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ABSTRACT 
 
We often rely on human experts to assign true labels in medical datasets, which may not be 

100% accurate. We investigate the impact of labeling errors on machine-learning classi- fiers applied 
to medical datasets. By introducing symmetric errors from 0% to 40% in True labels— simulating 

errors of true labels assignment by experts, inter-observer variability, and automated annotation 

- we evaluate the impact of such errors in binary classification for several well-known medical 

datasets using traditional machine learning models and metrics. Although all models experience 

degradation as errors increase, simpler, well-regularized methods such as Logistic Regression and 

SVM decline more gracefully. Our results underscore the necessity for improved data curation and 

error-aware training strategies in medical AI, ultimately guiding the selection of robust algorithms 

that maintain reliability under imperfect real-world conditions. 
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1. INTRODUCTION 
 

The reliability of medical datasets is fundamentally challenged by labeling errors arising 
from multiple sources, including human misinterpretation, inter-observer variability, and 

limitations of automated annotation systems. In clinical practice, even expert practitioners 

can disagree on diagnoses due to ambiguous symptom presentations or limitations in 
imaging and laboratory test interpretations ([1], [2]), potentially undermining the 

performance of supervised learning models. Such inconsistencies are especially problematic 

in high-stakes decision-making, where minor labeling errors may result in significant 

diagnostic or prognostic inaccuracies. 
 

Prior research has shown that even modest label noise can significantly degrade the per - 

formance of supervised learning models ([3], [4]) underscoring the need for noise-aware data 
curation and algorithmic robustness in medical AI. In our study, we focus on traditional ma- 

chine learning classifiers to assess the impact of label noise on predictive performance across 

multiple clinical prediction tasks (sepsis prediction, breast cancer prognosis, stroke detection, 
heart disease diagnosis, and diabetes prediction). To replicate common labeling errors, we 

simulate random symmetric noise ranging from 0% to 40%, increasing in 5% increments.  

Al- though symmetric noise injection, in which labels are flipped uniformly at random, is a 

common method for assessing model robustness ([5], [6]), it does not always capture the 
complex, often systematic nature of mislabeling in real clinical settings. In reality, label 

https://airccse.org/journal/mlaij/vol12.html
https://doi.org/10.5121/mlaij.2025.12201


Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.2, June 2025 

2  

noise in medicine is class-dependent; for example, false negatives may be more common 
than false positives due to a clinician’s tendency to overlook mild signs of a disease ([7] 

[8]).We analyze six traditional machine learning classifiers, including Logistic Regression (LR), 

Decision Trees (DT), Random Forests (RF), Naïve Bayes (NB), K-Nearest Neighbors 

(KNN), and Support Vector Machines (SVM). These algorithms were chosen because 
they are well- established, interpretable, and generally perform well on structured 

medical data, especially when using limited sample sizes. In many healthcare classification 

tasks using structured data, simple models like Logistic Regression (LR) often achieve 
results that are comparable to com- plex models [9]. For several reasons, we intentionally 

opted not to use deep neural networks (DNNs) in our evaluation. First, many of the datasets 

under consideration have limited sample sizes, making them unsuitable for training high-
capacity DNN models, which are known to be especially prone to overfitting when subjected 

to noisy labels because of their high capacity to memorize incorrect labels. ([10], [11], [12]). 

Second, the interpretability of traditional models such as Logistic Regression and Support 

Vector Machines allows for a clearer understanding of how label noise impact model 
decision boundaries a crucial factor when translating findings into clinical practice [13]. 

Although advanced loss-correction and noise-adaptive training strategies have shown 

promise [14], they often require larger, well-curated datasets and extensive computational 
resources, beyond the scope of this investigation which will be a natural extension of this 

study in future works. Given our goal of analyzing the impact of label errors without 

additional confounding factors, we opted for classical algorithms, which are faster to train 
and easier to interpret. This approach aligns with prior efforts that focuses on label noise in 

smaller datasets, which frequently use traditional classifiers for baseline comparisons [9]. 

 

Our experiments systematically quantify degradation in standard metrics (accuracy, TPR, 
TNR, F1-score, and PPV) as noise increases. Though random symmetric noise does not 

entirely replicate the complex nature of real clinical mislabeling, In future work, we plan to 

explore class- dependent and systematic noise models, including deep learning architectures, 
aiming further to enhance the reliability and robustness of medical predictive models.  

 

1.1. Review of Prior Literature 
 

Label noise—errors in target annotations—has been recognized as a key challenge in 

machine learning, with early studies demonstrating that even modest mislabeling can 
lead to substan- tial performance degradation. For instance, Brodley et al. [3] showed that 

mislabeled training data undermines classifier reliability, exposing models’ vulnerability to 

even modest labeling errors. In a related study, Zhu et al. [4] quantitatively differentiated 

between class noise (in- correct labels) and attribute noise (errors in feature measurements), a 
distinction that has informed many subsequent noise-modeling approaches. Later research 

introduced the concept of class-conditional noise, emphasizing that errors affecting minority 

classes can be particularly damaging. In one stroke dataset study, flipping the rare positive 
cases led to disproportionately large drops in sensitivity [6]. 

 

As the field evolved, comprehensive surveys like the one by Freney et al. [15] provided de- 
tailed taxonomies of noise types and reviewed a variety of methods for detecting and 

mitigating label noise. Building on these insights, robust techniques emerged to address 

noisy labels in a targeted manner. For instance, Bootkrajang et al. [16] advanced noise-

robust logistic regression models that help prevent overfitting to erroneous labels—a key 
advancement when expert an- notations are both costly and prone to error. More recently, 

Northcutt et al. [17] introduced the Confident Learning framework, which quantitatively 

estimates label uncertainty and provides a principled approach for identifying suspect labels 
in large datasets. Such strategies are espe- cially critical in medical contexts, where 
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misdiagnoses or ambiguous labels can not only reduce model performance but also lead to 
dire clinical consequences. 

 

With the advent of deep learning, additional challenges have emerged.  Deep neural net- 

works, while powerful, are particularly susceptible to overfitting on noisy data. This has led 
to the development of specialized methods such as noise adaptation layers [10] and co-

teaching frameworks [18], which leverage multiple models simultaneously to filter out noisy 

instances. Furthermore, recent techniques employing self-attention and self-supervised 
learning have been shown to improve the robustness of models in the presence of label noise 

[2]. A recent com- prehensive survey by Shi et al. [19] highlights a diverse array of label-

noise handling strategies in deep learning for medical image analysis, reinforcing the 
necessity for robust, noise-aware training techniques even within classical machine learning 

settings. 

 

Notably, while extensive research has addressed label noise in computer vision and gen- 
eral machine learning, the unique challenges inherent to medical datasets remain largely un- 

derexplored. Unlike prior studies that often focus narrowly on a single dataset or 

disease, our research systematically explores the impact of label noise across multiple 
diverse medical datasets. Furthermore, in contrast to studies predominantly centered on 

deep neural networks,we comprehensively evaluate traditional, interpretable classifiers 

(Logistic Regression, Decision Trees, Random Forests, Naïve Bayes, KNN, and SVM) 
methods particularly valuable in clinical settings due to their interpretability and 

computational efficiency. Additionally, we critically examine the interaction between class 

imbalance and label noise. By explicitly bridging theory and practical implementation, our 

paper recommends choosing robust classifiers and noise-aware training strategies, ultimately 
enhancing the reliability and diagnostic precision of real-world medical machine learning 

applications. 

 
In practical system designs, while it is often useful to isolate and study the effects of noise 

under controlled conditions, real-world applications can benefit from integrating a 

preliminary noise-detection step. For example, removing outlier instances that appear 

mislabeled before applying oversampling or other data augmentation strategies can further 
enhance model per- formance ([2], [20]). This holistic approach to managing label noise is 

essential to ensure that machine learning models in sensitive domains such as healthcare 

remain both accurate and reliable. 
 

1.2. Datasets 
 
To test robustness in the presence of true labeling errors, we selected five public datasets that 

span different clinical tasks, disease prevalence, and feature types. This diversity ensures 

that our findings reflect various real-world challenges, from large-scale electronic health 
record (EHR) data to smaller genomic studies. Moreover, each dataset represents a clinically 

meaningful prediction task—diagnosis or prognosis—that aligns with practical needs in 

healthcare. Below, we describe each dataset in detail 
 

• Sepsis Prediction (MIMIC-IV): This dataset is derived from the publicly available 

MIMIC-IV database, which comprises de-identified electronic health records from critical 

care units. We extracted approximately 94,458 samples of adult ICU stays from this ex- 
tensive resource. Each record includes diverse clinical variables such as demographic data 

(age, gender), vital signs (e.g., blood pressure, respiratory rate, temperature), laboratory 

measurements (e.g., lactate levels, white blood cell count), and documented comorbidities.  
The goal is to predict the onset of sepsis—a severe and life-threatening response to infec- 
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tion. The labeled outcome indicates whether sepsis eventually develops, making it a binary 
classification task. This dataset is highly imbalanced, with sepsis occurring rela- tively 

infrequently. The possibility of label noise arises from diagnostic uncertainties and 

inconsistencies in the exact timing or severity level at which a clinician identifies sepsis,  all 

of which can lead to mislabeling in the electronic health record ([21], [22]). 
 

• GSE2034 (Breast Cancer Prognosis): GSE2034 is a microarray-based gene 

expres- sion dataset focusing on node-negative breast cancer patients, comprising 286 
samples in total. The dataset measures expression levels of thousands of genes, 

supplemented by basic clinical and demographic factors. The binary target class indicates 

whether a patient experiences distant metastasis (i.e., cancer recurrence) within a certain 
follow-up window. The data present an inherent class imbalance because the positive 

(recurrence) class is smaller. Furthermore, the high-dimensional nature of gene expression 

profiles means each sample has numerous features capturing complex biological signals.  

This complexity, coupled with limited sample size, makes any degree of label noise 
particularly consequential [23]. 

 

• Stroke Prediction: This dataset consists of 5,110 patient records compiled from 
various clinical and demographic sources, each containing 12 features. Common predictors 

include hypertension status, smoking history, average glucose levels, BMI, and other health 

indica- tors associated with cerebrovascular events. The binary outcome denotes whether or 
not a patient suffered a stroke, capturing both ischemic and hemorrhagic types. Although 

mod- erately sized, this dataset has a distinct positive-class rarity—fewer than 5% of patients 

experienced a stroke—which makes the prediction problem significantly imbalanced [24]. 

 
• Heart Disease Diagnosis (UCI dataset): This is a classic dataset from the UCI 

Machine Learning Repository, comprising 303 patient records related to coronary artery 

disease. Each record is accompanied by 13 clinical attributes, such as chest pain type, 
resting ECG results, serum cholesterol, and maximum heart rate achieved during physical 

exercise. The objective is to distinguish between individuals who do or do not have heart 

disease, making it a relatively balanced classification problem (roughly equal numbers of 

positive and negative cases). Despite its smaller size, this dataset remains widely used in 
benchmarks due to the relevance of features, their interpretability, and the simplicity of 

data preprocessing [25]. 

 
• Diabetes (Pima Indians) Prediction (UCI dataset): Another dataset from 

the UCI repository, this collection includes 768 samples of Pima Indian women, each 

with 8 numeric features such as plasma glucose concentration, diastolic blood pressure, 
body mass index, diabetes pedigree function, and age. The objective is to predict the 

onset of type 2 diabetes, leading to a binary classification of diabetic versus non-diabetic 

status. Although the class distribution is not extremely skewed, roughly a third of the 

samples are positive, which is enough to introduce moderate imbalance [26]. 
 

1.3. Classifiers 
 

We evaluated the following models: 

 

• Logistic Regression (LR) 
• Decision Tree (DT) 

• Random Forest (RF) 

• Naïve-Bayes (NB) 
• K-Nearest Neighbors (KNN) 
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• Support Vector Machine (SVM) 
 

2. EXPERIMENTAL SETUP 
 

We imputed missing numeric features via median or mean, one-hot encoded categorical 

values, and standardized continuous variables. A stratified 50% train-test split was repeated 
multiple times to reduce variance in performance.  

 

2.1. Label Noise Simulation 
 

To study the impact of incorrect labels, Following methodologies similar to [5] and [6],we 

injected synthetic noise into the training labels, by randomly flipping the ground truth 
labels of a fixed percentage of samples. 

 

Specifically, we applied symmetric label noise at varying rates to only the training set. 
Symmetric noise (also known as random noise) means any given training label has a fixed 

probability p of being switched with an incorrect label chosen uniformly at random from the 

other classes [27]. This approach, while not capturing class-dependent noise patterns 

common in medical settings, provides a controlled baseline for comparing model robustness 
[5]. Future work will extend this to class-biased noise models (e.g., higher mislabeling rates 

for minority classes). While asymmetric noise (class biased) can occur in real clinical 

settings (owing to systematic biases or certain classes being more prone to error) [27], we 
focused on symmetric noise for this initial analysis to isolate the impact of random errors. 

This assumption of noise being random and unbiased is commonly used in label noise 

research [28]. 
 

Noise levels ranged from 0% (i.e., clean labels) up to 40%, increasing in 5% increments. 

Each noise level experiment was repeated multiple times to account for randomness.  In our 

approach, we used different random seeds for the noise injection process and repeated each 
training/testing experiment N=10 times. This method calculates an average performance 

and a measure of variability for each classifier at each noise level. By varying the 

random seed, we effectively simulate different "realizations" of label noise, improving the 
robustness of our findings. To ensure reproducibility, all processes (such as label flipping 

and data shuffling) were controlled on recorded seed values. 

 

After noise injection, the training sets were balanced using different sampling strategies  
based on dataset characteristics. Specifically, random oversampling was applied for the 

genomics (GSE2034) and stroke datasets. In contrast undersampling was employed for the 

sepsis dataset to manage its large sample size and avoid overwhelming the minority class 
[20]. 

 

2.2. Evaluation Metrics 
 

We track five key metrics: 

 
• Accuracy: Proportion of correct predictions. 

• True Positive Rate (TPR): Fraction of positive cases correctly identified. 

• True Negative Rate (TNR): Fraction of negative cases correctly identified. 
• Positive Predictive Value (PPV): Added to indicate the precision or the 

proportion of predicted positives that are true positives.  

• F1 Score: Harmonic mean of precision (PPV) and sensitivity (TPR), providing a bal- 
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anced measure of model performance. 
• In addition to reporting standard performance metrics, we conducted a statistical 

analysis calculating the slope of metric degradation between noise levels (0% to 40%) 

for each classifier. For each dataset, a linear regression was fitted to the metric values, 

and the resulting slope indicates how quickly the accuracy of a model declines as the 
noise of the labels increases. A smaller absolute slope value signifies greater 

robustness. 

 

3. KEY OBSERVATIONS 
 

3.1. MIMIC-IV (Sepsis) Dataset 
 

Class Distribution: 

 

• Class 0: 84,826 
• Class 1: 9,632 

 
Table 1: Performance of six classification models for sepsis detection on MIMIC-IV under 

increasing levels of label noise (0%, 20%, and 40%). 

 

 
 

Key Observations: 

 

• SVM starts at 71.4% accuracy and only drops 8.1 points (to 63.3%) under 40% 
noise, the smallest decline among all models. Both TPR (78.1% → 68.9%) and TNR 

(70.4% → 62.5%) decrease gently, indicating balanced resilience.  

• KNN and RF are notably more sensitive to label noise, each losing 17+ points of 

accuracy by 40% noise. 
• LR’s TPR increases from 73.3% to 78.4%, while TNR steadily declines (70.8% 

→ 56.3%). In contrast, SVM’s TPR/TNR both show gentler decreases. 

• Naive Bayes shows large swings in TPR/TNR and ends up with the largest overall 
drop in accuracy (down to 40.6% from 69.4%). 

• Although RF had the highest clean-data accuracy (74.8%), its advantage diminished 

under noise; SVM, despite a lower baseline (71.40% accuracy), maintained 63.30% 
accuracy with relatively balanced TPR and TNR at high noise. 

• In the sepsis prediction task, SVM again outperforms with the lowest slope (–0.001843), 

followed by Logistic Regression at –0.002700, highlighting its resilience in noisy 

conditions. These patterns echo prior findings that high-capacity models can overfit to 
noisy labels more readily [29]. 

 

 
 

 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.2, June 2025 

7  

 ̃  ̃

3.2. Genome Breast Cancer (GSE2034) Dataset 
 

Class Distribution: 

 
• Class 0: 217 

• Class 1: 69 
 

Table 2: Performance of six classification models for breast cancer detection on GSE2034 under 

increasing levels of label noise (0%, 20%, and 40%). 

 

 
 
Key Observations: 

˜
 

Key Observations: 

 

• SVM is the most robust in accuracy, degrading by only 1̃0 points. 

• KNN also degrades relatively little (1̃1 points), surprisingly more stable here than in some 

other datasets. 

• LR and RF, which start with the highest accuracies (7̃6% but low TPR) experience fairly 

large drops (20 and 19 points, respectively). Their TNR plummets more severely than 

most, showing that they become more susceptible to false positives under label 
noise. 

• SVM achieves the best performance with a slope of -0.002581, while logistic regression 

suffers the steepest degradation (–0.004916) followed by Random Forest (-0.004720), 
in- dicating that SVM retains precision more effectively with increasing Label Noise in 

this highly dimensional dataset. 

 

3.3. Stroke Dataset 
 

Class Distribution: 

 

• Class 0: 4,860 

• Class 1: 249 
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Table 3: Performance of six classification models for stroke prediction under increasing levels of 

label noise (0%, 20%, and 40%). 

 

 

 

Key Observations: 

 
• Most models degrade sharply, losing 22–34 points of accuracy by 40% noise. This is 

one of the largest noise impacts across datasets. 

• Random Forest holds the top accuracy across all noise levels but suffers a 29.6-point 

drop (94.26% → 64.63%), revealing notable sensitivity to high label noise. 

• LR has the smallest negative drop among the high-accuracy models (2̃2 points, whereas 

SVM, KNN, and RF all lose 3̃ 0  points from their 0% baselines. 
• DT sees the largest absolute decline (34 points). It starts at 91.69% and drops to 

57.55%. 

• Although overall degradation is higher in this dataset, Logistic Regression (–0.005020) 
and SVM (–0.005907) maintain relatively lower slopes compared to Random Forest (–

0.007474) and KNN (–0.007522). 

 

3.4. Diabetes Dataset 
 

Class Distribution: 

 

• Class 0: 500 

• Class 1: 268 

 
Table 4: Performance of six classification models for diabetes prediction under increasing levels of 

label noise (0%, 20%, and 40%). 

 

 
 

Key Observations: 

 

• Naive Bayes emerges as the most stable when looking at the magnitude of performance 

changes, especially in accuracy (74.8% → 69.1%, a 5̃ . 7-point drop) and PPV (65.3% 
→ 56.2%). Its TPR/TNR balance shifts less drastically than other models. 

• LR and SVM indeed degrade more gradually (7-9 points) compared to KNN and 
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RF (15+). 
• DT and KNN show marked vulnerability to label noise, falling below 60% accuracy at  

20% noise and ending near the mid-50% range at 40% noise. TNR, in particular, 

collapses quickly for DT. 

• RF starts off strong but ends up at 60.0% accuracy by 40% noise. While it still 
outperforms DT and KNN in raw accuracy, its TNR and PPV have large absolute drops, 

indicating a bigger shift away from its conservative baseline.  

• Logistic Regression (–0.001427) and SVM (–0.001740) show notably less steep 
declines in accuracy than Random Forest (–0.003663), Decision Tree (–0.003980), and 

KNN (–0.004097), suggesting higher stability under noise.  

 

3.5. Heart Disease Dataset 
 

Class Distribution: 

 

• Class 0: 160 

• Class 1: 137 
 
Table 5: Performance of six classification models for heart disease prediction under increasing levels 

of label noise (0%, 20%, and 40%). 
 

 
 

Key Observations: 

 
• SVM distinguishes itself with high overall performance and a smaller drop than many 

models, leading at both the mid (20%) and high (40%) noise points in accuracy and 

F1. 

• LR, KNN, and RF all experience moderate-to-large overall declines, though each 
retains a reasonable balance between TPR and TNR until very high noise. 

• DT suffers more considerably, falling below 54% accuracy at 40% noise with the lowest 

final F1 
• Within the Heart Disease dataset, the Support Vector Machine (SVM) exhibits the 

slowest rate of accuracy decline (following NB) with a slope of –0.003363. In 

comparison, Logistic Regression, Decision Trees, Random Forests, and K-Nearest 
Neighbors have steeper slopes (–0.004383, –0.004290, –0.004453, and –0.004630 

respectively), indicating that SVM is less adversely affected by increasing label noise. 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.2, June 2025 

10  

Model Wise Accuracy and Slope Comparison 

 
Logistic Regression - Accuracy  Support Vector Machine - Accuracy 
 

 

 

Random Forest - Accuracy   K-Nearest Neighbours - Accuracy 
 

 

 

Decision Tree - Accuracy   Naive Bayes - Accuracy 
 

 

Figure 1: Model wise Accuracy and Slope Comparison across the 5 Datasets 

 
Table 6: Model Degradation slopes 

 
Sepsis (MIMIC-

IV) 

Genomics 

(GSE2034) 
Stroke Diabetes Heart Disease 

SVM: -0.001843 SVM: -0.002581 NB: +0.006016 NB: -0.000983 NB: -0.00285 

LR: -0.002700 KNN: -0.003084 LR: -0.005020 LR: -0.001427 SVM: -0.003363 

DT: -0.003283 DT: -0.003492 SVM: -0.005907 SVM: -0.001740 DT: -0.004290 

RF: -0.004247 NB: -0.004101 RF: -0.007474 RF: -0.003663 LR: -0.004383 

KNN: -0.004443 RF: -0.004720 KNN: -0.007522 DT: -0.003980 RF: -0.004453 

NB: -0.005180 LR: -0.004916 DT: -0.008564 KNN: -0.004097 KNN: -0.004630 
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4. DISCUSSION 
 

4.1. Impact of Label Noise 
 

Our findings underscore several patterns regarding label noise tolerance in medical 
dataset contexts. First, we observed clear tipping points beyond which model 

performance degrades rapidly. In most datasets, performance was relatively stable up to 

about 10% noise (sometimes 15%), with only small increases in error. Beyond this 
threshold, additional noise led to more pronounced declines. For example, in the heart 

disease dataset a noticeable inflection occurred at 15% noise; in the gene expression data, 

error rates accelerated after 10% label noise. These tipping points likely correspond to 

the point at which the noise starts overwhelming the true signal in the data. Up to a low 
noise level, models can often identify and largely ignore a few mislabeled outliers 

(treating them as noise in the error term). But once a critical mass of labels is wrong, the 

algorithms begin to learn incorrect decision boundaries. This critical noise level will 
depend on the dataset’s complexity and redundancy of predictive features [15], [6], [7]). For 

GSE2034 (high complexity, limited samples), the tipping point was quite low; for a more 

redun- dant dataset like heart disease (many patients, correlated features like chest pain and 

ECG), the models withstood higher noise before breaking down. In practical terms, this 
suggests that if a medical dataset is suspected to have label error rates beyond 10-15%, 

one should be prepared for significant performance issues or should apply noise-robust 

training techniques. Sensitiv- ity, critical for detecting rare positive cases, is particularly 
affected—especially in imbalanced datasets such as stroke prediction. These findings echo 

prior research ([15], [6]) which found that even modest mislabeling can substantially confuse 

classifiers when the positive class is scarce. The Observed rapid decline in Performance 
with increasing label noise is earlier findings that highlight a tipping point beyond which the 

true signals are overwhelmed ([6], [7]). Furthermore, Khanal et al. [8] provide evidence that 

when label noise is class-dependent—especially in sce- narios with high inter-class visual 

similarity—it can adversely affect not only the noisy classes but also propagate errors to 
otherwise clean classes 

 

4.2. Model-Specific Robustness 
 

In noise-free or low-noise conditions, more complex models (e.g., random forests) often 

yield higher accuracy – they can capture nonlinear patterns and interactions that simpler 
models miss. However, as the noise grew, these complex models typically suffered larger 

performance hits, allowing simpler models to overtake them. After considering all the 

metrics across the 5 datasets we see: 
 

1. Logistic Regression (LR): LR exhibited one of the most gradual decline across noise 

levels. Its regularized linear structure prevented overfitting, thereby preserving a 

relatively bal- anced sensitivity and specificity—even as overall accuracy dropped. Its 
linear form and convex training objective likely contributed to stable performance – it 

cannot memorize outliers the way a non-parametric method can. This gentle decline 

under noisy conditions may make LR a suitable choice when we are unsure of the 
data quality. Its robustness can be demonstrated by observing its slope values 

across multiple datasets. For exam- ple, in the Diabetes dataset, LR’s accuracy slope 

is –0.001427, meaning its performance barely decreases even with rising noise. In 
contrast, in the Genomics (GSE2034) dataset, LR’s slope is –0.004916, suggesting that 

high-dimensional, small-sample conditions make it more sensitive. In the heart disease 

dataset, LR’s slope of –0.004383 places it in the mid-range; however, in the Sepsis 
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dataset, LR’s slope of –0.002700 highlights its strong robustness even in imbalanced 
settings. In the challenging Stroke dataset, LR’s slope is –0.005020—still more 

gradual than the declines seen for methods such as Random Forest, KNN, and DT. 

Overall, LR’s consistently low slopes (especially in Diabetes and Sepsis) provide 

strong evidence of its robustness under label noise. This superior robustness of simpler 
models, such as logistic regression in noisy environments, is in line with earlier works 

on noise robust methods ([16], [29]). 

 
2. Support Vector Machine (SVM): Although SVM achieved high baseline accuracy, its  

re- liance on support vectors made it more vulnerable under noise. In the heart disease 

dataset, its slope of –0.003363 is lower than that of Random Forest (–0.004453) 
and KNN (–0.004630), indicating less sensitivity to noise.  In the Diabetes dataset, 

SVM’s 

–0.001740 slope is competitive, while in the Genomics dataset it achieves a top 

slope of 
–0.002581. Furthermore, in the Sepsis dataset, SVM records the best performance 

with a slope of –0.001843. Even in the Stroke dataset—where slopes are overall 

higher—SVM’s 
–0.005907 remains lower than those of RF, KNN, and DT. These results indicate that  

SVM is generally more effective at maintaining accuracy as label noise increases.  

With strong regularization, SVM could potentially improve, but our default RBF SVM 
declined faster than LR in some settings [13]. 

 

3. Random Forest (RF): RF started with high accuracies, but its advantage eroded as 

noise increased. Its ensemble averaging helps, but when many trees are affected by 
noise, both sensitivity and specificity suffer. For example, in the Diabetes dataset 

its slope is –0.003663 and in the Heart Disease dataset it is –0.004453. In the 

Genomics dataset, RF’s slope is –0.004720, and in the Sepsis dataset, it reaches 
 –0.004247. These steeper slopes (Compared to LR and SVM ) suggest that the 

ensemble benefits of RF are compro- mised when many trees are impacted by 

mislabeled data, resulting in reduced sensitivity and specificity. The averaging effect 

in RF reduces variance and dilutes the impact of any single noisy instance. Yet, RF 
can still overfit if many trees see the same mislabeled points, especially when the noise 

is widespread (Falloff point at 20-25% across datasets). 

 
4. K-Nearest Neighbors (KNN) and Decision Tree (DT): Both were highly sensitive to 

noise. In the Diabetes dataset, KNN’s slope is –0.004097 and DT’s is –0.003980. In 

the Heart Disease dataset, their slopes are –0.004630 (KNN) and –0.004290 (DT). In 
the Genomics dataset, KNN and DT have slopes of –0.003084 and –0.003492, 

respectively. Furthermore, in the Sepsis dataset KNN’s slope is –0.004443 and DT’s is 

–0.003283, and in the Stroke dataset, the declines are even steeper at –0.007522 for 

KNN and –0.008564 for DT. These values indicate that both methods rapidly lose 
accuracy as label noise increases, making them less reliable when data quality is 

questionable. KNN, lacking any built-in noise filtering, and DT, with its greedy splits, 

suffered the most dramatic performance drops. In these cases, sensitivity and 
specificity declined to near-chance levels under high noise. For Decision Trees 

Pruning or limiting depth helps but doesn’t solve the problem. K-Nearest Neighbors 

also struggle with noise, as incorrect neighbors can influence the majority vote. A large 
k reduces sensitivity but dilutes the local signal. While robust KNN variants exist, we 

used the standard version. Our results indicate KNN is unreliable with even modest 

label errors, a key point for medical settings where it is sometimes used for its 

simplicity and interpretability [4]. 
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5. Naïve Bayes (NB) exhibited dataset-dependent behavior. In stroke prediction, it main- 

tained higher sensitivity at moderate noise due to tuned probabilistic thresholds for 

posi- tives, while other models became biased toward negatives [30]. However, NB’s 

specificity suffered, and in general, its accuracy was middling. NB’s strong 
assumptions (feature independence) act as a double-edged sword: they prevent it from 

fitting complex patterns (which is good under noise), but they also limit its peak 

accuracy on clean data. 
 

These cross-over points highlight a practical consideration: when data quality is high, one 

might prefer a powerful model to maximize accuracy, but if even moderate label noise is 
present, a simpler approach could actually generalize better on clean test data.  This 

reinforces the importance of diagnosing dataset quality; a clinician or data scientist should 

not automatically choose the model with the best in-sample performance without considering 

the potential errors in labels. 
 

4.3. Role of Class Imbalance 
 

The chosen sampling strategies effectively balanced the training data. For the genomics 

(GSE2034) and stroke datasets, random oversampling was used, which can replicate 

mislabeled instances and amplify noise effects [20]. In contrast, for the sepsis dataset, 
under sampling was adopted due to its large size, and extreme imbalance. This method 

reduced training time and prevented the majority class from dominating the learning 

process. However, undersampling may impact the noise distribution differently from 
oversampling by potentially discarding some informa- tive examples, which could affect 

the model’s ability to generalize [31]. Although oversampling improved baseline sensitivity, 

it did not prevent substantial declines in sensitivity as noise in- creased. Future work will 
explore alternative strategies, such as synthetic data generation (e.g., SMOTE) or cost -

sensitive learning, to better balance these challenges. 

 

4.4. Practical Implications 
 

Below are the key practical implications drawn from our work: 

 
• Our study’s real-world implications include the importance of data quality in 

medical AI. Medical labels (diagnoses, outcomes, etc.) can often be noisy in practice 

due to recording errors, inter-observer variability, or ambiguous conditions [15]. Our 
results quantifiably show that even modest rates of label noise (10-15%) can 

significantly effect a model’s performance metrics like sensitivity or specificity which 

is especially concerning for high-stakes applications like sepsis early-warning systems. 
This finding emphasizes the need for rigorous data curation via expert reviews, 

consensus-driven labeling, and the implementation of standardized annotation 

protocols with periodic audits [6]. 

 
• When using secondary EHR data, researchers should be aware of potential mislabeling 

and consider techniques to handle it, such as robust training algorithms or human-in-

the-loop correction for outliers. Techniques such as cost-sensitive learning [29], noise-
robust loss functions [16], or even recent frameworks like Confident Learning [17] 

have been shown to improve performance on contaminated datasets. Moreover, recent 

advances in active label cleaning—such as the approach proposed in [32] offer a 
promising avenue for iteratively refining datasets by prioritizing re-annotation of the 

most uncertain samples under limited resource conditions 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.12, No.2, June 2025 

14  

 
• In scenarios where training data are inherently noisy, simpler models that avoid 

overfitting to outliers—such as Logistic Regression and Support Vector Machines—

may be preferable, as they have demonstrated a more gradual performance decline 

compared to more complex alternatives. 
 

• In clinical environments, the robustness of a model under imperfect data conditions is 

crucial. Regulatory bodies and practitioners may favor models that demonstrate 
stability and reliable performance over those that only excel on meticulously curated 

datasets. Pro- viding quantitative benchmarks on noise tolerance can support evidence-

based decision- making and encourage deployment strategies that prioritize resilience 
to data imperfec- tions, even at the cost of a modest reduction in peak performance 

[13]. 

 

4.5. Limitations 
 

There are a few Limitations to our study 
 

• First, the noise we injected is random (symmetric) noise. In reality, label noise in 

medicine is often systematic or class dependent. For example, perhaps false negatives 

are more common than false positives (a doctor might miss a condition rather than 
label a healthy person as ill) [15], [6]. Our experiments did not specifically simulate 

class-biased noise, which can have different effects (often more detrimental, since it 

effectively changes class prevalence and confuses the learner) . Future work could 
introduce noise that preferen- tially flips positives to negatives or vice versa to mimic 

real error tendencies. 

 
• Second, our use of oversampling means the effective training size increases for 

minority classes. While this helped us analyze sensitivity, it also means the training 

distributions at different noise levels weren’t strictly identical in terms of sample count 

[20]. We attempted to control this by keeping the oversampling procedure consistent, 
but there is a possibility that some observed effects are partly due to interactions of 

noise with oversampling. Using alternative imbalance methods (or evaluating on 

the imbalanced test set) might shed more light here. Combining noise filtering with 
oversampling (e.g., SMOTE+ENN) could further mitigate the adverse effects of 

replicated noise [33]. 

• Third, we focused on traditional machine learning models. We did not include neural 

network models, which are known to be powerful but also especially prone to label 
noise memorization [10]. The choice was partly due to the limited sample size of 

some datasets (deep learning would risk overfitting anyway on such small data) and to 

maintain inter- pretability of results. Although this choice was motivated by concerns 
regarding dataset size and interpretability, it restricts the generalizability of our 

findings. However, deep learning is increasingly applied to larger medical datasets 

(like MIMIC-IV); exploring noise impact on neural networks with techniques such as 
dropout, noise-robust loss functions, or semi-supervised learning would be a valuable 

extension of this study we plan on pursuing in the future works. 

 

• We used default or limited hyperparameter settings. Since models like RBF SVMs 
and Random Forests are sensitive to tuning, our results might partly reflect 

suboptimal con- figurations rather than true robustness. Future work should include 

extensive sensitivity analysis and hyperparameter optimization across noise levels. 
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• Lastly, our analysis treated each dataset in isolation. One could also consider 
model transferability under noise: e.g., train on a noisy dataset and test on a 

different (clean) dataset for the same task – how well does the model generalize? This 

could reflect scenarios like training on one hospital’s noisy labels and testing on 

another’s validated registry. We did not explore that cross-dataset transfer. 
 

4.6. Noise Mitigation Strategies 
 

Our experiment was intentionally designed to investigate the raw impact of label noise 

without using any corrective procedures. However, there is a wealth of research on strategies 

that mitigate the effects of noisy labels. For completeness and to guide future work, we 
discuss several such strategies: 

 

• Robust Loss Functions : Alternatives to standard cross-entropy, such as Mean 
Absolute Error (MAE), Generalized Cross-Entropy (GCE), or symmetric cross-entropy 

(SCE), have demonstrated resilience to label errors ( [34], [12] ). Substituting 

these in place of the standard loss can reduce the undue influence of mislabeled 
samples [12]. Although not used here, our future work, particularly with deeper 

architectures, will adopt such robust losses to mitigate performance degradation. 

 

• Confident Learning and Data Cleansing: Confident learning [17] attempts to 
flag potentially incorrect labels by examining agreement patterns or model 

predictions. Then, they either relabel or discard questionable cases. We 

intentionally left noisy labels intact to see their full effect, but real-world practice 
would likely benefit from auditing and filtering mislabeled samples.  

 

• Label Smoothing:  A popular technique in neural network training, label 
smooth- ing replaces hard labels with a softened distribution (e.g., 0.9 for the true 

class, spread among other classes). This helps when labels may be incorrect, because it 

prevents the model from overfitting to any single (potentially wrong) label. Although 

it generally ap- plies to models that train on probabilistic label vectors (e.g., deep nets) 
and not standard classifiers, label smoothing is a practical and and lightweight way to 

combat label noise. [35] 

• Semi-Supervised and Re-Labeling Approaches: Semi-supervised learning can it- 
eratively refine noisy labels when only a subset of labels are trusted by using the 

model’s confident predictions as pseudo-labels. By treating suspicious samples as 

“unlabeled” and applying methods such as MixMatch or co-teaching, we can 

iteratively correct or refine noisy labels. Such methods effectively learn from noisy 
data by alternating between iden- tifying which labels might be wrong and updating 

the model, eventually converging to a cleaner label set ( [36], [37], [12] ). While 

our scope did not involve unlabeled data or splitting out a trusted subset, semi-
supervised strategies can be highly effective when partial label noise is expected, and 

additional resources allow for iterative data refinement. Noise mitigation methods 

range from robust losses to fully automated label correction, and each can 
complement or be combined with standard preprocessing. Our goal was to 

establish a baseline on unaltered noisy datasets, but our future research will explore 

these strategies to quantify how effectively they reduce the performance gap caused by 

mislabeled data. 
 

4.7. Implications Beyond the Healthcare Context 
 

The observed trends—such as simpler models outperforming complex ones under label noise 
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and class imbalance exacerbating sensitivity degradation—align with findings in non-
medical domains. This suggests broader applicability to tasks like fraud detection or 

equipment fault diagnosis, where label noise and imbalance are common [15]. 

 

• Moreover, scaling to larger datasets, such as multi-hospital electronic health record 
(EHR) repositories or massive image and text corpora, does not necessarily eliminate 

the under- lying trade-off between model complexity and noise robustness. While 

distributed train- ing frameworks make it feasible to train large, over-parameterized 
models on extensive datasets, recent theoretical work by Priebe et al [38] suggests that 

deep neural networks can tolerate high levels of symmetric label noise, approaching 

100% noise under certain asymptotic conditions, essentially achieving Bayes-optimal 
performance as long as the noise rate is below 100% for each class.  In practical terms, 

this means that if one has a massive dataset (and a model with appropriate capacity and 

regularization), the model might still learn the correct concept despite many wrong 

labels, simply because the sheer volume of data offers enough redundancy [38]. For 
instance, convolutional neural networks have been shown to tolerate 40–50% 

symmetric noise when paired with careful training strategies such as early stopping ( 

[11],[35]). In contrast, our classical models exhibited steady performance degradation 
even under moderate noise (10–30%), underscoring that noise impacts vary with 

model complexity. 

 
• Scalability presents practical challenges. Manual label auditing, while viable for 

datasets of a few thousand instances, becomes impractical when dealing with hundreds 

of thousands or millions of samples. In such cases, automated methods such as 

confident learning [17] are crucial for identifying and mitigating label errors. 
Benchmark dataset surveys in computer vision, natural language processing, and audio 

domains report average test set label errors of about 3-4%, which may alter state-of-

the-art rankings [17]. Thus, despite the potential advantages of having large volumes 
of data, high label quality remains essential. 

 

• These considerations extend to various domains where labels often come from noisy 

prox- ies—finance (e.g., credit risk or fraud detection), advertising (e.g., click or 
engagement metrics), and other high-throughput industrial settings (e.g., fault 

diagnosis). Synthetic noise injection, as employed in our study, can help 

systematically evaluate how sensi- tive different algorithms are to label quality. 
Across such tasks, ensemble methods and carefully regularized neural networks tend to 

show relatively greater resilience to noise, although no model is completely immune to 

its effects. 
 

• Furthermore, computational constraints influence model selection. Scalability issues 

may rule out of traditionally used classifiers (e.g., SVMs or KNN) in favor of 

models that support stochastic optimization (e.g., logistic regression or deep 
networks), especially when combined with noise-robust strategies. Therefore, while 

our core observation—that label noise impairs performance and that model 

tolerance differs—is expected to hold across domains, successful deployment at 
scale will require integrating domain-specific noise mitigation and efficient 

computational techniques. 

. 

5. CONCLUSION 
 
This study systematically examined how labeling errors impact the performance of several 

machine learning models across five medical datasets. Our results reveal that w hile all 
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models experience performance degradation under noise, the effect on sensitivity is  
especially pro- nounced in imbalanced settings. Our results show that label noise can 

substantially impair model accuracy and, more importantly, the ability to correctly identify 

positive cases (sensitiv- ity) in medical predictions. Even at noise levels as low as 10–15%, 

we noted the beginning of significant drops in performance for more complex models. 
Simpler and well-regularized models like logistic regression and SVM demonstrated 

relatively strong robustness, degrading gracefully as labeling errors increased [13]. In 

several datasets, these models outperformed more flexible learners once noise passed a 
critical threshold (around 20% - 25% in many cases). Ensemble methods (random forests) 

improved over single decision trees in noise tolerance, but still even- tually succumbed to 

high noise. The use of random oversampling ensured that minority-class performance was 
improved in baseline conditions; however, it did not immunize the models against noise – in 

fact, it sometimes amplified the effect of label errors on sensitivity by repli- cating those 

errors. This highlights a trade-off: oversampling addresses imbalance but must be applied 

carefully when labels are noisy. 
 

From a practical standpoint, our study suggests that data curation and preprocessing are 

paramount in medical machine learning. Efforts to reduce label noise – through better 
label- ing processes, adjudication of disagreements, or algorithmic noise detection – could 

pay large dividends in model reliability ([5], [16]). When some noise is inevitable, choosing 

learning al- gorithms that are inherently noise-resistant or incorporating robust training 
techniques (e.g., loss functions that cap the influence of outliers or training with label noise 

simulation as data augmentation) may help. Additionally, monitoring metrics like sensitivity 

and specificity across noise levels provides insight into how a model’s errors shift; for 

instance, noticing a steep sensi- tivity decline might indicate the model has started favoring 
the majority class due to noise. In imbalanced medical problems (like stroke), maintaining 

sensitivity is often clinically crucial, so one might accept some loss in specificity to keep 

sensitivity high – techniques such as adjusting decision thresholds or using cost-sensitive 
learning could be explored as noise increases. Our comprehensive evaluation reinforces that 

label noise is a critical factor that can erode the perfor- mance of predictive models in 

healthcare. We demonstrated clear patterns of which models hold up better and how 

performance metrics cross over as noise grows. By highlighting these thresh- old effects, we 
hope this work informs practitioners about the robustness limits of standard ML models.  The 

findings encourage a few concrete next steps. Future research should examine advanced 

noise-handling methods in the context of medical data – for example, applying noise- robust 
neural networks or integrating human feedback to correct noisy labels, and comparing those 

approaches with the baseline degradations we reported. Another direction is to study 

asymmetric noise reflective of real clinical errors (such as systematically missing diagnoses) 
and test whether our observed model ranking still holds ([15], [6]). Moreover, developing 

hybrid solutions that tackle both imbalance and noise jointly (perhaps an improved 

oversampling that avoids duplicating suspected noisy examples ) would be highly valuable.  

Ultimately, addressing label noise will enhance the trustworthiness and safety of machine 
learning systems in medicine. By understanding how much noise a given model can 

handle before it “breaks,” stakeholders can make informed decisions on data quality 

requirements and model selection for deployment. Our work provides a step in that direction, 
offering a benchmark for noise impact in several representative medical classification tasks 

and underscoring the need for robust algorithms that can perform reliably amidst the 

imperfections of real-world data. 
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