
Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

DOI:10.5121/mlaij.2020.7401 1

A NEWLY PROPOSED TECHNIQUE FOR

SUMMARIZING THE ABSTRACTIVE NEWSPAPERS’
ARTICLES BASED ON DEEP LEARNING

Sherif Kamel Hussein1 and Joza Nejer AL-Otaibi2

1Associate Professor – Department of Communications and Computer Engineering

October University for Modern Sciences and Arts, Giza- Egypt
1,2Head of Computer Science Department, Arab East Colleges for Graduate

Studies, Riyadh, KSA

ABSTRACT

In this new era, where tremendous information is available on the internet, it is of most important to

provide the improved mechanism to extract the information quickly and most efficiently. It is very difficult
for human beings to manually extract the summary of large documents of text. Therefore, there is a

problem of searching for relevant documents from the number of documents available, and absorbing

relevant information from it. In order to solve the above two problems, the automatic text summarization is

very much necessary. Text summarization is the process of identifying the most important meaningful

information in a document or set of related documents and compressing them into a shorter version

preserving its overall meanings. More specific, Abstractive Text Summarization (ATS), is the task of

constructing summary sentences by merging facts from different source sentences and condensing them

into a shorter representation while preserving information content and overall meaning. This Paper

introduces a newly proposed technique for Summarizing the abstractive newspapers’ articles based on

deep learning.

KEYWORDS

Abstractive Text Summarization, Natural Language Processing, Extractive Summarization, Automatic Text

Summarization, Machine Learning.

1. INTRODUCTION

Nowadays with the dramatic growth of the Internet, there is an explosion in the amount of text

data from a variety of sources. That may lead to an expansion for the availability of the

documents that need an exhaustive research in the area of automatic text summarization [1]. The

volume of text is considered as an invaluable source of information and knowledge, which needs
an effective summarization to be useful. Text summarization is the problem of creating a short,

accurate, and fluent summary of a longer text document [1].Automatic text summarization

methods are greatly needed to address the ever-growing amount of text data that are available
online to discover and consume the relevant information faster [2]. Text Summarization methods

can be classified into extractive and abstractive summarization [3]. An extractive summarization

method consists of selecting important sentences, paragraphs etc. from the original document and
concatenating them into shorter form. An Abstractive summarization is based on understanding

the main concepts in a document and then express those concepts in clear natural language [3].

http://airccse.org/journal/mlaij/vol7.html
https://doi.org/10.5121/mlaij.2020.7401

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

2

There are many reasons why Automatic Text Summarization is useful [4]:

• Summaries reduces reading time.

• When researching documents, summaries make the selection process easier.

• Automatic summarization improves the effectiveness of indexing.

• Automatic summarization algorithms are less biased than human summarizers.

• Personalized summaries are useful in question-answering systems as they provide
personalized information.

• Using automatic or semi-automatic summarization systems enables commercial abstract

services to increase the number of text documents that are able to process.

Automatic text summarization is a common problem in machine learning and natural language

processing (NLP). Skyhoshi, who is a U.S.-based machine learning expert with 13 years of
experience and currently teaches people his skills, said that “the technique has proved to be

critical in quickly and accurately summarizing voluminous texts, something which could be

expensive and time consuming if done without machines.” Machine learning models are usually
trained to understand documents and distill the useful information before extracting the required

summarized texts. With such a big amount of data circulating in the digital space, there is a need

to develop machine learning algorithms that can automatically shorten longer texts and deliver

accurate summaries that can fluently pass the intended messages. Applying text summarization
reduces reading time, accelerates the process of researching for information, and increases the

amount of information that can fit in an area [5]. In this study,the machine-learning approach will

be used to conduct a model to produce an abstractive text summarization based on Python
programming language.

1.1. Main Steps for Text Summarization

There are three main steps for summarizing documents. These are topic identification,

interpretation and summary generation [3]. First step, is Topic Identification which identifies the
most prominent information in the text. There are different techniques for topic identification as

Position, Cue Phrases and word frequency. Methods which are based on that position of phrases

are the most useful methods for topic identification. Second Step, is the Interpretation. In This

step, different subjects are fused in order to form a general content. Finally the third step is the
Summary Generation in which, the system uses the text generation methods.

2. LITERATURE REVIEW

2.1. Abstractive Summarization with the Aid of Extractive [6]

This technique proposed a general framework for abstractive summarization which incorporates
extractive summarization as an auxiliary task by composeding of a shared hierarchical document

encoder, an attention-based decoder for abstractive summarization, and an extractor for sentence-

level extractive summarization. Learning these two tasks jointly with the shared encoder allow to
better capture the semantics in the document. Furthermore, experiments on the Cable News

Network (CNN)/Daily Mail dataset demonstrate that both the auxiliary task and the attention

constraint contribute to improve the performance significantly, and their model is comparable to

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

3

the state-of-the-art abstractive models. In particular, general framework of their proposed model
is composed of 5 components namely: word-level encoder encodes the sentences word-by-word

independently, sentence- level encoder encodes the document sentence-by-sentence, Sentence

extractor makes binary classification for each sentence, Hierarchical attention calculates the

word-level and sentence-level context vectors for decoding steps, Decoder decodes the output
sequential word sequence with a beam-search algorithm.

2.2. Toward Abstractive Summarization using Semantic Representations

Arxivpreprint, Arxiv: [7]

This technique presented a novel abstractive summarization framework that draws on the recent

development of a treebank for the Abstract Meaning Representation(AMR).In this framework,

the source text is parsed to a set of AMR graphs, the graphs are transformed into a summary
graph, and then text is generated from the summary graph. They focus on the graph-to graph

transformation that reduces the source semantic graph into a summary graph, making use of an

existing AMR parser and assuming the eventual availability of an AMR-to text generator. The

framework is data-driven, trainable, and not specifically designed for a particular domain.
Experiments based on gold standard AMR annotations and system parses show promising results.

2.3. Abstractive Document Summarization Via Bidirectional Decoder [8]

This technique introduced an abstractive document summarization via bidirectional decoder. It is

based on Sequence-to-sequence architecture with attention mechanism which is widely used in
abstractive text summarization, and has achieved a series of remarkable results. However, this

method may suffer from error accumulation. It proposed a Summarization model using a

Bidirectional decoder (BiSum), in which the backward decoder provides a reference for the
forward decoder. The authors used attention mechanism at both encoder and backward decoder

sides to ensure that the summary generated by backward decoder can be understood.

Experimental results show that the work can produce higher-quality summary on Chinese
datasets Transport Topics News (TTNews) and English datasets Cable News Network

(CNN)/Daily Mail.

2.4. A Comprehensive Survey on Extractive and Abstractive Techniques for Text

Summarization [9]

In this technique the generation of summary is done by understanding the whole content and

representing it in its own terms. This is achieved using a Recurrent Neural Network consisting of

Gated Recurrent Unit (GRU) or Long Short-Term Memory (LSTM) cells. The author highlights
the recent abstractive techniques used for text summarization and provides information on the

standardized datasets in addition to testing methodologies that are used to evaluate the

performance of the system. For instance, structured approach fundamentally encodes the most

indispensable information from the document(s) through mental blueprints like layouts,
extraction principles, and elective structures like tree, ontology, rule, and graph structure. On the

other hand, in tree-based approach, sentences from multiple documents are clustered according to

the themes they represent. Second, these themes are re-ranked, selected, and ordered according to
their significance. The formed syntactic trees are subsequently merged using Fusion Lattice

Computation to assimilate information from different themes. Linearization is carried out for the

formation of sentences from the merged tree using Tree traversal.On the other hand, Graph-Based
Approach uses the graph data structure for language representation. The sentence formation is

subjected to constraints such as, it is mandatory to have a subject, verb, and predicate in it. Along

with this, a compendium is used for Linguistic and Summary Generation purposes. General

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

4

notion in Extractive Text Summarization is to weight the sentences of a document as a function
of high-frequency words, disregarding the very high frequency common words. Location Method

exploits the idea of identifying important information in certain part of context. Sentence

extraction should be possible utilizing Neural Network Architectures. One of these strategies is a

classifier which includes the navigation of the archive consecutively, and choosing whether to
include the sentence into the rundown. Extractive techniques include picking sentences in an

arbitrary way. Extractive text summarization is conducted using neural model. The advantage of

using this method over the traditional pure mathematical and Natural Language Processing (NLP)
techniques is to understand more contexts. The models improve the depiction of sentences by

combining the important sentences to shorten the size and maintain the semantics at the same

time.

2.5. Neural Extractive Summarization with Side Information, Arxiv Preprint,

Arxiv: [10]

This Technique was implemented by (Narayan et al.) to achieve summarization using sentence

extraction. The model was based on an encoder—decoder architecture consisting of Recurrent
Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). The idea behind it was to

acquire portrayals of sentences by applying single-layer convolutional neural systems over

sequences of words embedding and using the recurrent neural network to make groupings out of
sentences. CNNs were used to capture the important patterns amongst the sentences in the article.

This CNN was used to extract the sequence of words in a sentence. The document encoder was

used to identify the sequence of sentences to get the document representation. Abstractive
Summarization has been achieved using a sequence to sequence encoder–decoder model. This

model has its famous application in Neural Machine Translation. It is essentially used to preserve

the dependencies LSTM cells that are used. These cells are the most atomic unit of an encoder

and decoder and better method to address the problem of dependency. Time Delay Neural
Network (TDNN) is used to achieve this along with max pooling layers. TDNN receives the

output of the bottom layer to the input layer. This helps in preserving the dependency over long

sentences.

2.6. Abstractive Multi-Document Text Summarization using a Genetic Algorithm

[11]

This Technique Introduced an abstractive multi-document text summarization using a genetic

algorithm (MDTS) .It is based on Multi-Document Text Summarization (MDTS), which consists
of generating an abstract from a group of two or more number of documents that represent only

the most important information of all documents. In this article, the authors proposed a new

MDTS method based on a Genetic Algorithm (GA). The fitness function is calculated
considering two text features: sentence position and coverage. They proposed the binary coding

representation, selection, crossover and mutation operators to improve the state-of-the-art results.

The proposed method consists of three steps. In the first step, the documents of the collection
were chronologically ordered, then the original text is adapting to the entry of the format of the

GA, where the original text is separated in sentences. Also, the text pre-processing is applied to

the collection of documents. Firstly, the text was divided into words separated by commas, then

some tags were placed in the text to be able to differentiate quantities, emails, among others.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

5

3. THE NEWLY PROPOSED SYSTEM

3.1. Overview

The newly proposed System for summarization based on machine learning technique is
constructed based on extracting key phrases from sentences and then using a deep learning model

to learn the collocation of phrases.

3.2. Block Diagram of the Newly Proposed System

The process flow of the proposed system is divided into three steps: text pre-processing, phrase
extraction and text summary generation as shown in Fig 1.

Figure1. System block diagram

Data pre-processing phase includes, word segmentation, morphological reduction, and

coreference resolution. After word segmentation, the morphological reduction will be applied to

merge these phrases into one. In the original text there are pronouns and demonstratives that will

cause ambiguity during model training, so the coreference resolution will be used before the
model is trained. Phrase extraction includes three sub-steps: phrase acquisition, phrase

refinement, and phrase combination. Phrase extraction method is used to acquire phrases. Phrase

refinement is applied to remove the redundancy in semantics or syntactic structure in the
extracted phrase before training the model. The purpose of phrase combination is to combine

different phrases with similar semantics into one phrase. For text generation, long short-term

memory (LSTM) and Convolutional neural network (CNN) model are applied. LSTM-CNN

model is based on deep learning for training. After training the model, the summary will be
generated. LSTM-ATS model encoding, reads the phrase sequence and encodes it into an internal

representation and LSTM-ATS model decoding, reads encoded phrase sequence from the

encoder and generates the output sequence.

Original

Text
Word

segmentation

Phrase

combination

Coreference

resolution

Morphological

reduction

Phrase

acquisition

Phrase

refinement

Processed

text

Phrase

sequence

Text

summary
LSTM-ATS

model

encoding

LSTM-ATS

model

decoding

 Data pre-process

 Phrase process

 Text generation

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

6

3.3. Flow Chart of the Newly Proposed System

The proposed system aims to develop an Arabic abstractive text summarization system that

generates a human-like short summary from long Arabic text. It is very difficult and time

consuming for the human to manually summarize large documents of text. Therefore, this system
will help in solving this issue by enabling the machine to learn and understand the text and then

summarize it into shorter sentences. The developed system uses a deep learning algorithm called

Long-Short-Term-Memory (LSTM) to learn and generate the abstractive summary

As shown in Figure 2, at the beginning the user enters the name and password. Then the system

checks whether the user is registered on the system or not. After validating the user, the text will
be uploaded .The uploaded text will go through the stage of word segmentation followed by the

morphological reduction stage and finally the reference resolution. After this phase, the processed

text will be displayed to the user and then the process will move through the phrase acquisition

followed by phrase refinement and finally phrase combination. After that, a phrase sequence will
come out to be applied into the LSTM-ATS model for encoding and decoding. Finally, the

system generates text summary and displays it for the user.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

7

 Processed Text

 Phrase Sequence

Figure 2. System flow chart

Valid

or not

Register or

not

Enter user name and

password

Registration form

Text summary

Upload text

Start

Stop

NO NO

Yes

Word

segmentation

Morphological

reduction

Coreference
resolution

Phrase
acquisition

Phrase
refinement

Phrase
combination

LSTM-ATS model
encoding

LSTM-ATS model

decoding

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

8

3.3.1. Word segmentation

Word segmentation is the process of dividing the written text into words and determining the

sentence words in boundaries and also adding space between words.

3.3.2. Morphological reduction

In case the phrases have same semantics and lose morphology, the morphological reduction will
be used for gathering these phrases into one.

3.3.3. Coreference resolution

Coreference resolution is used for identifying or clustering the expressions and noun phrases refer

to the same entity in the text. During model training, the ambiguities might be occurred due to

the existence of many pronouns in the text that should use coreference resolution before the
model is trained to display the processed text.

3.3.4. Phrase acquisition

Phrase acquisition occurs after obtaining the processed text to extract and get the acquired

phrases.

3.3.5. Phrase refinement

Phrase refinement is the process of extracting the phrases that should guarantee correct semantics
or syntactic structure before the training model.

3.3.6. Phrase combination

Phrase combination is used for improving the redundancy of phrases. Therefore, it will combine

different phrases with similar semantics into one phrase and give phrase sequence.

3.3.7. LSTM-ATS model encoding/ decoding

LSTM-CNN model is using deep learning for training. After training the model the summary will
be generated..

4. SYSTEM DESIGN

4.1. Hardware Requirements:

• Personal computer. With the following configuration

1. Processor: The proposed model will use (Intel(R) Core (TM) i7-8550U).This is latest

technology which will help us to develop the proposed system.

2. Random-access memory (RAM): The proposed model is using RAM (8.00GB).
3. Hard disk: The proposed system needs hard disk with capacity (224 GB).

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

9

4.2. Software Requirements

• The Operating system (OS): Windows 10 is the operating system used with proposed

system is [12].

• Python 3.0: is a recent, general purpose and higher level programming language. It is

available for free, and runs on every current platform .It is also a dynamic object oriented
programming language that can be used for many kinds of software development. It offers

strong support for integration with other languages and tools [13].

• Google Colab: Colaboratory is a free Jupyter notebook environment provided by Google
that requires no setup and it runs entirely under the cloud. With Colaboratory you can write

and execute code, save and share the analysis, and also access the powerful computing

resources. In addition, Google Colab provides inbuilt version controlling system using Git
and it is quite easy to create notes and documentations, including figures, and tables using

markdown. It also runs on Google servers using virtual machines [14].

5. IMPLEMENTATION AND TESTING

The implementation is done using Google colab and Python programming language. The

implementation of the code is based on four steps as shown in figure 3.

Figure 3 Implemenation steps

5.1. Import all necessary libraries

At first step, all libraries will be called like: Nltk, Corpus, Cluster. Util, and Cosine_distance.

Nltk, is a library in python, Corpus library is used to delete the point, comma, etc., to assist in
the implementation.

Cluster. Util, is used to call the Cosine_distance function which measures the percentage of
similarities in sentences as depicted in the code segment shown in figure 4.

 import nltk

 from nltk.corpus import stopwords
 from nltk.cluster.util import cosine_distance

 import numpy as np

 import networkx as nx

Figure 4 Importing all necessary libraries

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

10

5.2. Inserting the Article

Figure 5 shows, the article title that will be entered to the system.

 article_url = 'https://sabq.org/kRzGHX'

 title = ' الإدارة وسوء الحماية بين المواليد تبديل '

 article='

Figure 5 Insertion of the article

5.3. Generation of Clean Sentences

Figure 6 shows the code segment that reads the article, replaces the comma, places the point, and
replaces (..) with (.) ,in addition to separating each sentence with a point.

 def read_article(article):

article = article.replace("..", " . ").replace(". ", " . ").replace(" .", " . ")

 article = article.split(" . ")

 sentences = []
 for sentence in article:

 if sentence == '': continue

 print(sentence)
 sentence = sentence.replace("..", " . ")

 sentences.append (sentence.replace (".", " . ").split(" "))

 #sentences.pop()
 return sentences

Figure 6 Generation of clean sentences

5.4. Similarity Matrix

Cosine similarity is used to find similarity between sentences, as shown in the code segment

depicted in figure 7.

def sentence_similarity(sent1, sent2, stopwords=None):

 if stopwords is None:

 stopwords = []
 #sent1 = [w.lower() for w in sent1]

 #sent2 = [w.lower() for w in sent2]

 all_words = list(set(sent1 + sent2))
 vector1 = [0] * len(all_words)

 vector2 = [0] * len(all_words)

 # build the vector for the first sentence
 for w in sent1:

 if w in stopwords:

 continue

 vector1[all_words.index(w)] += 1
 # build the vector for the second sentence

 for w in sent2:

 if w in stopwords:
 continue

 vector2[all_words.index(w)] += 1

 return 1 - cosine_distance(vector1, vector2)

Figure 7 Similarity matrix

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

11

5.5. Generating Summary Method

Method will keep calling all other help functions to keep the summarization pipeline going as

depicted in the code segments shown in figure 8 and figure 9.

def build_similarity_matrix(sentences, stop_words):

 # Create an empty similarity matrix
 similarity_matrix = np.zeros((len(sentences), len(sentences)))

 for idx1 in range(len(sentences)):

 for idx2 in range(len(sentences)):

 if idx1 == idx2: #ignore if both are same sentences
 continue

 similarity_matrix[idx1][idx2] = sentence_similarity(sentences[idx1], sentences[idx2], st

 op_words)
 return similarity_matrix

Figure 8 Generating summary

def generate_summary(file_name, top_n=5):
 nltk.download("stopwords")

 stop_words = stopwords.words('arabic')

 summarize_text = []

 # Step 1 - Read text anc split it

 sentences = read_article(file_name)

 # Step 2 - Generate Similary Martix across sentences

 sentence_similarity_martix = build_similarity_matrix(sentences, stop_words)

 # Step 3 - Rank sentences in similarity martix

 sentence_similarity_graph = nx.from_numpy_array(sentence_similarity_martix)

 scores = nx.pagerank(sentence_similarity_graph)

 # Step 4 - Sort the rank and pick top sentences

 ranked_sentence = sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=True)

 print("\n")
 print("Indexes of top ranked_sentence order are ", ranked_sentence)

 print(ranked_sentence)
 for i in range(top_n):

 summarize_text.append(" ".join(ranked_sentence[i][1]))

 # Step 5 - Offcourse, output the summarize texr

 print("\n")

 print("Summarize Text: \n", ". ".join(summarize_text))

Figure 9 Code for generating the summary method

5.6. Summarizing the Text

Figure 10 shows the article summary in one sentence and also ranks for each sentence.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

12

Figure 10 Summarized text

5.7. Implantation Stage

There are three stages namely: sign up page, sign in page, summary page.

5.7.1. Sign up page

The user has to enter his credentials, first name, last name, mobile number, e-mail, password, and
confirm password for sign up .

5.8. Sign in page

The user has to enter the email and password to confirm sign in ,in order to upload the article.

5.9. Summary page

In figure 11, the user enters the text and determine the number of sentences, then click
Summarize "لخص". As shown in figure 12, it will display the summarization of the text (the

number of sentences that was decided by the user) .

Figure 11 Summary page

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

13

Figure 12 Displaying summary

6. CONCLUSION

Text summarization is the problem of creating a short, accurate, and fluent summary of a longer

text document. Automatic text summarization methods are greatly needed to address the ever-

growing amount of text data available online for both better help to discover relevant information
and to consume relevant information faster. This paper introduced an overview of various past

researches and studies in the field of Automatic Text Summarization. The proposed system aims

at developing an Arabic abstractive text summarization system that generates a human-like short
summary from long Arabic text. It is very difficult and time consuming for the human to

manually summarize large documents of text. Therefore, this system will help in solving this

issue by enabling the machine to learn, understand and summarize the text into shorter sentences.

The developed system uses a deep learning algorithm called Long-Short-Term-Memory (LSTM)
to learn and generate the abstractive summary. The implementation of this project had achieved a

great result by suggesting a useful summary.

The Future Work will be dedicated to implement the newly proposed system for the newspapers

articles summarizing using deep learning approach. More specifically, semantic analysis

approach will be used to get deep analysis

REFERENCES

[1] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D. Trippe, Juan

B.Gutierrez, Krys Kochut, "Text Summarization Techniques: A Brief Survey", arXiv preprint,

ArXiv: 1707.02268, (2017).

[2] 1Yogan Jaya Kumar, 1Ong Sing Goh, 1Halizah Basiron, 1Ngo Hea Choon and 2Puspalata C

Suppiah, "A Review on Automatic Text Summarization Approaches ", Journal of Computer Science,

Vol 178.190, 180-186, (2016).

[3] S.A.Babar, M.Tech-CSE, RIT." Text Summarization: An Overview ", Research Gate.(2013)

[4] Aishwarya Padmakumar, Akanksha Saran, "Unsupervised Text Summarization using Sentence

Embeddings ", Semantic Scholar, (2016).

Machine Learning and Applications: An International Journal (MLAIJ) Vol.7, No.3/4, December 2020

14

[5] Dr. Michael J. Garbade," A Quick Introduction to Text Summarization in Machine Learning "

Towards Data Science, (2018).

[6] Chen Y., Ma Y., Mao X., Li Q, "Abstractive Summarization with the Aid of Extractive

Summarization ", Springer, vol 10987, 4-13, (2018).

[7] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, Noah A. Smith, "Toward Abstractive

Summarization Using Semantic Representations ", arXivpreprint, arXiv: 1805.1039, (2018).

[8] Wan X., Li C., Wang R., Xiao D., Shi C," Abstractive Document Summarization via Bidirectional

Decoder ", Springer, vol 11323, 365-367, (2018).

[9] Mahajani A., Pandya V., Maria I., Sharma D," A Comprehensive Survey on Extractive and

Abstractive Techniques for Text Summarization ", Springer, vol 904,339-349, (2019).

[10] Narayan, S., Papasarantopoulos, N., Cohen, S.B., Lapata, M.m, "Neural extractive Summarization

with side information ", arXiv preprint, arXiv: 1704.04530, (2017).

[11] Neri Mendoza V., Ledeneva Y., García-Hernández R.A, "Abstractive Multi-Document Text

Summarization Using a Genetic Algorithm ", Springer, vol 11524, 423-431, (2019).

 [12] Kinnary Jangla, "Windows 10 Revealed: The Universal Windows Operating System for PC, Tablets,

and Windows Phone ", Apress, (2015).

[13] Reeta Sahoo, Gagan Sahoo, "Computer Science with Python ", Saraswati House Pvt Ltd, (2016).

[14] "Google Colab", [OnLine]. Available: https: //colab.research.google.com.

