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ABSTRACT 
 
In ensemble machine learning, we combine the decisions of weak learners to derive a decision that is, 

hopefully, better than the individual ones. The combination of these learners can be aggregated by a 

majority vote or simple averaging, or it can be more complicated and involve multiple steps such as in 

boosting. In this paper, we consider the question of predicting the accuracy of an ensemble created with 

bagging for a given number of weak learners. We achieve a low relative error on our predictions and can 

make this prediction in a shorter time, as compared to training the ensemble over various sizes. 
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1. INTRODUCTION 
 

The combination of multiple models in an ensemble often results in better predictive performance 

than relying on individual models (for a survey, see [1]). Ensembles use models with high 

variance and low bias, and use using this diversity to reduce the effective variance and minimize 

bias, and reduce overfitting. 

 

Despite their established advantages, using an ensemble has a higher cost due to the increased 

number of learners being used. Furthermore, it is difficult to predict the accuracy of an ensemble 

for a given size, which leads to trial and error over increasing sizes till the desired accuracy is 

attained. Thus, it is essential to comprehend and measure when an ensemble is “large enough” to 

create effective and scalable predictive algorithms. 

 

In 2019, Lopes [2] used a bootstrap-based method to estimate the variance of randomized 

ensembles, such as bagging and random forests. The key contribution is a mechanism to 

approximate the error distribution of finite ensembles and evaluate how closely it matches the 

accuracy of an infinite ensemble. Using efficient extrapolation techniques, they provide a 

practical guide to determine when ensemble fluctuations have become negligible, thus ensuring 

algorithmic convergence. 

 

Slivinski and Snyder [3] focus on estimating the size of the ensemble within particle filters, a 

method widely used for data assimilation in high-dimensional dynamical systems. Their work 

addresses the “curse of dimensionality,” in which ensemble size requirements grow exponentially 

with system dimension, making particle filters computationally prohibitive in many applications. 

They derive asymptotic relations that link ensemble size to system properties, such as effective 

dimensionality and observational error covariance. By using simpler data assimilation techniques 

to estimate key parameters, they provide a practical framework to predict when a particle filter 

ensemble will achieve satisfactory performance without exhaustive experimentation. 

https://airccse.org/journal/mlaij/vol12.html
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In 2024, Christiansen [4] proposed simple formulas to predict the ensemble mean squared error, 

based on small initial sub-samples. This work derives analytical relations to estimate the trade-

offs between the size of the ensemble and its accuracy in climate modeling. The approach 

emphasizes practicality, enabling users to assess the expected benefits of increasing ensemble 

size without the need to generate prohibitively large ensembles. Such tools are particularly 

valuable in computationally intensive fields where the cost of training and running large 

ensembles is high. 

 

Although these studies advance our understanding of ensemble behavior in specific use cases, 

this paper proposes a simpler approach to predicting the ensemble accuracy and thereby, the 

optimal ensemble size, where the ensemble uses simple majority voting. Unlike prior models, our 

framework focuses on probabilistic estimation of weak learners and of the ensemble. This gives 

an interpretation of the ensemble as a probability distribution, allowing us to better understand its 

behavior.  

 

We start by modelling the ensemble as an aggregation of weak learners making decisions using 

majority voting, where each weak learner is makes an independent decision with a given 

probability of correctness and analyze its behavior by modeling its accuracy as a probability 

distribution. Next, we relax the assumption of equal probabilities to generalize our analysis and 

better approximate real-world scenarios. Finally, we evaluatethe effectiveness of our predictions 

against actual ensemble performance using classifiers trained on a sample dataset. 

 

2. ENSEMBLE WITH MAJORITY VOTING 
 

Our general setting is as follows: We assume that we have weak learners, each learner making the 

right decision with some probability, and we make our final classification based on the majority 

decision of these weak classifiers. 

 

Formally, we describe the model as follows. We have 𝑁 = 2𝑛 + 1 weak learners. For majority 

voting, we need an odd number of such simple classifiers to ensure that there are no ties in the 

vote. For each weak learner 𝑖, let 𝑝𝑖 < 1 denote the probability that this classifier makes the 

correct decision. We can then model this using a simple Bernoulli distribution [5]. 

Let the random variable 𝑋𝑖 denote the decision of the 𝑖𝑡ℎweak learner as follows: 

 

Xi = {
1, 𝑖𝑓 𝑙𝑒𝑎𝑟𝑛𝑒𝑟 𝑖 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The probability distribution 𝑃(⋅) for each weak learner is given by a simple rule: 

 

Xi = {
𝑝𝑖 , 𝑖𝑓 𝑥 =  1

𝑞𝑖  =  1 − 𝑝𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
… (1) 

 

Define the random variable 𝑋 = 𝑋1 + 𝑋2 +⋯+𝑋𝑁. This random variable takes integer values 

from 0 to 𝑁. In particular, 𝑋 >  𝑛 ≡  𝑋 ≥  𝑛 +  1 denotes the event when the ensemble makes 

the right decision. 

 

We would like to investigate when an ensemble gives us a higher probability of success than any 

of the individual learners (even the best one with the highest 𝑝𝑖). In other words, we would like to 

investigate when 

𝑃(𝑋 ≥ 𝑛 + 1) > max
𝑖
(𝑝𝑖) 
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To that end, we proceed as follows:We investigate the how the accuracy of the ensemble varies 

with the individual probabilities of the learners. We start with a model where all weak learners are 

independent and make decisions with the same probability. We will then extend this to a more 

general case where these probabilities are not equal. 

 

3. INDEPENDENT WEAK LEARNERS WITH SAME ACCURACY 
 

In this case, the ensemble represented by the random variable 𝑋follows a binomial distribution 

[5]. We have 𝑁 = 2𝑛 + 1 independent learners. The probability that exactly 𝑘learners make the 

correct decision is a binomial distribution with 

 

𝑃(𝑋 = 𝑘) = (
𝑁

𝑘
) 𝑝𝑘𝑞𝑁−𝑘 

where 𝑝is the probability that each weak learner makes the correct decision, 𝑃(𝑋𝑖 = 0) = 𝑝for all 

𝑖. 
 

We will find it convenient to introduce the following notation 

 

𝐹∗(𝑘, 𝑁, 𝑝) = 𝑃(𝑋 > 𝑘) = ∑ (
𝑁

𝑖
)

𝑁

𝑖=𝑘+1

𝑝𝑖(1 − 𝑝)𝑁−𝑖 

 

With this definition, the probability of a correct decision is 𝐹∗(𝑛, 2𝑛 + 1, 𝑝). In other words, it is 

the probability that more than 𝑛learners made the correct decision. 

 

Example 1. We consider an ensemble𝑁 = 3 learners. The individual probabilities and hence, the 

probabilities of the ensemble havingat least 𝑘 +  1 learners make the correct decision can be 

written explicitly and are summarized in the table below: 

 
Table 1: Individual probabilities for the number of correct decisions in an ensemble with 3 learners 

 
k 𝑃(𝑋 = 𝑘) 𝐹∗(𝑘, 3, 𝑝) 
0 𝑞3 1 − 𝑞3 

1 3𝑝𝑞2 1 − (q3 + 3𝑝q2) 
2 3𝑝2𝑞 1 − (q3 + 3𝑝𝑞2 + 3𝑝2𝑞) 
3 𝑞3 0 

 

For example, the probability that exactly one learner makes the correct decision is 

 

𝑃(𝑋 = 1) = 3𝑝(1 − 𝑝)2 
 

With majority voting, the probability of correct prediction is the probability that no more than one 

learner makes a wrong decision. Therefore, the probability of the right decision by the ensemble 

is: 

 

𝐹∗(1,3, 𝑝) = 𝑃(𝑋 = 2) + 𝑃(𝑋 = 3) = 3𝑝2(1 − 𝑝) + 𝑝3 
 

It is obvious to think that adding more learners would make the ensemble better, but this may not 

necessarily be the case. Thus, the following question arises: How does the accuracy of the 

ensemble vary with that of the individual weak learners? Specifically, are there values of 𝑝 for 

which it is better to not use ensemble voting? 
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First, we investigate graphically using Figure 1.We see that if the probability of success 𝑝 < 0.5, 

then using an ensemble gives you a worse result than using an individual learner. 

 

We can also show it algebraically. If we were to use a learner, then the probability of the right 

decision by such a learner is 𝑝. Using ensemble voting, the probability of acorrect decision from 

the ensemble is 𝐹∗(1,3, 𝑝). Therefore, we are looking for p for which, 

 

𝑝3 + 3𝑝2(1 − 𝑝) > 𝑝 
 

Or, equivalently, 

 

𝑝2 + 3𝑝(1 − 𝑝) > 1 
 

After some elementary algebra, we obtain 𝑝 >  0.5. This result means that for the case of 3 

learners, if the probability of success is less than 0.5 then using ensemble voting would result in a 

higher error rate. This result generalizes to the general case of any N. 

 

 
 

Fig.1: Variation in the accuracy of a 3-learner ensemble and a 1-learner ensemble with change to the 

individual weak learner accuracy 

 

Example 2. Let us see how accuracy increases with the number of learners. In Figure 2, we plot 

the accuracy of the ensembles of sizes 𝑁 = 3, 5, and 7 against the probability of success of each 

individual learner. 
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Fig.2: Variation in the accuracies of ensembles with 1, 3, 5 and 7 learners with change to the individual 

weak learner accuracy 

 

Similarly to the previous case, voting by ensemble gives a higher error than using an individual 

learner as long as the probability of success p >0.5. In this range, we can see that for any value of 

the probability of success, the accuracy of the ensemble increases as we increase the number of 

learners. Furthermore, for the same number of learners, an ensemble where each learner has a 

higher probability of success, has a higher probability of success. In fact, when each individual 

learner is almost always correct, the ensemble’s accuracy approaches 1. 

 

Our observations from the examples have been formally stated in [6], as Condorcet’s Jury 

Theorem, which states (translated to English): 

 

 If 𝑝is greater than 1/2 (each voter is more likely to vote correctly), then adding more 

voters increases the probability that the majority decision is correct. In the limit, the 

probability that the majority votes correctly tend to1 as the number of voters increases. 

 On the other hand, if 𝑝is less than 1/2 (each voter is more likely to vote incorrectly), then 

adding more voters makes things worse: the optimal jury consists of a single voter. 

 

3.1. Computing Ensemble Accuracy 
 

Now that we have some understanding of the behavior of the ensemble’s accuracy, we need to 

formally derive it. 

For the ensemble with 𝑁 =  2𝑛 +  1 independent weak learners (each with a probability of a 

correct decision 𝑝), the probability of a correct decision is 𝑃(𝑋 > 𝑛). 
Using the Binomial Distribution, we get 

 

𝐹(𝑁) = 𝑃 (𝑋 > ⌊
𝑁

2
⌋) = 1 − 𝑃(𝑋 ≤ 𝑛) = 1 −∑(

𝑁

𝑖
)

𝑛

𝑖=0

𝑝𝑖(1 − 𝑝)𝑁−𝑖…(2) 

 

Computing the accuracy of an ensemble directly takes time proportional to 𝑂(𝑁2), because of the 

factorial. So, we try to find an approximation that takes asymptotically less time to compute. 

To that end, we consider two standard approximations to the binomial distribution: 
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1. Approximation by a Poisson Distribution, when 𝑁 ⋅ min(𝑝, 1 − 𝑝) is small, usually less 

than 15 

2. Approximation by a Normal Distribution, when 𝑁 ⋅ min(𝑝, 1 − 𝑝)  is large, usually 

greater than 15 

 

Approximation by Poisson Distribution 

 

The binomial distribution can be approximated by a Poisson distribution with 𝜆 =  𝑁𝑝. 

lim
𝑁→∞

𝑃 (𝑋 = 𝑘) = lim
𝑁→∞

(
𝑁

𝑖
) 𝑝𝑖(1 − 𝑝)𝑁−𝑖 =

λ
𝑘

𝑘!
𝑒−λ 

 

This can be used when 𝑁 ⋅ min(𝑝, 1 − 𝑝) ≤ 15. For larger values, we need to use the Normal 

Approximation (See Section 3.1). 

 

Theorem 1. The cumulative distribution function of the Poisson distribution (See [7]) is 

 

𝐹λ(𝑘) =
Γ(⌊𝑘 + 1⌋, λ)

⌊𝑘⌋!
=

Γ(𝑘 + 1,𝑁𝑝)

𝑘!
 

 

where 𝛤(𝑠, 𝑥) is the upper incomplete gamma function 

 

Γ(𝑠, 𝑥) = ∫ 𝑡𝑠−1
∞

𝑥

𝑒−𝑡  𝑑𝑡 

 

From Theorem 1 and Equation 2, we have that the probability of an incorrect decision in an 

ensemble with 𝑁 = (2𝑛 + 1) weak learners are 

 

F(N) ≈ 1 − Fλ (⌊
𝑁

2
⌋) = 1 − 𝐹𝜆(𝑛) = 1 −

Γ(n + 1, (2n + 1)p)

n!
 

 

For large 𝑁, we have 

 

𝐹(𝑁) ≈ 1 −
Γ(𝑛 + 1,2𝑝(𝑛 + 1) − 𝑝)

𝑛!
≈ 1 −

Γ(𝑛 + 1,2𝑝(𝑛 + 1))

𝑛!
= 𝑓(𝑁)       … (3) 

 

While this approximation is asymptotically better than 𝑁2, we can do better by expressing the 

upper incomplete gamma function as a probability distribution. 

 

Theorem 2. We can estimate 𝑓(𝑁) and thus 𝐹(𝑁) as the following 

 

𝐹(𝑁) ≈ 𝑓(𝑁) ≈ 𝑓1(𝑁) = Φ((2𝑝 − 1)√
𝑁 + 1

2
) 

 

where 𝛷 is the cumulative distribution function of the standard normal.  

 

Proof. We have that 

 

𝑓(𝑁) = 1 −
Γ(𝑛 + 1,2𝑝(𝑛 + 1))

𝑛!
=

Γ(𝑛 + 1) − Γ(𝑛 + 1,2𝑝(𝑛 + 1))

Γ(𝑛 + 1)
=

γ(𝑛 + 1,2𝑝(𝑛 + 1))

Γ(𝑛 + 1)
 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.1, March 2025 

95 

where 𝛾(𝑠, 𝑥) is the lower incomplete gamma function 

 

γ(𝑠, 𝑥) = ∫ 𝑡𝑠−1
𝑥

0

𝑒−𝑡  𝑑𝑡 

 

Notice that this is a special case of the regularized gamma function, which is the cumulative 

distribution function of a gamma random variable [8] with unit scale and shape parameter 𝑛 + 1. 

Thus, 

 

𝑓(𝑁) = 𝐹𝛾(2𝑝(𝑛 + 1); 𝑛 + 1,1)        … (4) 
 

where 𝐹𝛾(𝑥; 𝑘, 𝜃) is the CDF of a gamma random variable with shape parameter 𝑘and scale 

parameter 𝜃. 

 

The mean and variance of gamma distribution are given by 

 

μ = 𝑘θ  σ2 = 𝑘θ
2
 

 

In our case, we have that 𝑘 = 𝑛 + 1 and 𝜃 = 1. We get 

 

μ = 𝑛 + 1  σ2 = 𝑛 + 1 
 

Let 𝑌 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑛 + 1,1). This gives us the following value for 𝑓1(𝑁) 
 

𝑓(𝑁) =
γ(𝑛 + 1,2𝑝(𝑛 + 1))

Γ(𝑛 + 1)
= 𝑃(𝑌 ≤ 2𝑝(𝑛 + 1)) 

 

As the value of 𝑛increases (or equivalently, the value of 𝑁increases), a gamma distribution can be 

approximated by a normal distribution with the same mean and variance, using the Central Limit 

Theorem, i.e., 

lim
𝑛→∞

𝐺𝑎𝑚𝑚𝑎(𝑘, 𝜃) ↦ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑘θ, 𝑘θ
2) 

lim
𝑛→∞

𝐺𝑎𝑚𝑚𝑎 (𝑛 + 1,1) ↦ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑛 + 1, 𝑛 + 1) 

 

where 𝑁𝑜𝑟𝑚𝑎𝑙(µ, 𝜎2) is a normal distribution with mean µ and variance σ2. 

 

Using this approximation, 𝑌 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑛 + 1, 𝑛 + 1). Thus, 

 

𝑓(𝑁) ≈ 𝑃(𝑌 ≤ 2𝑝(𝑛 + 1)) = Φ(
2𝑝(𝑛 + 1) − μ

σ
) = Φ ((2𝑝 − 1)√(𝑛 + 1)) 

 

where 𝛷is the cumulative distribution function of the standard normal. Finally, we know that 

𝑁 =  2𝑛 +  1, this gives us that 

 

𝑓(𝑁) ≈ Φ((2𝑝 − 1)√
𝑁 + 1

2
) 

This concludes the proof. 
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This approximation gives us an estimated accuracy in constant time as we only need to look-up 

the value of the standard normal distribution. 

 

Approximation by Normal Distribution  

 

This approximation can be used when 𝑁 ⋅ min(𝑝, 1 − 𝑝) > 15. For smaller values, we need to 

use the Poisson Approximation (SeeSection 3.1) 

 

Theorem 3. We can estimate 𝐹(𝑁) as 

 

𝐹(𝑁) ≈ Φ(
𝑁(2𝑝 − 1) + 1

2√𝑁𝑝(1 − 𝑝)
)… (5) 

 

where 𝛷 is the cumulative distribution function of the standard normal. 

 

Proof. Because 𝑋𝑖are independent, the binomial distribution can be approximated by a normal 

distribution with the same mean (µ) and variance (𝜎2), using the Central Limit Theorem. 

 

μ = E[𝑋] =∑𝐸[𝑋𝑖]

𝑁

𝑖=1

= 𝑁𝑝 

 

σ2 = 𝑉𝑎𝑟[𝑋] =∑𝑉𝑎𝑟[𝑋𝑖]

𝑁

𝑖=1

= 𝑁𝑝(1 − 𝑝) 

 

Thus, from Equation 2 can be approximated as 

𝐹(𝑁) = 1 − 𝑃(𝑋 ≤ 𝑛) ≈ 1 − 𝐹𝑁(𝑛;μ, σ
2) = 1 −Φ (

𝑛 − μ

σ
) = 1 − Φ(

𝑁(1 − 2𝑝) − 1

2√𝑁𝑝(1 − 𝑝)
) 

 

where 𝐹𝑁(𝑥;µ, 𝜎
2)  is the cumulative distribution function of a normally distributed random 

variable with mean µand variance 𝜎2. 

 

For the standard normal, we know that 𝐹𝑁(𝑥;µ, 𝜎
2) = 1 − 𝐹𝑁(−𝑥;µ, 𝜎

2). From this, we can 

rewrite the previous result as 

 

𝐹(𝑁) ≈ 1 − Φ(
𝑁(1 − 2𝑝) − 1

2√𝑁𝑝(1 − 𝑝)
) = Φ(

𝑁(2𝑝 − 1) + 1

2√𝑁𝑝(1 − 𝑝)
) 

 

This concludes the proof. 

 

Evaluation of the Approximations 

 

Example 3. We now proceed to evaluate the performance of the Poisson and Normal 

approximation. 

 

During the evaluation, we noticed that these approximations have errors that move in opposite 

directions. Thus, we also evaluate the performance of the average of these approximations with 

the hypothesis that the errors induced by either approximation will be balanced by the other, 

giving us a consistent result. 
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The performance of these three approximations can be observed in Figure 3 and the actual values 

can be seen in the Appendix. 

 

We see that our approximations are close to the actual predicted values from the binomial 

distribution.Over the entire dataset, we get that the Average approximation gives us the best 

results, as seen in Table 2. 

 

 
 

Fig.3: Comparison of Actual Ensemble Accuracy (Binomial) versus the Predicted Ensemble Accuracy 

(Poison, Normal and Average )for various ensemble sizes, for  individual weak learner accuracy varying 

from 0.5 to 1. 

 
Table 2: Mean and Standard Deviation of relative errors and relative absolute errors using the Poisson, 

Normal and Average approximations. 

 
 Poisson Normal Average 

 RE (%) RAE (%) RE (%) RAE (%) RE (%) RAE (%) 

Mean -5.01 5.01 4.06 4.06 -0.47 2.22 

SD 3.37 3.37 5.04 5.04 2.85 1.83 

 

As predicted, the error of each approximation outside of its domainsisnegated by the other 

approximation, giving us a better result. Thus, while the Poisson and Normal Approximations are 

individually better in their specific regions, if we were to use one approximation over the entire 

space, we would use the average of the two. 

 

Therefore, we can approximate the accuracy of an ensemble with 𝑁 =  2𝑛 +  1 independent 

weak learners (each with a probability of a correct decision 𝑝), as follows: 

𝐹(𝑁) ≈ 𝑓1(𝑁) =
1

2

(

 
 

Φ((2μ
𝑝
− 1)√

𝑁 + 1

2
) +Φ

(

 
𝑁(2μ

𝑝
− 1) + 1

2√𝑁μ
𝑝
(1 − μ

𝑝
)
)

 

)
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4. INDEPENDENT WEAK LEARNERS WITH DIFFERENT ACCURACY 
 

After investigating the simple ensemble with identical weak learners, we extend our analysis to 

account for weak learners with varying accuracy levels. We derive expressions for estimating 

ensemble accuracy in this more general setting and discuss when traditional Normal or Poisson 

approximations remain valid. 

 

We now revisit the model as defined in Section 2. The sum of Bernoulli random variables 𝑋 =
𝑋1 + 𝑋2 +⋯𝑋𝑁with different probabilities is not a simple distribution unless all 𝑝𝑖are equal. If 

𝑝𝑖vary, the resulting distribution is called Poisson’s Binomial Distribution[9]. 

The probability mass function (PMF) for Poisson’s Binomial Distribution is: 

 

𝑃(𝑋 = 𝑘) = ∑ (∏𝑝𝑖
𝑖∈𝐴

∏(1− 𝑝𝑗)

𝑗∉𝐴

)

𝐴⊆{1,2,…,𝑛},|𝐴|=𝑘

        … (6) 

 

Since 𝑋is the sum of 𝑁independent Bernoulli distributed variables, its mean and variance will 

simply be sums of the mean and variance of the Bernoulli distributions: 

μ
𝑋
=∑𝑝𝑖

𝑁

𝑖=1

σ𝑋
2 =∑(1 − 𝑝𝑖)𝑝𝑖

𝑁

𝑖=1

 

 

In practice, we often do not know the accuracy of each 𝑋𝑖a priori, as in the case of the Random 

Forrest Ensemble, as these classifiers are generated randomly. Thus, we assume that 𝑝𝑖 are 

generated by a distribution with mean µ
𝑝

and variance 𝜎𝑝
2. 

 

𝐸[μ𝑋] =∑𝐸

𝑁

𝑖=1

[𝑝𝑖] =∑𝐸 [μ𝑝]

𝑁

𝑖=1

= μ
𝑝
𝑁        … (7) 

  

𝐸[𝜎𝑋
2] =∑𝐸[(1 − 𝑝𝑖)𝑝𝑖]

𝑁

𝑖=1

=∑𝐸[𝑝𝑖]

𝑁

𝑖=1

− 𝐸[𝑝𝑖
2] = (𝜇𝑝 − 𝜎𝑝

2 − 𝜇𝑝
2)𝑁   … (8) 

 

4.1. Computing Ensemble Accuracy 
 

From Equation 6, we get that the CDF for the Poisson’s Binomial Distribution is 

 

𝑃(𝑋 ≤ 𝑥) = ∑ ∑ (∏𝑝𝑖∏(1 − 𝑝𝑗)

𝑗∉𝐴𝑖∈𝐴

)

𝐴⊆{1,2,…,𝑛},|𝐴|=𝑘

𝑥

𝑘=0

 

 

Thus, we get that the probability that the model makes the correct decision is 

 

𝐹(𝑁) = 𝑃 (𝑋 >
𝑁

2
) = ∑ ∑ (∏𝑝𝑖∏(1− 𝑝𝑗)

𝑗∉𝐴𝑖∈𝐴

)

𝐴⊆{1,2,…,𝑛},|𝐴|=𝑘

𝑁

𝑘=𝑛+1

…(9) 

 

This probability distribution is even more complex to calculate than that of the Binomial 

Distribution. However, under the assumption of independence of the weak learner, we get some 
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useful properties for this distribution that help us approximate this computationally-taxing 

distribution. 

 

To estimate 𝐹(𝑁), we consider three approximations: 

 

1. Approximation by a Binomial Distribution, when the classifiers have almost equal 

probabilities of success, i.e. 𝜎𝑋
2 ≈ 0. 

2. Approximation by a Poisson Distribution, when the probability of each classifier is close 

to 0, i.e. µ
𝑝
≈ 0, 𝜎𝑋 ≈ 0. 

3. Approximation by a Normal Distribution, in all other cases. 

 

Approximation by Binomial Distribution  

 

The first case we investigate is when does Poisson’s Binomial Distribution behave like the 

classical Binomial Distribution that we discussed in Section 3. 

 

A Poisson binomial distribution 𝑃𝐵can be approximated by a binomial distribution 𝐵where µ
𝑝
is 

the probability of success for each trial of𝐵. 

Ehm [10] determined bounds for the error introduced when approximating 𝑃𝐵with 𝐵. Let µ =
µ
𝑝

and 𝜈 =  1 − µand 𝑑(𝑃𝐵, 𝐵) be the total variation distance of 𝑃𝐵with 𝐵. 

Then 

 

𝐶 ⋅ min (1,
1

𝑁𝜇𝜈
)∑(𝑝𝑖 − 𝜇)

2

𝑁

𝑖=1

≤ 𝑑(𝑃𝐵, 𝐵) ≤
1 − 𝜇𝑁+1 − 𝜈𝑁+1

(𝑁 + 1)𝜇𝜈
∑(𝑝𝑖 − 𝜇)

2

𝑁

𝑖=1

 

 

where𝐶 ≥ 1 / 124. 

 

The closer 𝑝𝑖are to µ
𝑝

, i.e. 𝜎𝑝
2 → 0, the more 𝑑(𝑃𝐵, 𝐵) tends to 0. We can also show this using 

Equations 7 and 8. 

lim
𝜎𝑝
2→0

𝐸[𝜇𝑋] = lim
𝜎𝑝
2→0

μ
𝑝
𝑁  = μ

𝑝
𝑁 

lim
𝜎𝑝
2→0

𝐸[𝜎𝑋
2] = lim

𝜎𝑝
2→0
(𝜇𝑝 − 𝜎𝑝

2 − 𝜇𝑝
2)𝑁 = 𝑁μ

𝑝
(1 − μ

𝑝
) 

 

which is the mean and variance of a Binomial Distribution with N trials and probability of 

success µp. 

 

Now that we have a Binomial Distribution, we can approximate it as in Section 3. 

 

𝐹(𝑁) ≈ 𝑓1(𝑁) =
1

2

(

 
 

Φ((2μ
𝑝
− 1)√

𝑁 + 1

2
) +Φ

(

 
𝑁(2μ

𝑝
− 1) + 1

2√𝑁μ
𝑝
(1 − μ

𝑝
)
)

 

)

 
 

 

 

Approximation by Poisson Distribution 

 

A Poisson binomial distribution 𝑃𝐵can also be approximated by a Poisson distribution 𝑃𝑜with 

mean 𝜆 = µ
𝑋

. 
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Barbour and Hall [11] have shown that 

 

1

32
min(

1

λ
, 1)∑𝑝𝑖

2 ≤ 𝑑(𝑃𝐵, 𝑃𝑜) ≤
1 − 𝑒−λ

λ
∑𝑝𝑖

2

𝑁

𝑖=1

𝑁

𝑖=1

 

 

where 𝑑(𝑃𝐵, 𝐵) is the total variation distance of 𝑃𝐵and 𝑃𝑜. Clearly, the smaller the 𝑝𝑖are, i.e. 

µ
𝑝
, 𝜎𝑝
2 → 0, the better 𝑃𝑜approximates 𝑃𝐵. We can also show this using Equations 7 and 8. 

 

lim
μ𝑝,𝜎𝑝

2→0
𝐸[𝜇𝑋] = lim

𝜎𝑝
2→0

𝜇𝑝𝑁  = 𝜇𝑝𝑁 

lim
μ𝑝,𝜎𝑝

2→0
𝐸[𝜎𝑋

2] = lim
𝜎𝑝
2→0
(𝜇𝑝 − 𝜎𝑝

2 − 𝜇𝑝
2)𝑁 = 𝜇𝑝𝑁 

 

which is the mean and variance of a Poisson Distribution with 𝜆 = µ
𝑋
= µ

𝑝
𝑁. 

 

Thus, we can approximate 𝐹(𝑁)  (as defined in Equation 9) using the CDF of the Poisson 

Distribution as 

 

𝐹(𝑁) = 𝑃 (𝑋 > ⌊
𝑁

2
⌋) ≈ 1 −

Γ(𝑛 + 1, λ)

𝑛!
 

 

From Theorem 2, we get the following. 

 

𝐹(𝑁) ≈ 𝑓2(𝑁) = Φ((2μ
𝑝
− 1)√

𝑁 + 1

2
) 

 

Approximation by Normal Distribution 

 

For large values of 𝑁, the Central Limit Theorem allows us to approximate Poisson’s Binomial 

Distribution by a normal distribution with mean µ
𝑋

and variance 𝜎𝑋
2. Thus, we get 

 

𝐹(𝑁) ≈ 𝑓3(𝑁) = 𝐸 [1 −  Φ(

𝑁 − 1

2
− 𝜇𝑋

√𝜎𝑋
2

)] =  Φ(
2𝐸[𝜇𝑋]  −  𝑁 + 1

2√𝐸[𝜎𝑋
2]

) 

 

This, with Equations 7 and 8, yields 

𝐹(𝑁) ≈ 𝑓3(𝑁) ≈ Φ

(

 
𝑁(2𝜇𝑝 − 1) + 1

2 √𝑁(𝜇𝑝 − 𝜎𝑝
2 − 𝜇𝑝

2)
)

  

 

These approximations allow us to efficiently estimate the ensemble accuracy without exhaustive 

simulations. In fact, all these approximations use the standard normal distribution and hence, all 

the approximations take constant time to compute. 

 

 

 

 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.1, March 2025 

101 

5. A GENERAL RECIPE 
 

Based on our findings, this section outlines a structured approach to estimating ensemble 

accuracy efficiently. This step-by-step methodology starts from dataset preparation and weak 

learner evaluation and ends with selecting an appropriate approximation technique based on the 

variance of weak learner accuracies. 

 

1. Dataset Preparation 

 

a. Select an appropriate dataset for the study. 

b. If the dataset has multiple classes but the analysis focuses on binary 

classification, exclude one or more labels to simplify the data into two classes. 

c. Split the dataset into training and validation sets to ensure balanced evaluation 

and avoid overfitting. 

 

2. Setup Initial Classifiers 

 

a. Define the weak learners to be used in the ensemble (e.g., decision trees, 

Random Forest with shallow depth, etc.). 

b. Assume the probabilities of success for each classifier are drawn from a common 

normal distribution. 

c. Create a fixed number of weak learners (e.g., 100 classifiers) with similar 

configurations (e.g. random Forrest with trees of a fixed depth). 

d. Record the accuracy of each classifier on the validationset. 

e. Using the accuracies of the classifiers as their respective probabilities of success, 

estimate the mean (µ
𝑝

) and variance (𝜎𝑝
2) of the success probabilities from the 

recorded accuracies. 

 

3. Theoretical Approximation 

 

Depending on the mean and variance of the success probabilities, choose an 

approximation to be used: 

 

a. Low Variance(𝜎𝑝
2 ≈ 0): Use the Binomial approximation. 

b. Small Success Probabilities(µ
𝑝
, 𝜎𝑝
2 ≈ 0): Use the Poisson approximation. 

c. General Case(Large 𝑁): Use the Normal approximation. 

 

6. A CASE STUDY: THE IRIS DATA SET 
 

Following the steps outlined in the previous section, we construct ensembles of varying sizes 

using Random Forest classifiers with limited tree depth and compare the predicted accuracy 

against actual ensemble performance.  

 

The Python code for this project can be found in the following GitHub repository: 

github.com/SidShah2953/Estimating-Number-of-Weak-Learners. 

 

The Iris data set [12] is a well-known data set in machine learning, commonly used for multi-

class classification tasks.In this study, we focus on a binary classification problem by excluding 

one of the three labels. This simplified the data set to facilitate analysis with binary classification 

techniques. The data set was then divided equally into training and testing sets to ensure a 

balanced evaluation. 

https://github.com/SidShah2953/Estimating-Number-of-Weak-Learners
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We begin the analysis with Random Forest classifiers restricted to a maximum depth of 1. 

 

1. Before equation 7, we assume that the underlying classifiers have their probabilitiesof 

success randomly generated by a common normal distribution. The goal was to estimate 

the distribution of accuracies generated by these classifiers. To achieve this,  

 

a. A hundred Random Forest classifiers were created, each of size 1. 

b. The accuracy of each classifier was recorded to estimate. The mean and variance 

of the sample were used to approximate µp and σp
2. 

μ
𝑝
≈ 0.90  σ𝑝 ≈ 4.44 × 10

−16 

2. The results showed a high mean accuracy and an almost negligible variance. Basedon 

this, we should use the binomial approximation (see Section 4.1) to predict the 

performance of ensembles of varying sizes. 

 

For the sake of demonstration, we use all three approximations. 

 

3. Ensembles of sizes ranging from 11to 51 were analyzed using two binomial 

approximations. The following metrics were recorded for each ensemble size, in Table 3: 

 

 Actual accuracy was measured by creating a random forest of that size. 

 Predicted accuracies for all three approximations. 

 Relative errors between predicted and actual accuracies for all approximations. 

 

This brings us to an important assumption that we have made, which might not always be true: 

We assume that increasing the number of learners always increases the accuracy of the ensemble, 

which is not always the case. 

 
Table 3: Performance of approximations on the Iris Dataset, predicting the accuracy of Random Forests 

with maximum depth 1. 

 
N Actual Binomial Poisson Normal 

  Est. % RE Est. % RE Est. % RE 

11 0.880 0.987 12.215 0.975 10.793 1.000 13.636 

21 0.940 0.998 6.171 0.996 5.959 1.000 6.383 

31 0.940 1.000 6.346 0.999 6.310 1.000 6.383 

41 0.940 1.000 6.376 1.000 6.370 1.000 6.383 

51 0.940 1.000 6.382 1.000 6.381 1.000 6.383 

Mean   7.498  7.162  7.834 

 

7. CONCLUSION 
 

In this paper, we present a simple, probabilistic framework for estimating the accuracy of a 

bagged ensemble that does not necessitate costly calculations. We investigated three key 

approximations using majority voting: the Binomial approximation, the Poisson approximation, 

and the Normal approximation.  

 

The advantage of these methods stems from the constant-time lookup of standard normal 

distribution values. Despite the need to train the weak learners individually to estimate 

probabilistic parameters, our system is more efficient because the learners are assumed to be 

independent, allowing us to parallelize this training. 
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Furthermore, empirical validation with the Iris dataset revealed that our approximations are close 

to the actual ensemble performance. 

 

One fundamental assumption that we made is that increasing the number of learners always 

improves ensemble accuracy. This is not always the case. The accuracy of an ensemble is 

determined by several factors, including the underlying data distribution and the type of weak 

learners used. By representing each learner as a Bernoulli trial, we abstracted these complexities, 

allowing us to focus solely on probabilistic estimation. 

 

While the assumption of independence gives us numerous advantages, it also limits the type of 

ensembles we can investigate. By relaxing this assumption, we can consider various boosting 

algorithms and other complex algorithms that dynamically change based on the performance of 

the learners on the dataset. 

 

This work contributes to the development of more efficient and interpretable ensemble learning 

techniques by offering a structured approach to ensemble accuracy estimation. Future studies can 

refine these approximations and extend their applicability to a broader range of machine learning 

models by relaxing one or more of the approximations we have taken into consideration. 
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APPENDIX: PREDICTED VS ACTUAL ACCURACY FOR IDENTICAL LEARNERS 
 

p = 0.51 

 Actual Poisson Normal Average 

N Value Est. % Rel. Err. Est. % Rel. Err. Est. % Rel. Err. 

11 0.527 0.520 -1.43 0.644 22.10 0.582 10.34 

21 0.537 0.526 -1.96 0.622 15.78 0.574 6.91 

31 0.545 0.532 -2.35 0.614 12.81 0.573 5.23 

41 0.551 0.537 -2.68 0.612 11.00 0.574 4.16 

51 0.557 0.541 -2.95 0.611 9.75 0.576 3.40 

61 0.562 0.544 -3.20 0.612 8.82 0.578 2.81 

71 0.567 0.548 -3.42 0.613 8.09 0.580 2.34 

81 0.572 0.551 -3.62 0.615 7.50 0.583 1.94 

91 0.576 0.554 -3.81 0.616 7.01 0.585 1.60 

p = 0.55 

 Actual Poisson Normal Average 

N Value Est. % Rel. Err. Est. % Rel. Err. Est. % Rel. Err. 

11 0.633 0.597 -5.74 0.738 16.52 0.667 5.39 

21 0.679 0.630 -7.23 0.752 10.71 0.691 1.74 

31 0.713 0.655 -8.10 0.770 8.02 0.713 -0.04 

41 0.741 0.677 -8.67 0.788 6.41 0.732 -1.13 

51 0.764 0.695 -9.05 0.805 5.32 0.750 -1.87 

61 0.784 0.711 -9.31 0.820 4.52 0.765 -2.39 

71 0.802 0.726 -9.47 0.833 3.91 0.779 -2.78 

81 0.817 0.739 -9.58 0.845 3.42 0.792 -3.08 

91 0.831 0.751 -9.63 0.856 3.03 0.804 -3.30 

 

 

 

p = 0.60 

 Actual Poisson Normal Average 

N Value Est. % Rel. Err. Est. % Rel. Err. Est. % Rel. Err. 

11 0.753 0.688 -8.71 0.838 11.16 0.763 1.23 

21 0.826 0.746 -9.59 0.877 6.17 0.812 -1.71 

31 0.872 0.788 -9.58 0.907 4.01 0.847 -2.78 

41 0.903 0.820 -9.21 0.929 2.79 0.875 -3.21 

51 0.926 0.846 -8.68 0.945 2.03 0.896 -3.32 

61 0.943 0.867 -8.08 0.958 1.51 0.912 -3.28 

71 0.956 0.885 -7.46 0.967 1.15 0.926 -3.15 

81 0.966 0.900 -6.84 0.974 0.88 0.937 -2.98 

91 0.973 0.913 -6.25 0.980 0.68 0.946 -2.78 

p = 0.65 

 Actual Poisson Normal Average 

N Value Est. % Rel. Err. Est. % Rel. Err. Est. % Rel. Err. 

11 0.851 0.769 -9.69 0.913 7.24 0.841 -1.23 

21 0.923 0.840 -8.96 0.953 3.22 0.896 -2.87 

31 0.958 0.885 -7.59 0.974 1.68 0.929 -2.95 

41 0.976 0.915 -6.22 0.985 0.94 0.950 -2.64 
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51 0.986 0.937 -5.00 0.992 0.55 0.964 -2.22 

61 0.992 0.953 -3.97 0.995 0.32 0.974 -1.82 

71 0.995 0.964 -3.14 0.997 0.19 0.981 -1.47 

81 0.997 0.973 -2.47 0.998 0.12 0.986 -1.17 

91 0.998 0.979 -1.93 0.999 0.07 0.989 -0.93 

p = 0.70 

 Actual Poisson Normal Average 

N Value Est. % Rel. Err. Est. % Rel. Err. Est. % Rel. Err. 

11 0.922 0.836 -9.26 0.962 4.38 0.899 -2.44 

21 0.974 0.908 -6.77 0.987 1.42 0.948 -2.68 

31 0.990 0.945 -4.57 0.996 0.53 0.970 -2.02 

41 0.996 0.967 -2.99 0.998 0.21 0.983 -1.39 

51 0.999 0.979 -1.94 0.999 0.08 0.989 -0.93 

61 0.999 0.987 -1.24 1.000 0.03 0.993 -0.61 

71 1.000 0.992 -0.80 1.000 0.01 0.996 -0.39 

81 1.000 0.995 -0.51 1.000 0.01 0.997 -0.25 

91 1.000 0.997 -0.33 1.000 0.00 0.998 -0.16 

p = 0.75 

 Actual Poisson Normal Average 

N Value Est. % Rel. Err. Est. % Rel. Err. Est. % Rel. Err. 

11 0.966 0.890 -7.87 0.988 2.33 0.939 -2.77 

21 0.994 0.951 -4.25 0.998 0.46 0.975 -1.90 

31 0.999 0.977 -2.15 1.000 0.10 0.988 -1.02 

41 1.000 0.989 -1.07 1.000 0.02 0.994 -0.52 

51 1.000 0.995 -0.53 1.000 0.01 0.997 -0.26 

61 1.000 0.997 -0.27 1.000 0.00 0.999 -0.13 

71 1.000 0.999 -0.13 1.000 0.00 0.999 -0.07 

81 1.000 0.999 -0.07 1.000 0.00 1.000 -0.03 

91 1.000 1.000 -0.03 1.000 0.00 1.000 -0.02 
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