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ABSTRACT 
 
In this new era, where tremendous information is available on the internet, it is of most important to 

provide the improved mechanism to extract the information quickly and most efficiently. It is very difficult 
for human beings to manually extract the summary of large documents of text. Therefore, there is a 

problem of searching for relevant documents from the number of documents available, and absorbing 

relevant information from it. In order to solve the above two problems, the automatic text summarization is 

very much necessary. Text summarization is the process of identifying the most important meaningful 

information in a document or set of related documents and compressing them into a shorter version 

preserving its overall meanings. More specific, Abstractive Text Summarization (ATS), is the task of 

constructing summary sentences by merging facts from different source sentences and condensing them 

into a shorter representation while preserving information content and overall meaning. This Paper 

introduces a newly proposed technique for Summarizing the abstractive newspapers’ articles based on 

deep learning. 
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1. INTRODUCTION 
 
Nowadays with the dramatic growth of the Internet, there is an explosion in the amount of text 

data from a variety of sources. That may lead to an expansion for the availability of the 

documents that need an exhaustive research in the area of automatic text summarization [1]. The 

volume of text is considered as an invaluable source of information and knowledge, which needs 
an effective summarization to be useful. Text summarization is the problem of creating a short, 

accurate, and fluent summary of a longer text document [1].Automatic text summarization 

methods are greatly needed to address the ever-growing amount of text data that are available 
online to discover  and consume the relevant information faster [2]. Text Summarization methods 

can be classified into extractive and abstractive summarization [3]. An extractive summarization 

method consists of selecting important sentences, paragraphs etc. from the original document and 
concatenating them into shorter form. An Abstractive summarization is based on understanding 

the main concepts in a document and then express those concepts in clear natural language [3]. 
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There are many reasons why Automatic Text Summarization is useful [4]:     
                                                                                                                                         

• Summaries reduces reading time. 

 

• When researching documents, summaries make the selection process easier. 
 

• Automatic summarization improves the effectiveness of indexing.    

 
• Automatic summarization algorithms are less biased than human summarizers. 

 

• Personalized summaries are useful in question-answering systems as they provide 
personalized information.     

 

• Using automatic or semi-automatic summarization systems enables commercial abstract 

services to increase the number of text documents that are able to process.     
                                                                                                                                                                                                                         

Automatic text summarization is a common problem in machine learning and natural language 

processing (NLP). Skyhoshi, who is a U.S.-based machine learning expert with 13 years of 
experience and currently teaches people his skills, said that “the technique has proved to be 

critical in quickly and accurately summarizing voluminous texts, something which could be 

expensive and time consuming if done without machines.” Machine learning models are usually 
trained to understand documents and distill the useful information before extracting the required 

summarized texts. With such a big amount of data circulating in the digital space, there is a need 

to develop machine learning algorithms that can automatically shorten longer texts and deliver 

accurate summaries that can fluently pass the intended messages. Applying text summarization 
reduces reading time, accelerates the process of researching for information, and increases the 

amount of information that can fit in an area [5]. In this study,the machine-learning approach will 

be used to conduct a model to produce an abstractive text summarization based on Python 
programming language.  

                                                                                            

1.1. Main Steps for Text Summarization 
 

There are three main steps for summarizing documents. These are topic identification, 

interpretation and summary generation [3]. First step, is Topic Identification which identifies the 
most prominent information in the text. There are different techniques for topic identification as 

Position, Cue Phrases and word frequency. Methods which are based on that position of phrases 

are the most useful methods for topic identification. Second Step, is the Interpretation. In This 

step, different subjects are fused in order to form a general content. Finally the third step is the 
Summary Generation in which, the system uses the text generation methods. 

 

2. LITERATURE REVIEW  
 

2.1. Abstractive Summarization with the Aid of Extractive [6] 
 

This technique proposed a general framework for abstractive summarization which incorporates 
extractive summarization as an auxiliary task by composeding of a shared hierarchical document 

encoder, an attention-based decoder for abstractive summarization, and an extractor for sentence-

level extractive summarization. Learning these two tasks jointly with the shared encoder allow to 
better capture the semantics in the document. Furthermore, experiments on the Cable News 

Network (CNN)/Daily Mail dataset demonstrate that both the auxiliary task and the attention 

constraint contribute to improve the performance significantly, and their model is comparable to 
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the state-of-the-art abstractive models. In particular, general framework of their proposed model 
is composed of 5 components namely: word-level encoder encodes the sentences word-by-word 

independently, sentence- level encoder encodes the document sentence-by-sentence, Sentence 

extractor makes binary classification for each sentence, Hierarchical attention calculates the 

word-level and sentence-level context vectors for decoding steps, Decoder decodes the output 
sequential word sequence with a beam-search algorithm.  

 

2.2. Toward Abstractive Summarization using Semantic Representations 

Arxivpreprint, Arxiv: [7] 
 

This technique presented a novel abstractive summarization framework that draws on the recent 

development of a treebank for the Abstract Meaning Representation(AMR).In this framework, 

the source text is parsed to a set of AMR graphs, the graphs are transformed into a summary 
graph, and then text is generated from the summary graph. They focus on the graph-to graph 

transformation that reduces the source semantic graph into a summary graph, making use of an 

existing AMR parser and assuming the eventual availability of an AMR-to text generator. The 

framework is data-driven, trainable, and not specifically designed for a particular domain. 
Experiments based on gold standard AMR annotations and system parses show promising results. 

 

2.3. Abstractive Document Summarization Via Bidirectional Decoder [8] 
 

This technique introduced an abstractive document summarization via bidirectional decoder. It is 

based on Sequence-to-sequence architecture with attention mechanism which is widely used in 
abstractive text summarization, and has achieved a series of remarkable results. However, this 

method may suffer from error accumulation. It proposed a Summarization model using a 

Bidirectional decoder (BiSum), in which the backward decoder provides a reference for the 
forward decoder. The authors used attention mechanism at both encoder and backward decoder 

sides to ensure that the summary generated by backward decoder can be understood. 

Experimental results show that the work can produce higher-quality summary on Chinese 
datasets Transport Topics News (TTNews) and English datasets Cable News Network 

(CNN)/Daily Mail. 

 

2.4. A Comprehensive Survey on Extractive and Abstractive Techniques for Text 

Summarization [9] 
 

In this technique the generation of summary is done by understanding the whole content and 

representing it in its own terms. This is achieved using a Recurrent Neural Network consisting of 

Gated Recurrent Unit (GRU) or Long Short-Term Memory (LSTM) cells. The author highlights 
the recent abstractive techniques used for text summarization and provides information on the 

standardized datasets in addition to testing methodologies that are  used to evaluate the 

performance of the system. For instance, structured approach fundamentally encodes the most 

indispensable information from the document(s) through mental blueprints like layouts, 
extraction principles, and elective structures like tree, ontology, rule, and graph structure. On the 

other hand, in tree-based approach, sentences from multiple documents are clustered according to 

the themes they represent. Second, these themes are re-ranked, selected, and ordered according to 
their significance. The formed syntactic trees are subsequently merged using Fusion Lattice 

Computation to assimilate information from different themes. Linearization is carried out for the 

formation of sentences from the merged tree using Tree traversal.On the other hand, Graph-Based 
Approach uses the graph data structure for language representation. The sentence formation is 

subjected to constraints such as, it is mandatory to have a subject, verb, and predicate in it. Along 

with this, a compendium is used for Linguistic and Summary Generation purposes. General 
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notion in Extractive Text Summarization is to weight the sentences of a document as a function 
of high-frequency words, disregarding the very high frequency common words. Location Method 

exploits the idea of identifying important information in certain part of context. Sentence 

extraction should be possible utilizing Neural Network Architectures. One of these strategies is a 

classifier which includes the navigation of the archive consecutively, and choosing whether to 
include the sentence into the rundown. Extractive techniques include picking sentences in an 

arbitrary way. Extractive text summarization is conducted using neural model. The advantage of 

using this method over the traditional pure mathematical and Natural Language Processing (NLP) 
techniques is to understand more contexts. The models improve the depiction of sentences by 

combining the important sentences to shorten the size and maintain the semantics at the same 

time. 
 

2.5. Neural Extractive Summarization with Side Information, Arxiv Preprint, 

Arxiv: [10] 
 

This Technique was implemented by (Narayan et al.) to achieve summarization using sentence 

extraction. The model was based on an encoder—decoder architecture consisting of Recurrent 
Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). The idea behind it was to 

acquire portrayals of sentences by applying single-layer convolutional neural systems over 

sequences of words embedding and using the recurrent neural network to make groupings out of 
sentences. CNNs were used to capture the important patterns amongst the sentences in the article. 

This CNN was used to extract the sequence of words in a sentence. The document encoder was 

used to identify the sequence of sentences to get the document representation. Abstractive 
Summarization has been achieved using a sequence to sequence encoder–decoder model. This 

model has its famous application in Neural Machine Translation. It is essentially used to preserve 

the dependencies LSTM cells that are used. These cells are the most atomic unit of an encoder 

and decoder and better method to address the problem of dependency. Time Delay Neural 
Network (TDNN) is used to achieve this along with max pooling layers. TDNN receives the 

output of the bottom layer to the input layer. This helps in preserving the dependency over long 

sentences. 
 

2.6. Abstractive Multi-Document Text Summarization using a Genetic Algorithm 

[11] 
 

This Technique Introduced an abstractive multi-document text summarization using a genetic 

algorithm (MDTS) .It is based on Multi-Document Text Summarization (MDTS), which consists 
of generating an abstract from a group of two or more number of documents that represent only 

the most important information of all documents. In this article, the authors proposed a new 

MDTS method based on a Genetic Algorithm (GA). The fitness function is calculated 
considering two text features: sentence position and coverage. They proposed the binary coding 

representation, selection, crossover and mutation operators to improve the state-of-the-art results. 

The proposed method consists of three steps. In the first step, the documents of the collection 
were chronologically ordered, then the original text is adapting to the entry of the format of the 

GA, where the original text is separated in sentences. Also, the text pre-processing is applied to 

the collection of documents. Firstly, the text was divided into words separated by commas, then 

some tags were placed in the text to be able to differentiate quantities, emails, among others. 
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3. THE NEWLY PROPOSED SYSTEM 
 

3.1. Overview 
 

The newly proposed System for summarization based on machine learning technique is 
constructed based on extracting key phrases from sentences and then using a deep learning model 

to learn the collocation of phrases. 

 

3.2. Block Diagram of the Newly Proposed System 
 

The process flow of the proposed system is divided into three steps: text pre-processing, phrase 
extraction and text summary generation as shown in Fig 1. 
 

 

 

  

 

   

 

 

 

 

 

 

 

 

Figure1. System block diagram 

 

Data pre-processing phase includes, word segmentation, morphological reduction, and 

coreference resolution. After word segmentation, the morphological reduction will be applied to 

merge these phrases into one. In the original text there are pronouns and demonstratives that will 

cause ambiguity during model training, so the coreference resolution will be used before the 
model is trained. Phrase extraction includes three sub-steps: phrase acquisition, phrase 

refinement, and phrase combination. Phrase extraction method is used to acquire phrases. Phrase 

refinement is applied to remove the redundancy in semantics or syntactic structure in the 
extracted phrase before training the model. The purpose of phrase combination is to combine 

different phrases with similar semantics into one phrase. For text generation, long short-term 

memory (LSTM) and Convolutional neural network (CNN) model are applied. LSTM-CNN 

model is based on  deep learning for training. After training the model, the summary will be 
generated. LSTM-ATS model encoding, reads the phrase sequence and encodes it into an internal 

representation and LSTM-ATS model decoding, reads encoded phrase sequence from the 

encoder and generates the output sequence. 
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3.3. Flow Chart of the Newly Proposed System     
 

The proposed system aims to develop an Arabic abstractive text summarization system that 

generates a human-like short summary from long Arabic text.  It is very difficult and time 

consuming for the human to manually summarize large documents of text. Therefore, this system 
will help in solving this issue by enabling the machine to learn and understand the text and then 

summarize it into shorter sentences.  The developed system uses a deep learning algorithm called 

Long-Short-Term-Memory (LSTM) to learn and generate the abstractive summary 
 

As shown in Figure 2, at the beginning the user enters the name and password. Then the system 

checks whether the user is registered on the system or not. After validating the user, the text will 
be uploaded .The uploaded text will go through the stage of word segmentation followed by the 

morphological reduction stage and finally the reference resolution. After this phase, the processed 

text will be displayed to the user and then the process will move through the phrase acquisition 

followed by phrase refinement and finally phrase combination. After that, a phrase sequence will 
come out to be applied into the LSTM-ATS model for encoding and decoding. Finally, the 

system generates text summary and displays it for the user. 
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Figure 2. System flow chart 
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3.3.1. Word segmentation 
 

Word segmentation is the process of  dividing  the written text into words and determining the 

sentence words in boundaries and also adding space between words. 

 

3.3.2. Morphological reduction 

 

In case the phrases have same semantics and lose morphology, the morphological reduction will 
be used for gathering these phrases into one. 

 

3.3.3. Coreference resolution 
 

Coreference resolution is used for identifying or clustering the expressions and noun phrases refer 

to the same entity in the text. During model training, the ambiguities might be occurred due to  

the existence of many pronouns in the text that should use coreference resolution before the 
model is trained to display the processed text.  

 

3.3.4. Phrase acquisition 

 

Phrase acquisition occurs after obtaining the processed text to extract and get the acquired 

phrases. 
 

3.3.5. Phrase refinement 

 

Phrase refinement is the process of extracting the phrases that should guarantee correct semantics 
or syntactic structure before the training model. 

 

3.3.6. Phrase combination 

 

Phrase combination is used for improving the redundancy of phrases. Therefore, it will combine 

different phrases with similar semantics into one phrase and give phrase sequence. 

 

3.3.7. LSTM-ATS model encoding/ decoding 

 

LSTM-CNN model is using deep learning for training. After training the model the summary will 
be generated..  

 

4. SYSTEM DESIGN  
 

4.1. Hardware Requirements: 
 

• Personal computer. With the following configuration  
 

1. Processor: The proposed model will use (Intel(R) Core (TM) i7-8550U).This is latest 

technology which will help us to develop the proposed system. 

2. Random-access memory (RAM):  The proposed model is using RAM (8.00GB).  
3. Hard disk: The proposed system needs hard disk with capacity (224 GB).  
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4.2. Software Requirements 
 

• The Operating system (OS): Windows 10 is the operating system used with   proposed 

system is [12]. 
 

• Python 3.0: is a recent, general purpose and higher level programming language. It is       

available for free, and runs on every current platform .It is also a dynamic object oriented 
programming language that can be used for many kinds of software development. It offers 

strong support for integration with other languages and tools [13].  

 

• Google Colab: Colaboratory is a free Jupyter notebook environment provided by Google 
that requires no setup and it runs entirely under the cloud. With Colaboratory you can write 

and execute code, save and share the analysis, and also access the powerful computing 

resources. In addition, Google Colab provides inbuilt version controlling system using Git 
and it is quite easy to create notes and documentations, including figures, and tables using 

markdown. It also runs on Google servers using virtual machines [14]. 

 

5. IMPLEMENTATION AND TESTING 
 

The implementation is done using Google colab and Python programming language. The 

implementation of the code is based on four steps as shown in figure 3. 

 

 
Figure 3 Implemenation steps 

 

5.1. Import all necessary libraries 
 

At first step, all  libraries will be called like: Nltk, Corpus, Cluster. Util, and Cosine_distance. 

Nltk, is a library in python, Corpus library is used to delete the point, comma, etc., to assist in 
the implementation. 

 

Cluster. Util, is used to call the Cosine_distance function which measures the percentage of 
similarities in sentences as depicted in the code segment shown in figure 4. 

 

                                                      import nltk 

                                                      from nltk.corpus import stopwords 
                                                      from nltk.cluster.util import cosine_distance 

                                                      import numpy as np 

                                                      import networkx as nx 
 

Figure 4 Importing all necessary libraries 
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5.2. Inserting the Article 
 

Figure 5 shows, the article title that will be entered to the system. 
 

                         article_url = 'https://sabq.org/kRzGHX' 

                         title = ' الإدارة وسوء الحماية بين المواليد تبديل ' 

                         article='  
 

Figure 5 Insertion of the article 
 

5.3. Generation of Clean Sentences 
 

Figure 6 shows the code segment that reads the article, replaces the comma, places the point, and 
replaces (..)  with (.) ,in addition to separating  each sentence with a point.  
 

                     def read_article(article): 

article = article.replace("..", " . ").replace(". ", " . ").replace(" .", " . ") 

                      article = article.split(" . ") 

                      sentences = [] 
                      for sentence in article: 

                      if sentence == '': continue 

                       print(sentence) 
                      sentence = sentence.replace("..", " . ") 

                      sentences.append (sentence.replace (".", " . ").split(" ")) 

                       #sentences.pop() 
                       return sentences 
 

Figure 6 Generation  of clean sentences 
 

5.4. Similarity Matrix 
 

Cosine similarity is used to find similarity between sentences, as shown in the code segment 

depicted in figure 7. 
 

def sentence_similarity(sent1, sent2, stopwords=None): 

              if stopwords is None: 

                   stopwords = [] 
            #sent1 = [w.lower() for w in sent1] 

            #sent2 = [w.lower() for w in sent2] 

            all_words = list(set(sent1 + sent2)) 
            vector1 = [0] * len(all_words) 

            vector2 = [0] * len(all_words) 

            # build the vector for the first sentence 
            for w in sent1: 

            if w in stopwords: 

            continue 

           vector1[all_words.index(w)] += 1 
       # build the vector for the second sentence 

         for w in sent2: 

          if w in stopwords: 
            continue 

           vector2[all_words.index(w)] += 1 

          return 1 - cosine_distance(vector1, vector2) 
 

Figure 7 Similarity matrix 
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5.5. Generating Summary Method 
 

Method will keep calling all other help functions to keep the summarization pipeline going as 

depicted in the code segments shown in figure 8 and figure 9. 
 

def build_similarity_matrix(sentences, stop_words): 

                 # Create an empty similarity matrix 
                 similarity_matrix = np.zeros((len(sentences), len(sentences))) 

                    for idx1 in range(len(sentences)): 

             for idx2 in range(len(sentences)): 

              if idx1 == idx2: #ignore if both are same sentences 
                continue  

             similarity_matrix[idx1][idx2] = sentence_similarity(sentences[idx1], sentences[idx2], st 

              op_words) 
               return similarity_matrix 

 
Figure 8 Generating summary 

 

def generate_summary(file_name, top_n=5): 
         nltk.download("stopwords") 

          stop_words = stopwords.words('arabic') 

         summarize_text = [] 
 

          # Step 1 - Read text anc split it 

           sentences =  read_article(file_name) 

 
            # Step 2 - Generate Similary Martix across sentences 

               sentence_similarity_martix = build_similarity_matrix(sentences, stop_words) 

 
           # Step 3 - Rank sentences in similarity martix 

         sentence_similarity_graph = nx.from_numpy_array(sentence_similarity_martix) 

         scores = nx.pagerank(sentence_similarity_graph) 
 

            # Step 4 - Sort the rank and pick top sentences 

           ranked_sentence = sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=True) 

           print("\n") 
          print("Indexes of top ranked_sentence order are ", ranked_sentence)     

 

         print(ranked_sentence) 
         for i in range(top_n): 

         summarize_text.append(" ".join(ranked_sentence[i][1])) 

       
        # Step 5 - Offcourse, output the summarize texr 

         print("\n") 

         print("Summarize Text: \n", ". ".join(summarize_text)) 

 
Figure 9 Code for generating the summary method 

 

5.6. Summarizing the Text 
 
Figure 10 shows the article summary in one sentence and  also ranks for each sentence. 
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Figure 10 Summarized text 

 

5.7. Implantation Stage 
 

There are three stages namely: sign up page, sign in page, summary page. 

 

5.7.1. Sign up page 

 

The user has to enter his credentials, first name, last name, mobile number, e-mail, password, and 
confirm password for sign up . 

 

5.8. Sign in page  
 

The user has to  enter the email and password to confirm sign in ,in order to upload the article. 

 

5.9. Summary page  
 

In figure 11, the user enters the text and determine the number of sentences, then click  
Summarize "لخص". As shown in figure 12, it will display the summarization of the text ( the 

number of sentences that was decided by the user) . 
 

 
 

Figure 11 Summary page 
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Figure 12 Displaying summary 

 

6. CONCLUSION  
 

Text summarization is the problem of creating a short, accurate, and fluent summary of a longer 

text document. Automatic text summarization methods are greatly needed to address the ever-

growing amount of text data available online for both better help to discover relevant information 
and to consume relevant information faster. This paper introduced an overview of various past 

researches and studies in the field of Automatic Text Summarization. The proposed system aims 

at developing an Arabic abstractive text summarization system that generates a human-like short 
summary from long Arabic text.  It is very difficult and time consuming for the human to 

manually summarize large documents of text. Therefore, this system will help in solving this 

issue by enabling the machine to learn, understand and summarize the text into shorter sentences.  

The developed system uses a deep learning algorithm called Long-Short-Term-Memory (LSTM) 
to learn and generate the abstractive summary. The implementation of this project had achieved a 

great result by suggesting a useful summary. 

 
The Future Work will be dedicated to implement the newly proposed system for the newspapers 

articles summarizing using deep learning approach. More specifically, semantic analysis 

approach will be used to get deep analysis 
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