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ABSTRACT 
 
Outliers introduce considerable difficulties in statistical modeling and regression analysis by skewing 

parameter estimates and reducing model reliability. To mitigate these effects, we introduce an enhanced 

Quantile Regression (QR) framework that strategically incorporates the 25th (Q1) and 75th (Q3) 

percentiles of the target variable. By emphasizing these robust statistical markers, our approach effectively 

minimizes the influence of extreme values while preserving the underlying data structure. Through 

comprehensive evaluations across multiple datasets, including Iris, Fish, Advertising Budget and Sales, 

and Geyser, we demonstrate that this method consistently delivers stable and accurate predictions. The 
experimental results further highlight the superior resilience of QR compared to conventional Linear 

Regression (LR), particularly in handling datasets affected by noise and outliers. 
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1. INTRODUCTION 
 

Linear regression is a fundamental tool in statistical modeling, widely applied across disciplines 
such as economics, biology, and machine learning. However, traditional least squares (L2) regression 

is highly sensitive to outliers, as it minimizes the sum of squared residuals. In real-world datasets, 

the presence of noise and extreme values can lead to biased parameter estimates and degraded 
model performance. This limitation has motivated extensive research into robust regression 

techniques that mitigate the influence of outliers while preserving the core structure of the data. 

 

To address this issue, Koenker and Bassett [1] introduced Quantile Regression (QR), which 
estimates conditional quantiles instead of the conditional mean. Unlike classical regression 

models that assume normally distributed residuals with constant variance, Quantile Regression 

provides a more flexible framework that accounts for heteroske dasticity and skewed distributions. 
Later, Buchinsky [2] demonstrated that Quantile Regression remains stable under heavy-tailed 

distributions and extreme values, reinforcing its effectiveness in robust statistical modeling. 

 
Over the years, Quantile Regression has been enhanced by integrating machine learning 

techniques. Meinshausen [3] developed Quantile Regression Forests (QRF), which extends 

Quantile Regression by leveraging decision trees to model conditional quantiles non- 

parametrically. Similarly, Takeuchi [4] introduced Quantile Regression Support Vector Machines 
(QR-SVM), which improves Quantile Regression’s ability to capture nonlinear dependencies in 

high-dimensional spaces. More recently, Delcroix et al. [5] demonstrated the effectiveness of 
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Quantile Regression Gradient Boosting Decision Trees (QRGBDT) in modeling heteroskedastic 
and non-normal datasets. In another significant advancement, Gu and Zuo [6] proposed Sparse 

Composite Quan- tile Regression (SCQR), which optimizes Quantile Regression for high- 

dimensional datasets by incorporating sparsity constraints and feature selection. 

 
Despite these advances, most QR-based methods estimate multiple quantiles independently, leading 

to potential inconsistencies such as quantile crossing. Moreover, many existing QR techniques 

require fitting multiple models across different quantiles, making them computationally expensive 
for large datasets. 

 

In this paper, we introduce a Quantile Regression (QR) technique that prioritizes key data points 
around the 25th (Q1) and 75th (Q3) percentiles of the response variable. By selectively leveraging 

these representative subsets, Quantile Regression provides a robust alternative to traditional 

regression methods, offering enhanced stability and reliability in noisy and messy datasets. 

 
Our contributions are as follows: 

 

1. Novel Regression Technique: We propose a Quantile Regression method that selectively 
uses data near Q1 and Q3 to minimize the impact of outliers. 

2. Robustness and Stability: We demonstrate that Quantile Regression consistently outperforms 

Linear regression across multiple datasets and varying levels of noise and outlier fractions. 
3. Extensive Analysis: We evaluate Quantile Regression on diverse datasets (Iris, Fish, 

Advertising Budget and Sales, and Geyser) and provide empirical evidence of its effectiveness in 

real-world applications. 

 
Building on the theoretical foundations of Quantile Regression while addressing its computational 

and interpretational limitations, our approach provides an efficient and robust alternative to existing 

regression techniques. 
 

2. METHODOLOGY 
 

2.1. Overview 
 

The Quantile Regression (QR) method is designed to achieve robust modeling by focusing on 

representative subsets of data. Unlike traditional Linear Regression, which uses all data points 

equally, Quantile Regression employs a selective approach by identifying and incorporating data 
points closest to the Q1 and Q3 percentiles of the response variable. 

 

2.2. Steps 

 

2.2.1. Data Loading and Splitting 

 

Select two features, one as the independent variable 𝑥 and the other as the dependent variable 𝑥. 

The dataset is split into a training set (80%) and a test set (20%). 

 

2.2.2. Outlier Generation 

 

To introduce controlled levels of outliers into the training data, we employ a systematic approach 

based on the inter quartile range (IQR). The first step involves computing the quartiles (𝑥1 and 𝑥3) 

and the IQR for both the independent variable 𝑥 (Width) and the dependent variable 𝑥 (Weight). 

Observations that exceed 𝑥3 + 1.5 × IQR or fall below 𝑥1 − 1.5 × IQR are classified as potential 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.1, March 2025 

121 

outliers. 
 

For each predefined outlier fraction, a corresponding number of outliers is generated and added to 

the training set. These outliers are created through three distinct mechanisms to simulate different 

types of contamination in the data. The first type consists of upper-bound outliers, which are 

drawn from a uniform distribution beyond the threshold 𝑥3 + 1.5 ×IQR, ensuring that these points 

lie outside the natural range of the data. Similarly, lower-bound outliers are sampled from a range 

below 𝑥1 − 1.5 × IQR, mimicking extreme low-value deviations. In addition to these structured 

anomalies, we introduce randomly distributed outliers that span the entire range of 𝑥 and 𝑥 in the 

dataset, simulating unpredictable noise that does not necessarily follow the IQR-based pattern. 

 

Once generated, these outliers are combined with the original training data and shuffled to avoid 
order bias. The dataset, now containing both original observations and injected outliers, serves as 

the foundation for training both Quantile Regression (QR) and Linear Regression (LR). To 

maintain reproducibility and ensure controlled variations in outlier placement, different random 
seeds are assigned to different outlier fractions. 

 

For the Fish dataset in Horizontal Comparison, different random seeds were assigned to each 
outlier fraction to introduce controlled variations while ensuring reproducibility. The mapping 

between outlier fractions and their respective random seeds is as follows: outlier fraction of 0.0 

used seed 0, 0.1 used seed 3, 0.2 used seed 2, 0.3 used seed 0, 0.4 used seed 2, 0.5 used seed 2, 

0.6 used seed 6, 0.7 used seed 1, and 0.8 used seed 0. In the Vertical Comparison, 
 

In the Vertical Comparison, different random seeds were assigned to each dataset to ensure con- 

trolled variations while maintaining reproducibility. For an outlier fraction of 0.3, the Iris dataset 
used a random seed of 4, the Fish dataset used seed 0, the Advertising Budget and Sales dataset 

was assigned seed 4, and the Geyser dataset utilized seed 3. For an outlier fraction of 0.0, a similar 

approach was followed to ensure consistency in the baseline comparisons. The Iris dataset 

maintained a random seed of 4, while the Fish dataset, Advertising Budget and Sales dataset, and 
Geyser dataset all used seed 0. 

 

2.2.3. Data Sorting and Percentile Calculation 

 

The training data, including outliers, is first sorted based on 𝑥. Then, the quartiles (𝑥1, median, 

and 𝑥3) for 𝑥 are computed. Finally, the corresponding 𝑥 values are identified based on the 𝑥 
values closest to these quartiles. 

 

2.2.4. Key Point Selection 

 

The 𝑥 values closest to 𝑥1, the median, and 𝑥3 are identified, along with their corresponding 𝑥 
values (𝑥1, 𝑥2, and 𝑥3). If multiple points are equally close to a quartile, the mode function is used 

to select the most frequent 𝑥 value, ensuring consistency and avoiding ambiguity. 

 

2.2.5. Linear Model Fitting 

 

A line is fitted between the points (𝑥1, 𝑥1) and (𝑥3, 𝑥3). The slope 𝑥 and intercept 𝑥 of this line 
are then calculated. 

 

2.2.6. Model Evaluation 

 

The 𝑥 values are predicted on the test set, and the model’s performance is evaluated using three 

key metrics: the Mean Squared Error (MSE), which quantifies the average squared differences 
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between predicted and actual values; the Mean Absolute Error (MAE), which measures the average 

absolute differences; and the Coefficient of Determination (𝑥2), which assesses the explanatory 

power of the model. 

 

2.2.7. Comparison with Traditional Linear Regression 

 

A traditional linear regression model is fitted to the test set, and the same evaluation metrics (𝑥 𝑥𝑥 

and 𝑥2) are computed. The performance of Quantile Regression (QR) is then compared with that 
of traditional regression, with a particular focus on robustness to outliers. 

 

2.2.8. Data Visualization 

 
The data distribution, identified outliers, and the fitted regression line are plotted for visualization. 

Key points are highlighted using different colors and annotations to emphasize their significance 

in the regression model. 
 

3. EXPERIMENTAL DESIGN 
 

3.1. Datasets 
 

We evaluated the performance of Quantile Regression using multiple datasets: 

 

3.1.1. Iris Dataset [7] 
 

This dataset consists of 150 observations across three species of iris flowers (setosa, versicolor, 

and virginica). Each observation includes four features: sepal length, sepal width, petal length, 
and petal width. For this study, we selected petal length as the independent variable (X) and petal 

width as the dependent variable (y). 

 

3.1.2. Fish Dataset [8] 

 

This dataset includes 159 observations of fish across 7 species, with measurements capturing physical 

traits such as weight, length, height, and width. In our analysis, Width was used as the 
independent variable (X) and Weight as the dependent variable (y). 

 

3.1.3. Advertising Budget and Sales Dataset [9] 

 

This dataset contains 200 observations of advertising budgets allocated to three media channels 

(TV, Radio, and Newspaper) and their impact on sales revenue. For the analysis, Radio Ad 

Budget ($) served as the independent variable (X), while Sales ($) was the dependent variable (y). 
 

3.1.4. Geyser Dataset [10] 

 
The Geyser dataset records 272 observations of waiting times between eruptions and the 

corresponding eruption durations of the Old Faithful geyser. For this study, waiting (time 

between eruptions) was used as the independent variable (X) and duration (eruption duration) as 
the dependent variable (y). 

 

3.2. Evaluation Metrics 
 

We compared Quantile Regression against Linear Regression using metrics such as: Mean Absolute 
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Error (MAE) and 𝑥2. 
 

3.3. Experimental Setup 

 
We simulated varying levels of outlier fractions (0.1 to 0.8). Regression lines were fitted using 

both QR and LR, and the results were analyzed under different scenarios. 

 

4. RESULTS 
 

4.1. Horizontal Comparison: Fish Dataset Across Outlier Fractions 
 

Table 1: Comparison of Quantile Regression and Linear Regression performance across varying outlier 

fractions for the Fish dataset. 

 

Outlier Fraction MAE (QR) R2 (QR) MAE (LR) R2 (LR) 

0.0 240.82 0.60 250.62 0.57 

0.1 207.70 0.71 231.52 0.59 

0.2 300.50 0.46 236.70 0.59 

0.3 195.84 0.67 211.35 0.63 

0.4 196.45 0.68 229.60 0.60 

0.5 195.18 0.67 208.93 0.63 

0.6 207.36 0.70 213.29 0.63 

0.7 198.92 0.66 200.71 0.66 

0.8 169.20 0.76 198.83 0.66 

 

The following figures demonstrate the Quantile Regression results using the Fish dataset, with 

outlier fractions varying from 0.0 to 0.8. These visualizations highlight the model’s robustness 

against outliers and its ability to focus on key quantile points. 
 

The dataset’s primary points, represented as blue dots, show natural variability but do not include 

artificial noise or outliers when the fraction is 0.0. Artificial outliers, shown as pink dots, are 
incrementally added with fractions ranging from 0.1 to 0.8 to evaluate the model’s performance 

under varying levels of data contamination. 

 

The Quantile Regression line, displayed in green, captures the trend of the data by leveraging key 

quantile points, specifically the lower quartile (𝑥1), the median, and the upper quartile (𝑥3). These 

points are marked respectively as purple, brown, and cyan dots in the visualizations. By focusing 

on these quantiles, the model effectively ignores the influence of extreme values introduced as 
outliers, ensuring a robust regression line that represents the core data trend. 
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Figure 1: Regression results for the Fish dataset with outlier fraction = 0.0. 

 

As shown in Figure 1, without any outliers, the Quantile Regression (QR) line closely aligns with 

the core data trend. This highlights the standard performance of Quantile Regression, effectively 

capturing 𝑥1, Median, and 𝑥3 points in a noise-free scenario. From Table 1, for an outlier fraction 

of 0.0, QR achieves a MAE of 240.82 and an 𝑥2 value of 0.60, showing slightly better performance 

in terms of MAE compared to Linear Regression (LR), which has MAE = 250.62 and 𝑥2 = 0.57. 
 

 

(a) Outlier Fraction = 0.1 (b) Outlier Fraction = 0.2 

 

  
 

(c) Outlier Fraction = 0.3 (d) Outlier Fraction = 0.4 

 
Figure 2: Regression results for the Fish dataset under outlier fractions from 0.1 to 0.4. 

 
Figure 2 illustrates QR’s performance as outlier fractions increase from 0.1 to 0.4. At lower 

fractions, such as 0.1 (Figure 2a) and 0.2 (Figure 2b), QR remains robust, with its regression line 

closely aligned to the quantile points (𝑥1, Median, 𝑥3). This stability is reflected in Table 1, 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.1, March 2025 

125 

where QR maintains relatively low MAE values (207.70 at 0.1, 300.50 at 0.2) and high 𝑥2 values 
(0.71 at 0.1, 0.46 at 0.2). QR performs comparably to LR, which has fluctuating MAE values 

(231.52 at 0.1, 236.70 at 0.2) and slightly lower 𝑥2 at 0.1 (0.59) but matches QR at 0.2 (0.59). 

 

As outlier fractions rise to 0.3 (Figure 2c) and 0.4 (Figure 2d), QR continues to mitigate the 
influence of extreme values, preserving the underlying data trend effectively. Table 1 supports this 

observation, with QR showing MAE values of 195.84 at 0.3 and 196.45 at 0.4 while maintaining 

strong 𝑥2 values (0.67 at 0.3, 0.68 at 0.4). Notably, QR outperforms LR in both cases, as LR 

shows higher MAE (211.35 at 0.3, 229.60 at 0.4) and slightly lower 𝑥2 values (0.63 and 0.60, 

respectively). 
 

 
(a) Outlier Fraction = 0.5 (b) Outlier Fraction = 0.6 

 

  
 

(c) Outlier Fraction = 0.7 (d) Outlier Fraction = 0.8 

 
Figure 3: Regression results for the Fish dataset under outlier fractions from 0.5 to 0.8. 

 

As shown in Figure 3, QR’s performance is analyzed under higher outlier fractions (0.5 to 0.8). 
For fractions of 0.5 (Figure 3a) and 0.6 (Figure 3b), QR retains its robustness by anchoring the 

regression line to key quantile points. Table 1 reflects this resilience, with QR maintaining a 

stable MAE of 195.18 at 0.5 and 207.36 at 0.6, alongside 𝑥2 values of 0.67 and 0.70, respectively. 

Meanwhile, LR struggles more with outliers, showing higher MAE (208.93 at 0.5, 213.29 at 0.6) 

and consistently lower 𝑥2 values (0.63 in both cases). 

 

At fractions of 0.7 (Figure 3c) and 0.8 (Figure 3d), outliers dominate the data, creating significant 
variability. Despite minor deviations, QR continues to align with the core data trend, as shown in 

Table 1. QR achieves an MAE of 198.92 and 169.20, and 𝑥2 values of 0.66 and 0.76, respectively. 

Notably, at 0.8, QR slightly outperforms LR in both metrics, with LR showing MAE = 198.83 and 

𝑥2 = 0.66. 
 

The analysis of the Fish dataset across varying outlier fractions demonstrates the robustness and 

effectiveness of QR in maintaining alignment with the core data trend. As the fraction of outliers 
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increases, QR consistently focuses on key quantile points (𝑥1, Median, 𝑥3), thereby mitigating 
the impact of extreme values. This resilience is evident in its stable performance metrics, with 

minimal deviation in MAE compared to LR, which exhibits more sensitivity to outliers. While 

QR begins to show slight degradation at higher outlier fractions (e.g., 0.7 and 0.8), its performance 

remains superior to LR, highlighting its utility in scenarios involving outlier-dominated datasets. 
These findings emphasize the reliability of Quantile Regression as a robust alternative to traditional 

regression techniques in real-world applications. 

 

4.2. Vertical Comparison: Different Datasets 
 

The performance of Quantile Regression is further evaluated across multiple datasets (Iris, Fish, 
ABS, and Geyser). Table 2 summarizes the results of Quantile Regression and traditional linear 

regression models. 

 
Table 2: Comparison of Quantile Regression and Linear Regression across datasets at different 

outlier fractions (rounded to two decimal places). 
 

Outlier Dataset MAE (QR) MAE (LR) 𝑥2 (QR) 𝑥2 (LR) 

IRIS 0.28 0.30 -0.33 -0.46 

0.0 
Fish 240.82 250.62 0.60 0.57 

ABS 3.43 3.26 0.40 0.43 

Geyser 0.38 0.37 0.82 0.82 

IRIS 0.56 0.29 -4.09 -0.37 

0.3 
Fish 195.84 211.35 0.67 0.63 

ABS 3.43 3.26 0.40 0.43 

Geyser 0.51 0.45 0.68 0.72 

 

4.2.1. Iris Dataset 

 

In the absence of outliers, as shown in Figure 4, both QR and LR perform similarly in the absence 

of outliers. Quantile Regression achieves slightly lower MAE (0.28 vs. 0.30) and higher 𝑥2 (-0.33 

vs. -0.46). However, since both 𝑥2 values are negative, it indicates that neither model predicts the 
data well and simply using the mean would be more accurate. This suggests a weak relationship 

between the chosen features, making it difficult for either model to capture a meaningful trend. 
 

 

Figure 4: Regression results for Iris dataset: (Left) No Outliers (Outlier Fraction = 0); (Right) With Outliers 

(Outlier Fraction = 0.3). 
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When outliers are present at an outlier fraction of 0.3, Figure 4 (Right) shows that Quantile 
Regression remains aligned with the core data trend, whereas Linear Regression is significantly 

distorted by the presence of outliers. Table 2 further highlights this difference. While Linear 

Regression achieves a lower MAE (0.29 vs. 0.56), its 𝑥2 value of -0.37 indicates poor predictive 

power, as the model fits worse than simply using the mean. Quantile Regression, however, has an 

even lower 𝑥2 of -4.09, suggesting that the outliers have severely impacted its ability to generalize 

in this case. This result implies that although QR is designed to be more robust, extreme 

contamination in the data can still degrade its performance, particularly when the underlying 
relationship is already weak. 

 

4.2.2. Fish Dataset 

 
Without any outliers, Figure 5 (Left) illustrates that Quantile Regression achieves slightly better 

than Linear Regression in terms of MAE (240.82 vs. 250.62) and 𝑥2 (0.60 vs. 0.57). Both 

regression lines closely follow the trend, demonstrating good performance in the absence of noise. 
 

 
Figure 5: Regression results for Fish dataset: (Left) No Outliers (Outlier Fraction = 0); (Right) With 

Outliers (Outlier Fraction = 0.3). 

 

When the outlier fraction increases to 0.3, Figure 5 (Right) shows that Quantile Regression remains 

robust against outliers, whereas Linear Regression line is skewed by extreme values. Table 2 
confirms this observation, with Quantile Regression achieving better MAE (195.84 vs. 211.35) 

and 𝑥2 (0.67 vs. 0.63), highlighting its superior performance. 

 

4.2.3. Advertising Budget and Sales (ABS) Dataset 

 

Outlier-Free Data Figure 6 (Left) shows both Quantile Regression and Linear Regression performing 

comparably, with Linear Regression having a slight edge in MAE (3.26 vs. 3.43) and 𝑥2 (0.43 vs. 
0.40). This similarity arises from the linear relationship in the dataset. 

 

 
 

Figure 6: Regression results for ABS dataset: (Left) No Outliers (Outlier Fraction = 0); (Right) With 

Outliers (Outlier Fraction = 0.3). 
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Presence of Outliers (Outlier Fraction = 0.3) Figure 6 (Right) shows that Linear Regression 

performs better in this case, achieving a lower MAE (3.26 vs. 3.43) and a higher 𝑥2 (0.43 vs. 0.40) 

compared to Quantile Regression. This suggests that outliers have a limited impact on Linear 

Regression for this dataset, making it the better-performing model under these conditions. 

 

4.2.4. Geyser Dataset 

 

Outlier-Free Condition Figure 7 (Left) demonstrates similar performance for Quantile Regression 
and Linear Regression, with Linear Regression slightly outperforming QR in MAE (0.38 vs. 0.37) 

and 𝑥2 (0.82 vs. 0.82). 
 

 
Figure 7: Regression results for Geyser dataset: (Left) No Outliers (Outlier Fraction = 0); (Right) With 

Outliers (Outlier Fraction = 0.3). 

 
With a 0.3 outlier fraction, Figure 7 (Right) shows that Linear Regression performs slightly better, 

achieving a lower MAE (0.45 vs. 0.51) and a higher 𝑥2 (0.72 vs. 0.68) compared to Quantile 

Regression. While QR still aligns well with the core data trend, these results indicate that in this 

case, Linear Regression handles the outliers a little more effectively. 
 

Quantile Regression is more effective in scenarios where extreme outliers significantly impact the 

data, as seen in the Fish dataset, where it maintains a more reliable trend. In contrast, Linear 
Regression performs better when outliers have a limited impact, making it the preferred choice for 

datasets with strong linear relationships, such as ABS and Geyser. However, in datasets with weak 

predictive relationships, like Iris, neither model performs well, and Quantile Regression may even 

suffer more under heavy outlier contamination. 
 

5. CONCLUSION 
 

Quantile Regression (QR) proves to be a valuable alternative to Linear Regression (LR) in handling 
datasets with substantial outlier influence. Its ability to focus on key quantile points allows it 

to maintain robustness in scenarios where extreme values distort traditional regression methods. 

However, its advantages are context-dependent. When data follows a strong linear structure with 

minimal outlier impact, as seen in the ABS and Geyser datasets, LR tends to perform better. 
Conversely, in datasets with weak predictive relationships, like Iris, neither model is particularly 

effective, and QR may even exhibit greater performance degradation under severe contamination. 

 
Overall, while QR offers significant resilience in outlier-heavy conditions, its effectiveness is 

reduced when applied to well-structured or weakly correlated data. These findings suggest that 

selecting between QR and LR should be based on the nature of the dataset, particularly considering 
the extent of outliers and the underlying relationship between variables. 

While the current study focused primarily on low dimensional applications, the underlying 
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principles of Quantile Regression can be extended to higher-dimensional data. In 
multidimensional scenarios, quantile-based methods can be adapted to define key points along 

each dimension or through multivariate analogs such as the Mahalanobis distance for detecting 

outliers. This opens up opportunities for Quantile Regression to be applied in fields requiring 

multidimensional modeling, such as image processing, genomics, and multi-factor financial 
analysis. 
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