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ABSTRACT 
 
The use of Machine Learning in Artificial Intelligence is the inspiration that shaped technology as it is 

today. Machine Learning has the power to greatly simplify our lives. Improvement in speech recognition 

and language understanding help the community interact more naturally with technology. The popularity of 

machine learning opens up the opportunities for optimizing the design of computing platforms using well-

defined hardware accelerators. In the upcoming few years, cameras will be utilised as sensors for several 

applications. For ease of use and privacy restrictions, the requested image processing should be limited to 

a local embedded computer platform and with a high accuracy. Furthermore, less energy should be 

consumed. Dedicated acceleration of Convolutional Neural Networks can achieve these targets with high 

flexibility to perform multiple vision tasks. However, due to the exponential growth in technology 

constraints (especially in terms of energy) which could lead to heterogeneous multicores, and increasing 

number of defects, the strategy of defect-tolerant accelerators for heterogeneous multi-cores may become a 
main micro-architecture research issue. The up to date accelerators used still face some performance 

issues such as memory limitations, bandwidth, speed etc. This literature summarizes (in terms of a survey) 

recent work of accelerators including their advantages and disadvantages to make it easier for developers 

with neural network interests to further improve what has already been established. 
 

KEYWORDS 
 
Artificial Intelligence, ASIC, Convolutional Neural Network, CPU, Deep Learning, Deep Neural Network, 

FPGA, GPU, hardware accelerators, Intel, Machine Learning, Nvidia, Performance  
 

1. INTRODUCTION AND RELATED WORK  

 

Designing a system with the ability to compute on their knowledge from input data to make it 

perform accordingly is the domain called Machine Learning (ML). [1] In other words, it has the 
ability to solve complex computations in many networks and make crucial decisions in the form 

of deep learning. The process of deep learning uses a multi-layer neural network to identify 

features, which are a combination of unclear abstractions. [2] A neural network is not only a 
complex system with large amount of neurons, but a complex adaptive nonlinear information 

processing system which computes on its input through various processing units that have the 

ability to self-organize, self-adapt and have real-time learning techniques. Neural networks 

purpose is to estimate uncertainty of inputs to define features. Early neural networks algorithms 
were conducted on CPU/GPU; however, with the exponential increase in the size of the networks, 

single CPU/GPU is not enough to handle a network. Therefore, more powerful processors are 

produced or multiple processors are used for a single network.  
 

The use of ML is growing exponentially around the world, and its users are expecting optimal 

results and high performance of functionality. Machine learning is highly used in medical 
practices. Advances in medical imaging enabled by machine learning can increase the accuracy of 

medical diagnosis and expand access to care ultimately saving lives. In addition, machine 
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learning can be applied to cancer prognosis and prediction, which in the near future, may be used 
as personalized, predictive medicine to avoid or minimize cancer diagnosis. [5]. However, its 

architecture still faces some problems due to the increasing size of the neural networks for 

obtaining higher accuracy, which may reduce the overall performance of the networks in terms of 

power and speed in addition to overhead costs. [7] Neural networks in its several forms are one 
class of algorithms used for ML. Some examples of neural networks include Artificial Neural 

Networks (ANN), Convolutional Neural Networks (CNN), and Deep Neural Networks (DNN). 

[1]  
 

CNN have been giving accurate results in difficult tasks such as image and speech recognition. 

Also, more complicated applications such as face detection. However, CNN are not completely 
able to neglect the power constraints of mobile and Internet of Things (IoT) devices, which are 

exponentially increasing its availability in the market. Furthermore, replacing all the CNN 

computations from the IoT devices to data servers requires high power consumption due to the 

transmission of data streams (high bandwidth is required) [8].   
 

DNN algorithms have gained extreme popularity in the past decade for its high achievement in 

everyday applications such as speech recognition, computer vision, and natural language 
processing. The success of DNN can be summarized under three main points namely, availability 

of massive datasets, access to parallel computational resources and improvements allowing DNN 

modifications to data [3]. However, DNNs are identified as computationally and memory 
intensive as their architectures are made of multiple layers with extremely large numbers of 

connections made of neurons, which increases complexity. [6] Thus, it is somewhat challenging 

to use DNN in large-scale data centers and real-time embedded systems. [9]  

 
A wide variety of hardware accelerators have been proposed for ML applications which will be 

explained in the next section.   

 

2. RELATED WORK 

 

Minerva, a highly-accurate deep neural network accelerator produced by Reagen et al. is designed 

and built to optimize hardware accelerators by achieving minimal power consumption; keeping in 

mind maintaining high prediction accuracy. [3] Minerva reduces overall power consumption 
across five diverse machine learning datasets by optimizing data types, reducing unnecessary 

computations and lowering SRAM voltages.  

 
Zhang et al. proposed ApproxEigen, a computing technique for large-scale eigen-decomposition 

to find finite number of eigenvalues and eigenvectors for positive semi-definite symmetric 

matrices. This method can be applied in search engines where less energy is consumed and within 

high quality restrictions. [4]  
 

Zhang et al. proposed an accelerator named Cambricon-X that is not only effective in dense 

neural networks, but also sparse neural networks. This accelerator is able to perform more than 
15 output neurons with sparse connections simultaneously and increase accuracy by developing 

and manipulating abnormality of neural networks. This accelerator is based on the Processing 

Elements (PE) architecture which in return, achieves 7.23x and 6.43 better performance and 
energy efficiency respectively than the general DianNao accelerator.  [6]  

 

Gao et al. created Tetris, a scalable architecture with #D-stacked memory for neural network 

inference. The relatively high performance and low energy consumption is achieved in this type 
of architecture by rebalancing the use of area for processing elements and SRAM buffers in 

addition to in-memory accumulation features. [7]  
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Albert Reuther in his paper [54] mentioned the importance of machine learning accelerators 
focusing on the CPU and GPU accelerators, creating a benchmark for testing them. In addition to 

that he revealed some new accelerators that will be announced in the future such as: Cloud AI 

100 accelerators created by Qualcomm, CloudBlazer T10 announced by Enflame company and 

Maxion CPU AI processor built by Esperanto. Reuther gave a look at the future of machine 
learning accelerators.  

 

Since there’s an absence in voltage scaling, only some transistors on a chip will be used 
simultaneously in the future, which is known as coined Dark Silicon. This mechanism risks 

many-cores and massive onchip parallelism due to simultaneously tracking. Therefore, there’s a 

new mechanism named customization which solves the above mentioned problem. This 
mechanism involves embedding a chip with accelerators for more efficient execution (instead of 

dividing each algorithm of a program into smaller algorithms, [43] Hence, the use of hardware 

accelerators is an essential step towards a brighter future.  

 
As a result, to reduce the above mentioned problems, some accelerators have been implemented 

such as Field-Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC) 

and Graphic Processing Unit (GPU). The FPGA and ASIC have somehow a better performance 
in terms of power consumption compared to the GPU; however, they both have limited 

computing resources, memory, and I/O bandwidths. [2] Although these may be considered 

disadvantages and may reduce the performance of the accelerators, it is still possible to use them 
in several applications such as Siri, and Google now in Apple, iPhoto or Google Picasa etc. [10] 

The main purpose of this paper is to compare the proposed architectures of recent designed 

accelerators in machine learning and evaluate their performance. The rest of this paper is 

structured as follows. First, Section 2 and 3 briefly introduces CNNs and DNNs including their 
implementations then reviews the different type of accelerators. Section 4 evaluates the 

accelerators of machine learning in various performance metrics. Finally, a conclusion is 

discussed in Section 5.  
 

3. BACKGROUND 
 

In this section, we present an overview of two classes of neural networks, namely CNN and DNN 

including their architecture with all the layers and the functions. Moreover, how the input is 
generated and the output is retrieved using the components of these neural networks are also 

reported. In addition, some simple applications that use these types of neural networks are 

mentioned.  
 

3.1. CNN  
 
CNN has the most suitable architecture for image applications and the applications based on the 

implicit translation invariance properties of their convolutional layers [10]. CNN are composed of 

multiple layers where each layer generates a higher level abstraction of input data these 
abstractions are called feature map (fmap) which preserve exclusive information. CNN are able to 

have high performance by employing a very deep hierarchy of layers. Each convolutional layer in 

the architecture of the CNN is composed of high dimensional convolutions. This convolution is 

based on a set of 2D input feature maps (ifmaps) named as a channel. The results of the 
convolutional layer at each point are added to the filtering results. The result of this addition is 

one channel of output feature map (ofmap). More output channels can be created on the same 

input by stacking other 2D filters. To improve the reuse of the filters weights, multiple stacks of 
input features may be processed together as a batch.   
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3.2. DNN  
 

DNNs can be used in a wide range of applications such as speech recognition and web search 

regardless of its complexity in the design of the conventional layer. For DNN’s to be used in AI 
systems, it must improve the energy efficiency and throughput without having drawbacks in 

performance or increasing the hardware cost [11]. DNN’s architecture is made of four types of 

layers which are: pooling layers (POOL), convolutional layers (CONV), classifier layers 
(CLASS), and local response normalization layers (LRN). The POOL, CONV, LRN layers may 

alternate in their positions; however, the CLASS layers are always at the end of the sequence. 

The CONV layer is responsible for the implementation of a set of filters to recognize the 

characteristics elements of the input data.  The filter is defined by co-efficient that form a kernel 
which are further used in a learning technique to form the layer weights. POOL layers: The 

POOL layer is responsible for the computation of the maximum or average of the neighbor points 

to further analyze the input data. By doing such computation, the input dimensionality is reduced 
to allow larger scale features to be computed and easier to be identified in the next layers. LRN: 

The LRN layer is responsible for the competition between neurons at the same location, but 

different neighbor feature maps. CLASS: The CLASS layer is simply the result of the whole 
process including all other three layers (CONV, POOL, LRN) put together. This layer has the 

lowest number of inputs due to the dimensionality reduction of the pooling layers. The main role 

of this layer is to combine the features form the previous layers with their outputs. [10]  

 

3.3. Energy-Efficient Hardware Accelerators  
 
 In this section, we present different types of accelerators that are used to enhance neural 

networks in the past years. Few of these accelerators may be classified into four main categories, 

DianNao Family, Field Programmable Gate Array (FPGA), Application Specific Integrated 

Circuit (ASIC) and general-purpose processors. Figure 1 shows the structure and breakdown of 
the accelerators mentioned in this paper.   

 

 
 

Figure 1.  Accelerator breakdown  

 

3.3.1. DianNao Family  
 

The DianNao family accelerators are a series of hardware accelerators designed for ML 

(especially neural networks), with a special emphasis on the impact of memory on the accelerator 
design, performance, and energy.   
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3.3.1.1. DianNao: Neural Network Accelerators  

 

DianNao is the first member in the DianNao family. Its purpose is to fully utilize arithmetic 

elements of data in memory. However, its main concern is to balance between minimal memory 
transfers and higher performance for neural networks depending on the number of arithmetic 

units, memory policy, and the structure and amount of on-chip RAMs. The block diagram of 

DianNao is shown in Figure 2.   
 

 
 

Figure 2.  Block diagram of DianNao accelerator  

 
The architecture of this accelerator is advantageous in several ways. First, multiple outputs are 

computed simultaneously to exploit spatial locality (by implementing Direct memory access) of 

data and reduce the number of accesses to buffers. Second, the storage of data is divided into the 

three buffers which is beneficial as it avoids data conflicts and allows reuse input neurons in the 
input buffer. In addition, each of these buffers have different data types and; therefore, have 

different characteristics (read width and different distance); hence, splitting the buffers is needed 

to adjust the memory to the corresponding read/write width. [12]  
 

As shown in the figure DianNao the synaptic weights buffer (SB) is connected to a computational 

block performing the hidden synapses and neurons computations which called the Neural 
Functional Unit (NFU). 

 

The computations at the NFU can be executed in either two or three stages depending on the layer 

type.   
 

3.3.1.2. DaDianNao: Machine Learning Super Computer Accelerators  

 
Nowadays, there is an increase in interest towards large neural networks. Although the above 

mentioned accelerator can execute neural networks at more than one scale, it still needs a storage 

for the neuron values in main memory when dealing with larger neural networks. Accessing main 

memory more frequently limit the performance and energy efficiency of DianNao. In DaDianNao 
having the following design principles solves this issue. The first step is to create a new design 

where synapses are always stored nearby the neurons to save time and energy since there is less 

data movements. This type of design can be used when there is no main memory. The second 
step is to create a symmetric architecture where each node mark is massively biased towards 

storage rather than computations. The third step is to only transfer values with less number of 
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layers in terms of magnitude and bandwidth (neurons rather than synapses values). The fourth 
and last step is to break down the storage into smaller ones to allow high internal bandwidth. [10]  

The DaDianNao’s design is based on a set of nodes, one per chip, identical and arranged in mesh 

topology.  Each node contains significant storage and neural computational units (the classic 

pipeline of multipliers, added tree and nonlinear functions implemented via linear interpolation), 
which is called the NFU to be consistent with the DianNao accelerators.  

 

The key characteristics of the nodes architecture in DaDianNao is designed as follows:  
 

Tile-based organization: All functional units (adders, multipliers) are put together in a single 

computational block (NFU). However, if the NFU is significantly scaled up the data movements 
between it and the onchip storage will require a very high internal bandwidth resulting in a wiring 

overhead. To solve the problem, a tile-based organization is applied for each node. Each tile 

consists of NFU and 4 RAM banks to store synapses between neurons as shown in Figure 3. [12]   

 

 
 

Figure 3. Tile organization 

 

3.3.1.3. PuDianNao: Polyvalent Machine Learning Accelerators   
 

Neural network accelerators in machine learning field have been performing effectively in some 

of the applications such as pattern recognition. However, users need an accelerator that is more 

applicable in different domains for better performance and higher accuracy. Hence, The 
PuDianNao accelerator could be used which is known for its various representative ML 

algorithms (i.e., k-nearest neighbors, k-means, linear regression, vector machine, deep neural 

network and classification tree).  
 

The architecture design of PuDianNao design is divided into two main parts, namely, execution 

unit and memory hierarchy that are responsible for the computations and structure characteristics 
of machine learning, respectively. [1] The main components of this type of accelerator are 

functional units, data buffers, a control module, instruction buffer and a DMA. The role of a 

functional unit is to complete the most recurrent operations in a manner way. The first component 

of this design (functional unit) is divided into a machine learning unit (MLU) that is used for 
supporting computational computations and an arithmetic logic unit (ALU). The architecture of 

the PuDianNao is shown in Figure 4. [12]  
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Figure 4. Architecture of PuDianNao accelerator 

 

3.3.2. Field-Programmable Gate Array  
 

Other than the accelerators described previously in this paper, an FPGA can also be used to 

accelerate computer intensive applications like CNNs as it provides large amount of logic 

resources. [1] Some advantages of FPGAs include its programmability and configurability that 
allows a custom design to be evaluated in a short period of time; hence, it reduces the time and 

expenses to develop such a design. However, FPGAs have a lower performance-energy efficient 

than Application Specific Integrates Circuit (ASIC).    
 

In addition, most FPGAs available today focus on implementing a particular deep learning 

algorithm efficiently, but their architectures cannot be modified with change in network size or 

network topologies. [2] One The main accelerator that are implemented using FPGAs is called 
DLAU.  

 

DLAU is a scalable accelerator implemented using FPGA as the hardware platform. [2] This 
accelerator focuses on improving the performance and maintain low power cost by employing 

three pipelined processing units to enhance the overall throughput and make full usage of tile 

techniques to apply locality for machine learning applications. The processing units are as 
follows:  

 

- Tiled Matrix Multiplication Unit (TMMU) purpose is to handle the multiplication and 

accumulation operations. In addition, it can explore data locality of the weights and is 
responsible for the Part sum.  

- Part Sum Accumulation Unit (PSAU) purpose is to accumulate the part sum produced by 

the previous processing unit (TMMU). Once there are no more values to accumulate, the 
PSAU sends the result to the AFAU.  

- Activation Function Acceleration Unit (AFAU) purpose is to implement the activation 

function with almost no accuracy loss. 
 

DLAU architecture is made of four basic components namely, embedded processor, DDR3 

memory controller, a DMA module, and the DLAU accelerator itself.   

 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.8, No.4, December 2021 

18 

A. Embedded processor: Provides an interface to the users and allows communication with 
the DLAU. Transfers the weight matrix and input data to internal BRAM blocks, to 

trigger the DLAU accelerator and return the final output to the user.   

B. DLAU accelerator: Accommodates different applications as it is flexible and can adapt to 

different scenarios.   
 

3.3.3. Applications Specific Integrated Circuits  

 
The application specific integrated circuits (ASICs) is known for its ease of use in terms of 

flexibility and customization in design. An ASIC is meant to develop hardware to solve a 

problem by building gates to emulate the logic. These chips are best at performance regardless of 
its little programmability at a given power and cost budget. In order to meet the specific needs of 

consumers, ASICs in batch production and universal integrated circuits used to be smaller 

volume, lower power consumption, reliability improved, higher performance, security enhanced 

and lower cost (14). This type of design started in 1990s in many useful applications (i.e. mobile 
phones). Also, its price was reduced with time for such applications. [13]   ASICs are known for 

its highest computation in efficiency of all other types for targeted applications. They are harder 

in computation compared to GPUs and FPGAs. [15] Another disadvantage over the others is its 
high cost when needed to be built and therefore might become old-fashioned as algorithmic 

advances become available. [14] At the meantime, only Google have developed an ASIC for M. 

however, some other startups are creating their own ASIC for this market over the next coming 
years. [16]  

 

Google Tensor Processing Unit (TPU)  
 
In May 2016, Google working labour announced the Tensor Processing Unit (TPU) which is a 

custom ASIC that is created only for ML. TPU is specifically used in ML applications which 

allows the chip to accept reduced computational precision, hence, fewer transistors per operation 
are required. Therefore, Google allows more operations per second into the silicon, use enhanced 

ML models and apply these models more quickly, so users get more accurate results faster.  A 

TPU can fit into a hard disk drive slot in Google’s data center racks. [16]   

 
The TPU ASIC is built on a 28nm process, runs at 700MHz and consumes 40W when running. 

Because Google needed to deploy the TPU to Google's existing servers as fast as possible, they 

chose to package the processor as an external accelerator card that fits into an SATA hard disk 
slot for drop-in installation. The TPU is connected to its host via a PCIe Gen3 x16 bus that 

provides 12.5GB/s of effective bandwidth. [20] The TPU includes the following computational 

resources:  
 

- Matrix Multiplier Unit (MXU): 65,536 8-bit multiply-and-add units for matrix operations  

- Unified Buffer (UB): 24MB of SRAM that work as registers  

- Activation Unit (AU): Hardwired activation functions  
 

In the case of the TPU, Google designed its MXU as a matrix processor that processes large 

number of operations at a single clock cycle.   
 

To implement such a large-scale matrix processor, the MXU uses a systolic array as its 

architecture rather than typical CPUs and GPUs architectures. CPUs are designed to run almost 
any calculation as they are considered general-purpose computers. To implement this generality, 

CPUs store values in registers, and a program instructs the Arithmetic Logic Units (ALUs) which 

registers to read, the operation to perform (such as an addition, multiplication or logical AND) 

and the register into which to put the result. A program consists of a sequence of these 
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read/operate/write operations. All of these features that support generality (registers, ALUs and 
programmed control) have costs in terms of power and chip area. For an MXU, however, matrix 

multiplication needs to use the inputs several times to reach the final output. The input value is 

read only once, but used for many different operations without storing it back to a register. Wires 

only connect spatially adjacent ALUs, which makes them short and energy-efficient. The ALUs 
perform only multiplications and additions in fixed patterns, which simplifies their design. The 

design is called systolic due to the data having a wave flow just like the way that the heart pumps 

blood. This is an advantage as the power is optimized and area consumption is more efficient in 
performing matrix multiplications.  

 

From an engineer point of view, this architecture limits number of registers, controls and allows 
operational flexibility in exchange for efficiency and allows higher operation density. The TPU 

Matrix Multiplication Unit has a systolic array mechanism that contains 256 × 256 = total 65,536 

ALUs. That means a TPU can process 65,536 multiply-and-adds for 8-bit integers every cycle. 

Because a TPU runs at 700MHz, a TPU can compute 65,536 × 700,000,000 = 46 × 1012 
multiply-and-add operations or 92 Teraops per second (92 × 1012) in the matrix unit. [20]. Figure 

5 shows the components of the TPU die and what percentage each components takes from the 

overall area of the die.  
 

 
 

Figure 5. TPU Die component  

 

3.3.4. CPU/GPU Accelerators and Processors  

 

Training and prediction phase of neural networks are performed on general-purpose processors 
like CPU and Graphic Processing Units (GPU). There are many types of tools, which provide 

relatively complete programming environment for neural networks on CPU/GPU. [1] GPUs have 

been the subject of extensive research during the last few years and have been successfully 
applied to general-purpose applications out of the graphical domain. The GPUs can complete 

many floating point operations per second on their large bandwidth on-board memory. [17] 

Compared with the GPU, CPU clusters waste a lot of resources on communication between cores 
even if they are candidates for sparse or networks beyond memory volume of GPU. GPUs 

employ the fundamentally different SPMD (Single Program Multiple Data) architectures and are 

specialized for intense highly parallel computations. Considering these properties of algorithms, 

GPUs exceed CPUs in CNNs and DNNs. GPUs have not only more generality, but also higher 
performance than CPUs. Researchers are conducted to fully explore how faster GPUs are able to 

accelerate machine learning algorithms over CPUs. [1]  
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3.3.4.1. NVidia Titan Xp GPU  
 

Titan Xp is considered the fastest accelerator among all other accelerators for DNN training on a 

desktop PC based on the NVIDIA Pascal architecture [28]. It was launched in April 2017. The 

TITAN Xp is a highend graphics card by NVIDIA. Created on a 16 nm process, and based on the 
GP102 graphics processor, in its GP102-450-A1 variant, the chip supports DirectX 12.0. The 

GP102 graphics processor is a large chip with a die area of 471 mm² and 12,000 million 

transistors. It contains 3840 shading units, 240 texture mapping units and 96 ROPs. NVIDIA has 
placed 12,288 MB GDDR5X memory on the card, which is connected using a 384-bit memory 

interface. The GPU is operating at a frequency of 1405 MHz, which can be boosted up to 1582 

MHz, memory is running at 1426 MHz [17]. This chip is a dual-slot card, which can draw power 
from 1x 6-pin + 1x 8-pin power connectors, with power draw rated at 250 W. Display outputs 

include: 1x DVI, 3x Display Port. TITAN Xp is linked to the rest of the system using a PCIe 3.0 

x 16 interfaces. The card measures 267 mm in length, and features a dual-slot cooling solution. 

All 30 of the processor’s SMs are enabled, yielding 3840 CUDA cores and 240 texture units. 
Using the appropriate equipment to calculate compute performance, Titan Xp measured a rate of 

roughly 10.8 TFLOPS [29].   

 

3.3.4.2. Intel Processors Xeon Phi CPU  

 

Nowadays, most processors being created exploit thread level parallelism (TLP) for seeking 
higher performance. Hence, multicore/multithread processors are immensely entering the market 

and are becoming the dominant architectures used in many applications such as mobile platforms 

and other high performance computing (HPC) systems. In addition, as technology increases, the 

number of transistors available will continue to grow generation after generation. To fully utilize 
those transistors and further make full potential of TLP, architecture developers’ will further 

design multicore chips. [25]  

 
The Software developers of Xeon Phi created an instruction level energy model to evaluate and 

optimize the energy – efficient software. To create such model, energy consumption of the 

processor was characterized under three main categories by showing how energy per instruction 

scales with number of cores, number of threads per core and different instruction types to further 
optimize the energy efficiency. This architecture can test the energy consumption using software 

code which is an important step for software developers and allows them to minimize energy 

cost.  In addition, this model only needs performance counter statistics as input, which existing 
software profiling tools already provide to verify the energy consumption. [25]  

 

Intel processors work in such a way that tasks are broken down into many concurrent operations 
and are distributed among many small processing units. This technique achieves higher 

performance by executing many operations in parallel at more reasonable clock rates rather than 

carrying out a few tasks in a serial manner at an extremely high frequency. This is achieved by 

activating only the cores needed for a given task, while idle cores are powered down. This 
controlled processing resources allows the chip to use only dedicated power. The advantages of 

such Intel architectures is the reduction in leakage current, reduced mismatches between core 

performance and memory speed. Also, bottlenecks are also reduced.  Moreover, Intel are trying to 
create new processors that allow dynamic reconfiguration of the cores, interconnects and caches 

to meet diverse and changing requirements due to growing technology. [27]  The coprocessor of 

the Intel Xeon Phi family has the following features:  
 

- A processor with up to 72 cores and 16 GB high bandwidth on package MCDRAM 

memory.   

- Intel C610 Series Platform Controller Hub (PCH) with x4 DMI PECI  
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- Non-transparent Bridge (NTB) linking the processor to the edge connector.  
- X16 PCI Express Gen3 interface with SMBus management interface.  

- SMC, thermal sensors,   

- More than 12V power monitoring and on-board fan PID controller on the active SKU -

Coprocessor-level RAS features and recovery capabilities.  
- On-board flash device [42]  

 

3.3.5. Others   
 

Some other accelerators are listed below which do not fit under a specific category:  

 

3.3.5.1. Cambricon X  
 

As mentioned in all the sections above, Neural networks (NNs) are useful in a many different 

applications. For example, image recognition and automatic translation. NNs can be both 
computationally and memory intensive, as it they have a very deep structure, with multiple layers 

of neurons and connections (i.e., synapses). There are also sparse NNs which are an effective 

solution to reduce the amount of computation and memory required. Although existing NN 
accelerators can professionally process dense and regular networks, they cannot benefit from the 

reduction of synaptic weights. Cambricon X is an accelerator that uses a multiple processing 

elements (PE) architecture companied with a buffer controller (BC), so as to manage the 
irregularity of NN models. Specifically, the BC integrates an efficient indexing module to select 

the dedicated neurons only from the neuron buffers, and then transfer such neurons to connected 

PEs with less bandwidth requirement. After receiving such neurons, the PEs can perform efficient 

computations with locally stored compressed synapses. Moreover, due to irregular distribution of 
synapses, multiple PEs can work in an asynchronous system to enhance overall performance. [6] 

Cambricon X architecture shown in Figure 6, consists of a control processor (CP), a buffer 

controller (BC), two neural buffers (NBin and NBout), a direct memory access module (DMA) 
and a computation unit (CU) which contains multiple processing elements (PEs). All the PEs are 

connected as a Fat-tree topology in order to avoid bottleneck. The BC selects needed neurons for 

each PE from local neuron buffers based on the loaded instructions, which are decoded by the 

CP, and transfers those neurons to PEs for efficient local computation. The advantage of this 
architecture is the indexing unit in the BC. [6]   



Machine Learning and Applications: An International Journal (MLAIJ) Vol.8, No.4, December 2021 

22 

 
 

Figure 6. Cambricon-X accelerator architecture and buffer controller architecture 

 
Since hardware cost is always on the top of the designer’s mind, this design uses 16-bit fixed-

point arithmetic units rather than conventional 32-bit floating-point units to reduce hardware cost.  

 The BC is designed to transfer dedicated neurons to PEs, allowing computations on PEs, and 
performing less computation-intensive tasks. The architecture of the BC consists of a module 

used to index data for computation based on connections (Indexing Module, IM), and the 

specialized function units for the BC (BCFU). At first, inputs are fetched from NBin based on the 

control signals decoded from instructions. Then, either the needed neurons are selected from the 
inputs and transferred to each PE or the inputs are directly fed into the BCFU.   

 

3.3.5.2. Tetris with 3D memory  
 

TETRIS is an NN accelerator optimized to be used with state of-the-art 3D memory stacks. The 

architecture used allows for near-data processing to transfer parts of the NN computations into 
the memory system.  

 

Micron’s Hybrid Memory Cube (HMC) is used as the 3D memory. The hardware architecture of 

TETRIS is built such that the HMC is stacked vertically and divided into sixteen 32-bit-wide 
vaults, which is similar to conventional DDRx channels and can be accessed independently. The 

vault channel bus uses TSVs to connect all DRAM dice to the base logic die. Each DRAM die 

contains two banks per vault. Each bank is an array of DRAM cells. In the terms of data access, 
the global data lines transfers data locally (DRAM cell arrays) to the universal sense-amplifiers 

(SAs) at the bottom of the bank, which strengthens it and send it back to the channel TSV data 

bus to its final destination. Although accesses to different banks can overlap at some point, all 

banks in a vault share the same TSVs. [7]  
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4. EVALUATION 
 
In order to evaluate the overall performance of the mentioned accelerators in the previous section, 

we have surveyed the available specifications of all the accelerators in more than one parameter. 

This section contains a discussion of the performance, architecture, memory bandwidth, the 

process technology, the area and the power of each type of accelerator. Furthermore, future trends   
 

4.1. Architecture/Performance Discussion   
 

Measuring the performance can be very critical for neural accelerators, because of the varying 

testing benchmarks and applications. However, this section shall briefly distinguish between the 

different accelerators and shall aid in the decision of which accelerator should be used in each 
field.   

 

Starting off with the GPUs, they are used for graphic processing tasks. For example, GPUs are 
driven by the real-time performance requirements for complex and high-resolution 3D scenes in 

computer games where a high number of instructions are executed in parallel due to enhancement 

of the GPUs in the past decade. In addition, general purpose GPUs are used in high performance 
computing (HPC). Furthermore, it has been achieving high performance in scientific applications 

also due to its thousands of parallel processors. These processors can achieve higher throughput 

than CPUs when running parallel algorithms.  

 
Many of the ML algorithms require architectures similar to GPUs’ architecture due to the need of 

highly parallel executions. For example, CNNs’ evaluation is controlled by the convolutional 

operations between the neuron layers and a number of spatial filters, which can be accelerated, 
with the use of GPUs. Therefore, some deep learning tools (such as OpenCV and Caffe) have 

taken advantage of GPU to improve the overall performance. This is why many autonomous 

vehicles use GPUs; however, GPUs consume high energy and has high power consumption. 

Some GPU chips can improve their power efficiency by optimizing its computing cores, 
reorganizing its GPU architecture, improving memory compression, and adopting minimal 

process technology. [45]  

 
 As compared to GPUs and CPUs, FPGAs improve the computing efficiency and reduces energy 

consumption. FPGA-based design is often described by hardware description language (HDL) 

such as VHDL. The design is specified at register-transfer level (RTL) by registers and 
combinational logics between the registers. FPGAs are low-level abstractions and the designers 

must be very precise when designing the hardware architecture and maintain the massive 

concurrency between different hardware modules. Nowadays, with the advance of high-level 

synthesis, FPGA designers can use high-level specifications. This advance reduces the overall 
cost and shortens the time-to-market. If an FPGA is appropriately optimized, it would be more 

energy efficient than both CPUs and GPUs for a variety of computer vision algorithms such as 

optical flow, local image feature extraction etc. The energy efficiency conclusion is measured in 
terms of the throughput over the power consumed. [45] Also, the FPGAs are somehow different 

than GPUs where FPGAs have a pipelined hardware architecture and the latter has a massive 

parallel SIMD architectures to enhance their throughput. [2]  With the newest accelerators, 
ASICs have demonstrated better performance and utilization compared to FPGAs due to its truly 

custom implementations that leads to higher efficiency. ASIC accelerators contains simply just 

the necessary FMA hardware units needed whereas the FPGAs use only around 70 % of the DSPs 

available (utilization) due to routing constraints. Results show that ASICs are approximately 7 
times more efficient when using the same process technology than FPGAs. [51] Other than the 

performance and hardware complexity, the price of the accelerator is a critical issue for 
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accelerator developers. For example, Intel Xeon Phi 7290F costs $3368, which is considered very 
expensive for beginners. [42] NVidia Titan Xp is almost 1/3 of Intel’s accelerator price ($1200). 

[28] As of the DLAU- FPGA accelerator, the hardware cost depends only on the tile size, which 

saves significant number of hardware resources. [2] However, the newest FPGA accelerator types 

with their new enhancements are becoming extremely expensive. For example, the newest FPGA 
costs $4995. [52] Google’s TPU cloud did not announce the official cost; however, they offered 

cloud services training prices.   

 
 GPUs are almost the same as multi-core CPUs but with two differences. First, GPUs have better 

throughput whereas CPUs are greater in speed. Also, CPU improves the execution of a single 

instruction thread whereas GPUs take the opposite route obtaining benefits from a larger number 
of threaded streams. The second difference is how threads are scheduled. The operating system 

allows threads over different cores of a CPU in a pre-emptive manner; whereas, GPUs have 

dedicated hardware for the cooperative scheduling of threads. [22]  

 

4.2. Other Performance Metrics and What Do they Represent 
 
Memory bandwidth is an important performance metrics as it shows the rate at which data can be 

read or stored from memory. Developers of applications need to consider this type of 

specification if the speed is a crucial factor. In addition, the higher the memory bandwidth 

available, the less likely a bottleneck would occur. Moreover, the size of the process technology 
matters as the smaller the size of the components needed on a chip; the more transistors will fit. 

Hence, parallelism can be exploited more efficiently which results in a faster execution. Other 

than the cost of production, the area of the chip is fundamental for efficiency in more than one 
perspective. As the smaller the die size, the more dies can be equipped on a chip. Lastly, power is 

considered the main factor in deciding how much components you can build on a chip; therefore, 

it is very important to determine the power consumption of each accelerator (i.e. in the designing 
phase). Table 1 summarizes the parameters used to compare and contrast the accelerators. 

 
Table 1: Accelerators and their performance metrics 

 

Accelerator  

Name /  

Parameter  

Intel 

Xeon Phi 

7290F  

NVidia  

Titan Xp  
 

DLAU - FPGA  TPU (ASICs)  PuDianNao  

Process 

technology  

14nm  16 nm  N/A  28 nm  65 nm  

Area  N/A  471 mm  N/A, TMMU  

takes most of  

the area as it 

utilize the 

highest number 

of lookup table 

and flipflops  

United buffer takes :  

29%  

Matrix Multiply 

Unit:  

24%  

2 DRAMs each 

takes  

3%  

Host Interface takes  
2%  

Accumulators 6%  

Activation pipeline  

5%  

Control 2%  

Misc I/O 6%  

PCIe Interface 3%  

 

3.51 mm2  
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Memory 

Bandwidth  

115.2 

GB/s  

547.6 GB/s  N/A  

DDR3  

34 GB/s  N/A  

Power 

(TDP)  

260 Watt  250 Watt  234 mWatt  75 Watt  596 mWatt  

Performance  Processor 

base 

frequency 

is 1.50  

GHZ (1.5  

billion 

cycles per 

second)  

Floatingpoint 

performance: 

12,150  

GFLOPS  

Computes 32 

hardware 

neurons with 32 

weights every 

cycle.  The 

clock cycle is  

200MHz  

180 teraflops  1.056  

trillion 

operation per 

second  

 

The Intel Xeon Phi processor has the smallest process technology, which refers to having the 

possibility of maximum number of transistors. The Nvidia Titan processor has the highest 
bandwidth referring to fast delivery of data. The DLAU dissipates least power when operating at 

base frequency. In fact, the DLAU dissipates x1000 less than the Intel Xeon Phi and the Nvidia 

Titan. The PuDianNao is also considered to dissipate low power compared to both CPUs and 

GPUs.  
 

As for the memory limitations and issues; the DianNao Accelerates force loop tiling to minimize 

the memory access which efficiently accommodates large neural networks. Overall in DianNao 
the titling techniques reduces memory bandwidth for over 50% reduction. For Intel Xeon the 

memory supports ECC memory which can detect and correct types of internal data corruption. 

The Titan Xp uses a 12 GB of GDDR5X memory operating at 1.426 GHz, and uses 384 bit bus, 
the effective memory bandwidth is 547.58 GB/s that causes a maximum power draw around 250 

Watt. The required memory usage for the TPU exceeds the amount of memory required on a 

GPU or CPU due to the padding used when designing the layers of the accelerator. Finally the 

DLAU accelerators relies of buffers, and pipelines to minimize memory transfer operations, and 
reuse the computing units to implement the large size neural networks. 

 

5. CONCLUSION 
 
With the rise of the big data era, the Internet daily produces a huge amount of data that is needed 

with deep learning and artificial intelligence. In addition to the exponential growth of the smart 

phones technologies, more complicated neural networks are applied to solve several problems. 

Therefore, how to speed up the techniques of neural network are becoming an important issue; 
thus, investigating in it will help understanding how it works and what architectures the designers 

use to keep up with the growth in the machine learning field. In this article, we introduced two of 

the most famous neural networks with their implementations. Furthermore, we described in 
details some of the accelerators used to enhance the neural networks. The accelerators include 

their architectures configuration and how they are implemented in such a way to ensure a speed 

up. Finally, the accelerators used have been evaluated in more than one perspective and compared 
and contrasted among them, which makes it easier for developers to choose among the most 

suitable accelerator depending on which metric is crucial and which metric can be tolerated. For 

the future work we are planning to investigate of more types of accelerators with new aspects that 

include testing each and observe the performance of each. In addition to testing the affect of each 
components on the performance for example the sizes of the buffers, inputs and number of layers.   
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