specific IPW technique
outperforms the traditional IPW technique. This clearly demonstrates the superiority
of the cluster-specific IPW technique over traditional IPW technique, while applied
on a real-life dataset. The code for the analysis on both the real-life dataset and the
synthetic dataset can be found here

5 Conclusion & Future Work

This paper introduces a novel Cluster-Specific Inverse Probability Weighting (IPW)
method to address the challenges associated with traditional IPW, particularly in
situations involving positivity violations, high variance, and treatment effect hetero-
geneity. By integrating individual-level propensity score weights with cluster-level
weights, the cluster-specific method stabilizes weight estimates while capturing the
nuanced heterogeneity of treatment effects across subgroups. The performance of
the method was demonstrated on a set of large, complex synthetic datasets where
the Cluster-Specific method significantly outperformed traditional IPW in terms of
more accurate ATE estimation and for the real-life dataset, the Cluster-Specific method
outperformed the traditional IPW method on various metrics.

Future Work:
While the results demonstrate the effectiveness of the Hybrid Cluster-Weighted IPW

method, several avenues remain for future research and optimization. This section
outlines potential directions for enhancing the method further and addressing some
of its current limitations.

• Optimal Number of Clusters: Currently, the number of clusters is selected arbi-
trarily (e.g., 10 or 12 clusters), but determining the optimal number of clusters is
crucial for maximizing the performance of the method. Clustering plays a key
role in reducing extreme weights and improving the balance between treated
and untreated groups. Future work could focus on developing data-driven meth-
ods to determine the optimal number of clusters based on: Cross-validation
techniques that minimize the variance of the ATE across different cluster counts.
Cluster quality measures, such as the silhouette score, gap statistic, or inertia,
that assess the separation and compactness of clusters based on covariate distri-
butions. BIC/AIC-based selection to penalize overfitting, especially when using
more flexible clustering methods like Gaussian mixture models. Additionally,
adaptive clustering methods could be explored, where clusters are formed dy-
namically based on the underlying propensity score distribution or treatment
effect heterogeneity across the dataset.

• Incorporating More Complex Data Structures: Future research could expand the
Hybrid Cluster-Weighted IPW method to handle more complex data structures,
such as:
Longitudinal data: Where treatment assignment and outcomes evolve over time,
requiring dynamic adjustments of weights across time points. Multilevel/hier-
archical data: Where individuals are nested within groups (e.g., students in
schools, patients in hospitals). Adapting the hybrid weighting approach to
multilevel settings would enable more accurate causal inference in clustered or
hierarchical datasets. High-dimensional data: With a large number of covariates,
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regularization methods or dimensionality reduction techniques (e.g., principal
component analysis) could be integrated into the hybrid method to prevent
overfitting while maintaining covariate balance.
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