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ABSTRACT 
 

Clustering is a widely used unsupervised learning technique for discovering hidden patterns in 
data.however, high-dimensional datasets often pose challenges in terms of computational efficiency and 

clustering effectiveness. This study investigates the impact of dimensionality reduction on clustering 

performance by applying principal component analysis (pca),independent component analysis 

(ica),randomized projection, and feature agglomeration before clustering. The research utilizes k-means 

and expectation-maximization (em) clustering algorithms on two real-world datasets: bankruptcy 

prediction and breast cancer diagnosis. The study examines how different dimensionality reduction 

techniques influence cluster formation, computational efficiency, and interpretability. The results indicate 

that dimensionality reduction improves processing time and, in some cases, enhances clustering 

performance by removing noise and redundant features. However, certain techniques may lead to 

information loss, reducing cluster separability. This research provides insights into selecting appropriate 

dimensionality reduction methods to optimize clustering in unsupervised learning applications.  
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1. INTRODUCTION 
 

Clustering is a fundamental machine learning technique used to group similar data points into 

clusters, enabling pattern discovery, data simplification, and various real-world applications like 
customer segmentation, anomaly detection, and image analysis, all without needing labeled data. 

However, high-dimensional data often leads to computational inefficiencies and suboptimal 

clustering performance due to the curse of dimensionality.  
 

Dimensionality reduction techniques are commonly employed to address these challenges by 

transforming highdimensional data into a more compact representation while preserving essential 

information. Popular techniques include Principal Component Analysis (PCA), Independent 
Component Analysis (ICA), Randomized Projection, and Feature Agglomeration, each with 

unique properties.   

 
The research is conducted on two real-world datasets: a bankruptcy prediction dataset and a 

breast cancer diagnosis dataset, both of which contain high-dimensional feature spaces that can 

benefit from dimensionality reduction. However, it is important to note that these datasets are 
used for reference purposes only—in real-world applications such as bankruptcy risk assessment 

and breast cancer diagnosis, accuracy is of utmost importance, and any loss of critical information 
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due to dimensionality reduction may lead to incorrect conclusions. While dimensionality 
reduction can improve computational efficiency and clustering speed, it must be applied with 

caution in high-stakes domains where data integrity is crucial. The primary objectives of this 

study are:  

 
• To evaluate how different dimensionality reduction techniques affect clustering 

performance in terms of cluster formation, separability, and computational efficiency.  

 

• To compare K-Means and EM clustering algorithms in reduced feature spaces to assess 
their robustness across different datasets.  

• To determine the trade-offs between accuracy and processing time, offering insights into 

selecting the most suitable dimensionality reduction method for clustering tasks  

 

2. RELATED WORK 
 

Clustering has been widely studied in machine learning and data mining, particularly for 

applications in financial risk assessment and medical diagnostics. Traditional clustering 

algorithms such as K-Means[1] and Expectation- Maximization (EM) [2] have been extensively 
used for identifying patterns in large datasets. In bankruptcy prediction, clustering techniques 

have been applied to financial ratios to classify firms based on insolvency risk [3]. Similarly, in 

medical research, clustering methods have been used to analyze patient data and classify cancer 
subtypes [4].  

 

Dimensionality reduction plays a crucial role in improving clustering performance by reducing 

computational complexity and mitigating the curse of dimensionality [5]. Principal Component 
Analysis (PCA) [6] is one of the most commonly used techniques for feature reduction by 

transforming data into orthogonal components. Independent Component Analysis (ICA) [7] has 

been used in biomedical signal processing and financial modeling to separate independent sources 
from mixed data. More recent approaches, such as Randomized Projection [8], provide 

computationally efficient alternatives by approximating feature space transformations, while 

Feature Agglomeration groups correlated features to improve interpretability.  
 

Several studies have investigated the impact of dimensionality reduction on clustering. Van der 

Maaten & Hinton [9] demonstrated how t-SNE improves cluster visualization in high-

dimensional datasets. Ding & He [10] analyzed the relationship between PCA and K-Means 
clustering, showing that PCA can improve cluster separation by removing noise. However, other 

studies have highlighted the trade-offs, noting that excessive dimensionality reduction can 

remove key distinguishing features, leading to poor cluster formation.  
 

Unlike previous research that applies clustering and dimensionality reduction separately, this 

study systematically evaluates the impact of multiple dimensionality reduction techniques (PCA, 
ICA, Randomized Projection, and Feature Agglomeration) on clustering performance using K-

Means and EM algorithms. By analyzing two distinct datasets (bankruptcy prediction and breast 

cancer diagnosis), this research provides insights into the trade-offs between computational 

efficiency and clustering effectiveness, contributing to the broader understanding of unsupervised 
learning workflows.  
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3. ABOUT THE DATA 
 

3.1. Company Bankruptcy Prediction  
 

Bankruptcy data is a dataset to be used for the experiments. This dataset is derived from Kaggle 
[11] and includes features defining the financial status of the company. There are multiple 

features in the dataset like operating gross margin, cash rate, equity to liability ratio etc. The 

historical data also contains labels specifying whether the company was declared bankrupt or not. 
This data corresponds to a binary classification problem where the financial features of the 

company are available, and the problem is to predict whether the company is heading towards 

bankruptcy or not. To use this dataset for experiments with unsupervised learning and 

dimensionality reduction algorithms, only the training data without labels would be used.   
 

3.2. Breast Cancer Classification  
 

This is a classification problem derived from Kaggle [12] which includes historical data 

representing various features of the breast like area mean, texture mean, radius mean etc. The data 

includes label malignant (cancerous) or benign (non-cancerous) based on the diagnosis of the 
breast tissue. The problem involves predicting the diagnosis of the breast tissue given the 

measurable features. Again, this dataset will be used without the final labels for running 

experiments for unsupervised learning and dimensionality reduction algorithms  
 

4. UNSUPERVISED CLUSTERING OF DATA 
 

In this paper, we mainly focus on two common clustering techniques – K-means clustering and 

EM clustering  
 

4.1. K- Means Clustering 
 

It is a type of clustering technique [13] where the data point are classified based on their distance 

from the cluster centres. It is a hard clustering technique where each data point belongs to only 

one cluster and there is no sharing of data points. Applying the k means clustering to each of the 
datasets and analysing the silhouette score for different number of clusters would help deduce the 

value of k (most efficient value for number of clusters)  

 
A silhouette score determines the quality of the cluster. It varies between [-1,1] where the best 

value 1 indicates that the datapoint are compact within the cluster where they belong and are far 

away from the other clusters so analysing the silhouette score helps create a clear picture of the 
dataset.  

 

4.1.1. Bankruptcy Data  

 
Applying K-means clustering to bankruptcy data and plotting a graph between the number of 

clusters and the silhouette score to get the optimal number of clusters-  
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Figure 1.  Silhouette score vs clusters (Bankruptcy data)  

 
The silhouette scores are maximum for 2 and 9 number of clusters. After achieving the maximum 

score, there seems to be a steep decrease because the data can’t be divided efficiently in higher 

number of clusters.  
 

Using number of clusters = 2 and applying the K means algorithm to bankruptcy data, a score of 

0.2294 is achieved which indicates that though most of the datapoint are in their cluster but the 
clusters are overlapping.   

 

To visualize the clusters generated, plotting a biplot using two important features based on 

domain knowledge (cash flow rate and operating expense rate) with each datapoint marked based 
on its cluster.  

 

 
 

Figure 2.  Bi plot for K means clustering (Bankruptcy data)  
 

The biplot graph clearly shows overlapped clusters as indicated by the silhouette score.  

 

4.1.2. Breast Cancer Data  
 

Applying K-means clustering on Breast Cancer dataset and plotting a graph for analysis-  
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Figure 3.  Silhouette score vs clusters (Breast cancer data)  

 
The graph clearly shows that the algorithm is able to best classify the data in two clusters. As the 

number of clusters increases, the data-points start overlapping between the clusters with a drastic 

decrease in the silhouette score.  

 
Choosing number of clusters = 2 and applying the algorithm on the train data of the dataset, the 

silhouette score achieved = 0.693 which indicates a fairly decent performance of the algorithm 

with the data.  
 

The following biplot between area mean and smoothness mean features (features are selected 

based on domain knowledge) help visualise the K means clustering with breast cancer data-  
 

 
 

Figure 4.  Bi plot for K means clustering (Breast cancer data) 

 

As indicated by the silhouette score, the clusters are compact and there is not much overlapping 

between the clusters.  
 

4.2. Expectation Maximisation 
 
It is a type of technique [14] that performs maximum likelihood expectation on each data point 

and based on the probability of a datapoint to belong to a cluster, it is assigned the label. This 
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technique is a type of soft clustering where a data point may belong to more than one cluster with 
some probability  

 

4.2.1. Bankruptcy Data  

 
Applying the expectation maximisation technique to bankruptcy data and plotting a graph 

between the silhouette score and number of clusters-  

 

 
 

Figure 5.  Silhouette score vs clusters (Bankruptcy data)  

 

Similar to K means clustering, the EM algorithm achieves the highest silhouette score for number 

of clusters = 2. The silhouette score while applying EM with 2 clusters on the data is 0.2146 
which again indicates that though most of the data points belong to its own cluster, there is a high 

overlapping between the clusters. Visualising the clusters by creating a biplot for the same 

features chosen for K means clustering-  
 

 
 

Figure 6.  Bi plot for EM clustering (Bankruptcy data)  

 

The plot looks very similar to K means clustering with high overlapping of clusters as expected 

from the silhouette score.  
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4.2.2. Breast Cancer Data  
 

Applying EM algorithm to the breast cancer data and plotting a graph between silhouette score 

and number of clusters-  

 

 
 

Figure 7.  Silhouette score vs clusters (Breast cancer data)  

 

The graph indicates that 2/3 clusters is the most suitable configuration for breast cancer data with 

EM clustering. Choosing number of clusters = 2, a silhouette score of 0.6704  is achieved which 

indicates that the clusters have low overlapping and the datapoint are well bound to their clusters. 
Visualising the clustering with a biplot between area mean and smoothness mean features 

(features are selected based on domain knowledge) of the data-  

 

 
 

Figure 8.  Bi plot for EM clustering (Breast cancer data)  

 
 As indicated by the silhouette score, the clusters created by EM clustering for Breast cancer data 

are compact and have low overlapping.  

 

5. DIMENSIONALITY REDUCTION OF DATA 
 

Dimensionality Reduction algorithms are a type of unsupervised learning algorithms that 

transforms the dataset from a high dimension to a low dimension in order to reduce the 
processing time and computation power of algorithms being applied on the dataset. In this paper 
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we analyse the following dimensionality reduction techniques by applying these techniques on 
the Bankruptcy and Breast Cancer Dataset-  

 

• PCA (Principal Component Analysis)  

• ICA (Independent Component Analysis)  

• Randomised Projection  

• Feature Agglomeration  
 

5.1. Principal Component Analysis 
 
PCA [15] is a dimensionality reduction technique that works by finding the correlation between 

the features of the dataset. It works by finding the axis with the highest variance in the data and 

then projects the dataset onto this axis.   
 

5.1.1. Bankruptcy Data  

 

Applying PCA dimensionality reduction to Bankruptcy Dataset and plotting a graph between the 
cumulative explained variance ratio (ratio of Eigen value and the total sum of Eigen values) and 

number of features to deduce the optimal number of features post reduction-  

 

 
 

Figure 9.  Cumulative variance v/s number of components (Bankruptcy data)  

The above graph shows an increase in the cumulative variance with the increase in the number of 
features for lower values but once the highest variance is achieved there is no improvement with 

increase in number of features indicating that the features can be reduced to 25 (where highest 

variance is achieved) with PCA algorithm.   

 

5.1.2. Breast Cancer Data  

 

Applying PCA dimensionality reduction technique to breast cancer data and plotting a graph 
between cumulative variance and number of components –   

 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.1, March 2025 

177 

 
 

Figure 10.  Cumulative variance v/s number of components (Breast cancer data)  

 

The nature of the plot is similar to the plot for Bankruptcy data with a monotonic increase in 
variance upto a particular value and then the value remains constant. Choosing number of 

components = 3 as the optimal value to represent the dataset.  

 

5.2. Independent Component Analysis 
 

Independent component analysis [16] is a dimensionality reduction technique that works by 
identifying how independent the features are from each other and then reduces the features by 

projecting the features such that the independence of the features is maximised. Kurtosis is a 

measure of combined weight of the distribution of the tail with respect to the centre. The optimal 
number of components using ICA can be found by maximising the non-gaussianity (kurtosis) of 

the given dataset.   

 

5.2.1. Bankruptcy Data  
 

Applying ICA dimensionality reduction to Bankruptcy dataset and plotting a graph between 

kurtosis and the number of components-  
 

 
 

Figure 11.  Kurtosis variance v/s number of components (Bankruptcy data)  

 

The graph shows that the maximum Kurtosis is achieved for ‘number of components’ = 24 so 
ICA should reduce the dimensions to 24 features to achieve the most independent features that 

contain the entire information.  
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5.2.2. Breast Cancer Data  
 

Applying ICA to breast cancer data and plotting a graph between Kurtosis and number of 

components-  
 

 
 

Figure 12.  Kurtosis variance v/s number of components (Breast cancer data)  

 
The nature of the graph for Breast cancer data is similar to the previous dataset with increase in 

Kurtosis with increasing number of components and once the peak is achieved, the value of 

Kurtosis starts decreasing. This is because once the peak is achieved increasing the number of 

features would increase the inter-dependency. Choosing number of components = 3 for this 
dataset with ICA Dimensionality Reduction.  

 

5.3. Randomised Projection 
 

Randomised Projection [17] is a dimensionality reduction technique that works by projecting data 

to a lower dimensional subspace by using a random matrix whose columns have unit length.  
 

One way to deduce the optimal number of components with randomised Projection algorithm is 

to inspect reconstruction error. The point where the reconstruction error is minimum should 
reflect to the minimum error when the original data is reconstructed.  

 

5.3.1. Bankruptcy Data  
 

Applying randomised projection algorithm to bankruptcy data and plotting a graph between 

reconstruction error and number of components-  

 

 
 

Figure 12.  Reconstruction error v/s number of components (Bankruptcy data)  
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The graph shows a continuous decrease in the error with the increasing number of components. 
This is an expected behaviour as the original data can be best reconstructed when all the available 

features are present. Choosing number of components = 1 to understand the effect when all the 

points are randomly projected to a single dimension.  

 

5.3.2. Breast Cancer Data  

 

Applying Randomised Projection technique to Breast cancer dataset and again plotting a graph 
between reconstruction error and number of components.  

 

 
 

Figure 13.  Reconstruction error v/s number of components (Breast Cancer data)  

 

The nature of the curve remains same as that generated for the previous dataset, that is, there is a 

continuous decrease in the reconstruction error until all the available features are used and the 

dataset can be reconstructed with minimum error.  
 

5.4. Feature Agglomeration 
 

Feature agglomeration [18] is a dimensionality reduction technique where the features are 

grouped into clusters based on their similarity and then the features in a cluster are recursively 

merged in order to reduce the number of features.  
 

Similar to ICA, the optimal number of features post dimensionality reduction can be derived by 

analysing the Kurtosis value. The higher the Kurtosis value, the more independent are the merged 
features from each other.  

 

5.4.1. Bankruptcy Data  
 

Applying Feature Agglomeration technique on the bankruptcy data and plotting a graph between 

Kurtosis and the number of components-  
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Figure 14.  Kurtosis v/s number of components (Bankruptcy data)  

 
The graph achieves the peak at number of components = 23 which is the optimal value when 

reducing the dimensions of bankruptcy data using feature agglomeration. The nature of the graph 

indicates that independence of data increases with increase in number of components until the 
peak is achieved and then the value decreases continuously upto a certain value.  

 

5.4.2. Breast Cancer Data  
 

Applying feature agglomeration reduction algorithm to breast cancer data-  

 

 
 

Figure 15.  Kurtosis v/s number of components (Breast Cancer data)  

 
The above graph shows that the highest Kurtosis value is achieved for number of components = 1 

and then there is an overall decrease in the value with a small increase in value at 6 but the overall 

nature remains decreasing.   

 

6. CLUSTERING ALGORITHMS ON REDUCED DATASET 
 

For the experiments in this section, using the reduced dataset with the optimal number of 

components derived in the previous section and applying clustering algorithms with the optimal 
number of clusters for each dataset derived earlier and analysing the results.  
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The silhouette score that measures the quality of the clusters is the best measure to compare how 
the clustering algorithms work with the original dataset and the dataset derived after applying the 

dimensionality reduction algorithms.  

 

6.1. Bankruptcy Data  
 

Applying K means and EM clustering algorithms with 2 clusters (number of clusters based on the 
clustering experiment) on the reduced bankruptcy dataset. Using the following number of reduced 

features for this experiment –  

 

• PCA - 25  

• ICA - 24  

• Randomised Projection - 1  
• Feature Agglomeration – 23  

 
Table 1.  Comparison of dimensionality reduction algorithms with K-means clustering (Bankruptcy data) 

 
 Silhouette 

Score  

Davies-Bouldin 

Index 

Calinski-Harabasz 

Score 

Computation Time  

No reduction  0.2294  1.9231  1143.6301  0.48s  

PCA  0.2294  1.9231  1143.6301  0.45s  

ICA  0.7568  0.5704  205.1123  0.43s  

Randomised  

Projection  

0.5945  0.4631  12960.5986  0.41s  

Feature  

Agglomeration  

0.2294  1.9231  1143.6371  0.42s  

 

 
Table 2.  Comparison of dimensionality reduction algorithms with EM clustering (Bankruptcy data)  

 
 Silhouette 

Score 

Davies-

Bouldin 

Index 

Calinski-Harabasz 

Score 

Computation 

Time  

No reduction  0.2146  1.9653  1087.8286  0.52s  

PCA  0.2277  1.9071  1107.5265  0.43s  

ICA  0.1193  3.1879  189.2792  0.40s  

Randomised  

Projection  

0.5974  0.4321 12128.9256  0.39s  

Feature  
Agglomeration  

0.2278  1.9093  1106.6271  0.42s  

 

6.2. Breast Cancer Data  
 

Applying K means and EM clustering algorithms with 2 clusters (number of clusters based on the 

clustering experiment) on the reduced breast cancer dataset. Using the following number of 
reduced features for this experiment –  

 

• PCA - 3  

• ICA - 3  

• Randomised Projection - 1  

• Feature Agglomeration – 1  
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Table 3.  Comparison of dimensionality reduction algorithms with K-means clustering (Breast cancer data)  
 

 Silhouette 

Score  

Davies-Bouldin 

Index 

Calinski-Harabasz 

Score 

Computation 

Time  

No reduction  0.6930  0.5175  905.6937  0.024s  

PCA  0.6934  0.5171  906.3006  0.015s  

ICA  0.8752  0.5341  135.6421  0.018s  

Randomised  

Projection  

0.7086  0.4634  967.0403  0.017s  

Feature  

Agglomeration  

0.7042  0.4821  955.6881  0.017s  

 
Table 4.  Comparison of dimensionality reduction algorithms with EM clustering (Breast cancer data) 
 

 Silhouette 

Score 

Davies-Bouldin 

Index 

Calinski-

Harabasz Score 

Computation 

Time  

No reduction  0.6705  0.5325  794.2776  0.015s  

PCA  0.6911  0.4942  798.7168  0.011s  

ICA  0.5533  1.3636  121.1993  0.009s  

Randomised  

Projection  

0.7086  0.4374  873.3010  0.007s  

Feature  

Agglomeration  

0.6974  0.4616  821.5227  0.008s  

 

7. SUMMARY 
 

This study examines the impact of dimensionality reduction on clustering performance using 

PCA, ICA, Randomized Projection, and Feature Agglomeration in combination with K-Means 

and Expectation-Maximization (EM) clustering algorithms. The research is conducted on two 
real-world datasets: bankruptcy prediction and breast cancer diagnosis, both of which involve 

high-dimensional data where feature reduction techniques can enhance computational efficiency 

and clustering effectiveness.  
 

The findings demonstrate that dimensionality reduction significantly improves processing time, 

making clustering more efficient, particularly for large datasets. PCA and Feature Agglomeration 
help remove noise and redundant features, leading to more defined clusters, whereas Randomized 

Projection and ICA show mixed results depending on dataset characteristics. While 

dimensionality reduction often enhances cluster formation, some techniques may introduce 

information loss, affecting cluster separability and overall clustering performance.  
 

It is important to emphasize that the chosen datasets are used for reference purposes only—in 

real-world applications such as bankruptcy prediction and breast cancer diagnosis, where accurate 
decision-making is critical, dimensionality reduction must be applied with caution. While it 

enhances computation speed and efficiency, any loss of essential data could lead to inaccurate 

risk assessments or misdiagnoses. Therefore, the trade-off between processing efficiency and data 

integrity must be carefully evaluated before implementing dimensionality reduction in high-
stakes applications.  

 

A key takeaway from this study is that no single dimensionality reduction technique is universally 
superior, and the choice of method depends on the dataset, clustering algorithm, and the trade-off 

between computational efficiency and clustering effectiveness. This research highlights the 
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importance of carefully selecting dimensionality reduction techniques based on dataset properties 
and clustering objectives.  

 

By systematically comparing multiple dimensionality reduction approaches, this study provides 

valuable insights for optimizing clustering workflows in machine learning. The results are 
particularly relevant for applications in finance and healthcare, where high-dimensional data is 

common, and efficient, interpretable clustering is essential for decisionmaking. Future research 

could extend this analysis to other clustering methods, hybrid feature reduction approaches, and 
unstructured data, further refining best practices for dimensionality reduction in unsupervised 

learning.  

 

8. FUTURE SCOPE 
 
While this study provides insights into the impact of dimensionality reduction on clustering 

performance, several avenues for future research remain:  

 
Exploring Additional Clustering Algorithms – This study focuses on K-Means and 

Expectation-Maximization (EM) clustering. Future work could explore the impact of 

dimensionality reduction on other clustering techniques such as Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN), Agglomerative Clustering, and Spectral Clustering to 

assess their suitability for high-dimensional data.  

 

Hybrid Dimensionality Reduction Approaches – Instead of applying a single method, future 
studies could evaluate the effectiveness of hybrid approaches such as PCA followed by Feature 

Agglomeration or ICA combined with Randomized Projection. These combinations might 

balance the trade-offs between variance preservation, computational efficiency, and clustering 
performance.  

 

Application to Unstructured and High-Dimensional Data – The datasets used in this research 
are structured and tabular. Future work could extend the analysis to unstructured data, such as 

text, images, and time-series data, where dimensionality reduction techniques like word 

embeddings (e.g., Word2Vec, BERT), autoencoders, and t-SNE may significantly impact 

clustering performance.  

 

Scalability and Performance Optimization – As datasets grow larger, the efficiency of 

dimensionality reduction techniques becomes crucial. Future studies could analyze how these 
methods scale in big data environments using distributed computing frameworks such as Apache 

Spark or GPU-accelerated implementations to optimize performance in real-world applications.  

 

Impact on Cluster Quality Metrics – This study primarily evaluates clustering qualitatively. 
Future research could use a broader set of clustering validation metrics, such as Silhouette Score, 

Davies-Bouldin Index, Adjusted Rand Index, and Mutual Information Score, to quantitatively 

assess the effects of different dimensionality reduction methods on clustering quality.  

 

Robustness in Noisy and Imbalanced Datasets – Real-world datasets often contain noise, 

outliers, and class imbalances that can affect clustering results. Future studies could investigate 
how well different dimensionality reduction methods handle noisy or imbalanced data and 

whether pre-processing techniques, such as outlier removal or synthetic data augmentation, 

improve clustering performance.  

 
Domain-Specific Optimization and Interpretability – The choice of dimensionality reduction 

techniques may vary depending on the application domain. Future research could explore how 
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these techniques impact clustering in specific fields such as healthcare, finance, cybersecurity, 
and bioinformatics. Additionally, integrating explainable AI (XAI) methods could improve the 

interpretability of cluster assignments, making results more actionable for domain experts.  

 

By addressing these areas, future research can enhance the practical application of dimensionality 
reduction in clustering, optimizing trade-offs between computational efficiency, clustering 

accuracy, and interpretability across different machine learning domains.  
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