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ABSTRACT 
 
The discovery of habitable exoplanets has long been a heated topic in astronomy. Traditional methods for 

exoplanet identification include the wobble method, direct imaging, gravitational microlensing, etc., which 

not only require a considerable investment of manpower, time, and money, but also are limited by the 

performance of astronomical telescopes. In this study, we proposed the idea of using machine learning 

methods to identify exoplanets. We used the Kepler dataset collected by NASA from the Kepler Space 

Observatory to conduct supervised learning, which predicts the existence of exoplanet candidates as a 

three-categorical classification task, using decision tree, random forest, naïve Bayes, and neural network; 

we used another NASA dataset consisted of the confirmed exoplanets data to conduct unsupervised 

learning, which divides the confirmed exoplanets into different clusters, using k-means clustering. As a 

result, our models achieved accuracies of 99.06%, 92.11%, 88.50%, and 99.79%, respectively, in the 

supervised learning task and successfully obtained reasonable clusters in the unsupervised learning task. 
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1. INTRODUCTION 
 
Over the past decades, astronomers around the world have been relentlessly seeking for habitable 

exoplanets (planets outside the Solar System) with great interest [1]. Some habitable exoplanet 

candidates are Kepler-22b, which is 600 light-years away from the Sun with an orbital period of 
290 days, that has a possible rocky surface at a temperature of approximately 295K with an active 

atmosphere [2]; Kepler-69c, which is 2,700 light-years away from the Sun with an orbital period 

of 242 days, that is of super-earth-sized with a smaller gravity of 7.159 m/s², compared to the 
earth’s gravity [3]; Kepler-442b, which is 1,194 light-years away from the Sun with an orbital 

period of 112 days, that is within the habitable zone of its solar system [4]. 

 

How can astronomers discover these exoplanets? The answer is they have devoted a considerable 
amount of time, energy, and money to explore the vast universe with specialized equipment, such 

as the astronomical telescope. As a result, astronomers collect observed data for further analysis, 

while the identification of a potential exoplanet remains a complicated problem. How can we 
confirm an observation from some astronomical telescopes is an existent exoplanet but not a false 

positive sample? 

 

There are several traditional exoplanet identification techniques, including the wobble method, 
direct imaging, gravitational microlensing, etc. Specifically, the wobble method traces exoplanets 

via a Doppler shift in the star’s light frequencies caused by its planets; direct imaging uses extra-

terrestrial telescopes to capture images from exoplanets; gravitational microlensing detects the 
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distortion of the background light [5]. These traditional methods are expensive, time-consuming, 
and sensitive to variation in the measurement. Based on these limitations, our motivation for this 

study is to develop a simple, efficient, and economic approach to identify exoplanets. Therefore, 

we proposed the idea of using machine learning methods for the identification of exoplanets and 

used two datasets, both were collected by NASA, to conduct a three-categorical classification 
task (supervised learning) and a clustering task (unsupervised learning).  

 

For the supervised learning task, we used the Kepler dataset consisted of false positive (labelled 
as “-1”), candidate (labelled as “0”), and confirmed (labelled as “1”) exoplanet samples to 

perform a three-categorical classification. The objective is to achieve a classification accuracy of 

more than 95%. We selected and trained four models for this problem: classification tree, random 
forest, naïve Bayes, and neural network. As a result, our models achieved accuracies of 99.06%, 

92.11%, 88.50%, and 99.79%, respectively. 

 

For the unsupervised learning task, we used another dataset consisted of the confirmed 
exoplanets data to do the clustering. The objective is to find exoplanets that are in the same 

cluster as the earth. We selected and trained a k-means model for this problem. As a result, our k-

means model partitioned reasonable clusters, and we visualized all exoplanets in the same cluster 
as the earth in a star map. 

 

The rest of this paper is organized as follows. Section II summarizes the related work from other 
researchers. Before the modelling and inference, we conducted data cleaning, exploratory data 

analysis (EDA), feature selection, etc., and these are written in Section III. In Section IV, we 

present the detailed experimental setup, including model optimization and optimal parameters. 

Section V analyses the results obtained by our models and discusses the meanings of the results. 
Finally, Section VI concludes the paper with the significance of this study and future work to be 

done. 

 

2. RELATED WORK 

 

NASA’s Kepler Mission devoted years of effort to discover exoplanets. William J. Borucki [6] 

summarized how traditional approaches were used in the real-world scientific research to 

confirm, validate, and model the discovered exoplanets by Kepler. Natalie M. Batalha [7] stated 
that the progress made by the Kepler Mission indicates there are orbiting systems that might 

potentially be habitable places for the human beings. Lissauer et al. [8] emphasized the 

contribution made by the Kepler Mission and the significance of its data in exoplanets detection.  
 

Based on the Kepler dataset or other similar datasets, there are studies that combine machine 

learning methods with exoplanets detection, identification, and analysis. Christopher J. Shallue 

and Andrew Vanderburg [9] used a convolutional neural network to process the astrophysical 
signals and validated two new exoplanets according to the CNN predictions. Rohan Saha [10] 

implemented logistic regression, decision tree, and neural network on the Kepler dataset to find 

out the probability of existence of an exoplanet candidate. Maldonado et al. [11] summarized 
studies about exoplanet transit discovery with ML-based algorithms. Fisher et al. [12] interpreted 

high-resolution spectroscopy of exoplanets with cross-correlations and supervised learning such 

as Bayesian neural networks. Basak et al. [13] constructed novel neural network architectures to 
explore the habitability classification of exoplanets. 

 

These related studies provided us with precious insights into the data pre-processing, model 

training, selection, and inference procedures. We designed our experiment based on these studies 
and used some of their results as benchmarks. 
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3. DATA PRE-PROCESSING  

 
In this section, we introduce the data pre-processing procedures involved in this study and a short 

description of the datasets.  

 

3.1. Dataset Description 
 

The first dataset (the Kepler dataset) in this study is collected by NASA from the Kepler Space 
Observatory. In 2009, NASA launched the Kepler Mission, an effort to discover exoplanets with 

the goal of finding potentially habitable places for human beings [14]. The mission lasted for 

over nine years with remarkable legacies—a total number of 9,564 potential exoplanets are 

contained in the Kepler dataset, each associated with features that indicate the characteristics of 
the detected “exoplanet”.  

 

Among these features, there is a categorical variable which we selected as the target variable, 
koi_disposition, with three possible values, “CONFIRMED” (labelled as “1”), “CANDIDATE” 

(labelled as “0”), and “FALSE POSITIVE” (labelled as “-1”). If an exoplanet is 

“CONFIRMED”, its existence has been confirmed, and is associated with a name recorded by 

kepler_name variable; if an exoplanet is “CANDIDATE”, its existence has not been proven yet; 
if an exoplanet is “FALSE POSITIVE”, it has been proven a false positive observation. There are 

totally 2,358 confirmed exoplanets, 2,366 candidate exoplanets, and the rest 4,840 exoplanets are 

false positive. We used the Kepler dataset for classification, the supervised learning task. 
 

The second dataset (the confirmed exoplanets dataset) contains stellar and planetary parameters 

of the confirmed exoplanets [15]. These observations are worldwide, not solely from the Kepler 
Mission. Crucial parameters include radius, mass, density, temperature, etc. There are totally 

4,375 confirmed exoplanets in this dataset, some were originally discovered by the Kepler Space 

Observatory, the rest were originally found by other space observatories. We used the confirmed 

exoplanets dataset for clustering, the unsupervised learning task. 
 

3.2. Data Cleaning 
 

The first step of data cleaning was to calculate the proportion of empty entries in each column. 

We excluded columns with a large proportion of empty data. Then columns with a small fraction 

of empty data were manually selected and the empty entries in the preserved columns were filled 
with proper values. Finally, some data were dropped if they had empty values after data cleaning. 

 

3.3. Exploratory Data Analysis (EDA) 
 

Before feature selection and model construction, exploratory data analysis (EDA) is necessary to 

facilitate the data analysis process and make it easier and more precise [16]. In this study, EDA 
was carried out to obtain an intuitive and high-level understanding of the datasets. 

 

3.3.1. Correlation Analysis 
 

We first conducted correlation analysis to identify highly correlated variables and reduce data 

redundancy and collinearity. The correlation matrices of the two datasets are shown in Fig. 1 and 

Fig. 2. Both the x-axis and y-axis of Fig. 1 and Fig. 2 are features, and the entry values represent 
the correlation coefficients between pairs of features. These two figures are symmetric, because 

the correlation coefficient between a variable X and another variable Y follows Corr(X, Y) = 

Corr(Y, X). In addition, the diagonal from top left to bottom right is solely consisted of 1’s, since 
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for each variable X, Corr(X, X) = 1. For a pair of variables, the larger the correlation coefficient 
is, the higher the collinearity is; therefore, features with one or more high correlation coefficients 

were eliminated by us. 

 

 
 

Figure 1. Correlation Matrix of the Kepler Dataset 
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Figure 2. Correlation Matrix of the Confirmed Exoplanets Dataset 

 

3.3.2. Univariate Analysis 

 
Then univariate analysis was performed to visualize the distribution of each variable. 

 

 
 

Figure 3. Count Plots of the Binary Variables of the Kepler Dataset 
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Figure 4. Histogram of the Log Scale Orbital Periods of the Kepler Dataset 

 

Fig. 3 shows the count of each binary variable in the Kepler dataset, which gives the distribution 

of four binary characteristics (non-transit-like, stellar eclipse, centroid offset, ephemeris match 
indicates contamination) of the exoplanet candidates. 

 

Fig. 4. is a histogram that indicates the relationship between an important feature, the log scale 

orbital period, and the target variable. From Fig. 4, the confirmed exoplanets follow a Gaussian 
distribution with respect to the log scale orbital period in the range between -2 and 4. If the value 

of the log scale orbital period is too high or too low, the candidate is more likely to be a false 

positive observation. 
 

3.3.3. Bivariate Analysis 

 

Finally, we used bivariate analysis to investigate the pairwise relationship between different 
features and observe how they affect the target variable.  

 

Fig. 5 is a star map of the exoplanet candidates. In this star map, each pair of celestial coordinates 
is measured by right ascension (RA), the celestial coordinate that represents longitude, and 

declination (Dec), the celestial coordinate that represents latitude [17]. Fig. 5 demonstrates that 

there is no strong correlation between the target variable and coordinates, because for every target 
value, these is no clear cluster of exoplanets shown in Fig. 5. 

 

Fig. 6 is a categorical plot of the log scale orbital period versus number of planets in the 

exoplanet candidate’s solar system. The result shows that false positive samples are most likely to 
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have just one or two planets in their solar system. With a higher number of planets in a 
candidate’s solar system, the probability of it being a real exoplanet is also higher. 

 

 
 

Figure 5. Star Map by Right Ascension (RA) and Declination (Dec) 

 

 
 

Figure 6. Categorical Plot of the Log Scale Orbital Period versus Number of Planets 
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3.4. Feature Selection 
 

Based on the correlation heatmaps, we excluded variables that have high correlation coefficients 

with one or more other input features or have a low correlation coefficient with the target 
variable. For example, variables that store the deviation of observations, such as koi_period_err 

(error of the orbital period) and koi_time0_err (error of the transit epoch), are highly dependent 

on the observed values (orbital period and transit epoch). Therefore, we just kept variables that 
store the observed values but abandoned variables that record deviation. Some preserved features 

are listed in Table 1. 

 
Table 1. Examples of Preserved Features after Feature Selection 

 
Variable Dataset Meaning Description 

kepler_name Kepler Kepler Name 

Kepler name in the form of “Kepler-” plus a 

number and a lower-case letter (e. g. Kepler-

22b, Kepler-186f) 

koi_fpflag_nt Kepler 
Non-Transit-Like 

Flag 

1 means the light curve is not consistent with 

that of a transiting planet 

koi_period Kepler Orbital Period Measured in days and is taken in log scale 

koi_count Kepler 
Number of 

Planets 

Number of exoplanet candidates identified in 

a solar system 

pl_radj 
Confirmed 

Exoplanets 
Planet Radius 

Measured in Jupiter Radius 

pl_bmassj 
Confirmed 

Exoplanets 
Planet Mass 

Measured in Jupiter Mass 

sy_dist 
Confirmed 

Exoplanets 
Distance 

Distance to the planetary system in parsecs 

 

4. EXPERIMENTAL SETUP 

 

In this section, we discuss the model training process in detail with optimization and parameters. 

The training process was divided into two parts, training models for classification, and training 
the k-means model for clustering. For these two parts, we used the Kepler dataset and confirmed 

exoplanets dataset, respectively. For the supervised learning task, we used decision tree, random 

forest, naïve Bayes, and neural network. For the unsupervised learning task, we used k-means 

clustering.  
 

4.1.  Classification Tree 
 

The reason why we chose the decision tree model is that it can split data with classification rules 

based on the highest information gain, Info Gain = Entropyparent - Entropychildren. In a 

classification tree model, each internal node represents a sample to be split, and each leaf node 
represents a class label, or prediction. 

 

We implemented the classification tree model using DecisionTreeClassifier from scikit-learn 
library and optimized its performance with different parameters. We set the minimum number of 

samples required to split an internal node from 2 to 100 and maximum depth of the tree from 1 to 

20, then we selected the parameters that maximized accuracy. As a result, the optimal minimum 

number of samples required to split an internal node is 53 and maximum depth of the tree is 7. 
Finally, we visualized the optimal decision tree using Graphviz. The optimal decision tree is 

shown in Fig. 7 in the next section. 
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4.2. Random Forest 
 

Random forest combines multiple decision trees together at the training time. As a result, these 

decision trees form an ensemble which predicts the class category using the label with the most 
votes. For example, in a random forest of 9 decision trees, if 6 predict 1, then the random forest 

outputs 1. Customized rules might be applied to break the tie. 

 
We implemented the random forest model using RandomForestRegressor from scikit-learn 

library. We optimized the number of trees in the forest by setting this parameter from 20 to 1000 

with a step size of 20. As a result, the highest accuracy was obtained when the number of trees is 

40.  
 

4.3. Naïve Bayes  
 

Naïve Bayes applies Bayes’ theorem under the assumption that features are independent. It’s a 

simple probabilistic approach to conduct the classification task. For features X1, X2, …, Xn and 

classes C1, C2, …, Cm, Naïve Bayes (x1, … xn) = argmax
𝑐

𝑝(𝐶 = 𝑐) ∏ 𝑝(𝑋𝑖 = 𝑥𝑖 | 𝐶 = 𝑐)𝑛
𝑖=1 . 

 

We implemented the naïve Bayes model using ComplementNB from scikit-learn library. Before 

training the naïve Bayes classifier, we standardized input features, encoded the target variable as 
a one-hot vector, and set each prior as the proportion of each class in the sample space. 

 

4.4. Multilayer Perceptron  
 

Neural network is another machine learning model that is widely used in classification problems. 

In a neural network, each layer has an activation function that receives the output values from the 
previous layer and outputs values calculated by the activation function. For each set of features, 

the final prediction of the neural network is the output of its last layer. 

 
We implemented the neural network model using MLPRegressor from scikit-learn library. We 

tried three activation functions, logistic, tanh, and ReLU. These activation functions determine 

how the weighted sum of the input to the current layer is converted into the output to the next 
layer. We also chose three types of solvers, stochastic gradient descent, quasi-Newton method, 

and Adam optimizer. Finally, we optimized the layer size and learning rate. The optimal neural 

network uses tanh as the activation function and Adam as the optimizer with a layer size of 25 

and a learning rate of 0.003. 
 

4.5. K-Means Clustering 
 
K-means is a classic unsupervised learning algorithm for clustering problems. It partitions data 

into k clusters with the objective of minimizing the sum of distance of each sample to its cluster 

centroid in a repeated way.  
 

We aimed at discovering which exoplanets are in the same group as the earth. In this way, we 

might find potentially habitable places for human beings. We implemented the k-means model 
using KMeans from scikit-learn library. We set the number of clusters as 100. 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

For the classification problem, the decision tree achieved an accuracy of 99.06%, random forest 
achieved an accuracy of 92.11%, naïve Bayes achieved an accuracy of 88.50%, and multilayer 
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perceptron achieved an accuracy of 99.79%. These four models all performed well on the test set, 
as each achieved a high classification accuracy. 

 

We further evaluated the performance of these models with 10-fold cross-validation, a 

resampling method that tests if a model generalizes well, using KFold from scikit-learn library. 
As a result, the random forest model achieved the best average accuracy of 82.39%. 

 

 
 

Figure 7. The Optimal Classification Tree Obtained 

 

We visualized the classification tree with the highest accuracy using Graphviz and plotted the 

importance of each feature. The optimal classification tree obtained is shown in Fig. 7 and the 
importance of each feature is shown in Fig. 8 and Table 2. From Fig. 7, Fig. 8, and Table 2, the 

most important feature is stellar eclipse, a flag variable indicating if some phenomena caused by 

an eclipsing binary are observed, with a Gini importance score of 0.30512. The most important 
continuous variable is the log scale orbital period measured in days, with a Gini importance score 

of 0.05115. 
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Figure 8. The Importance Scores of Features in the Kepler Dataset 

 
Table 2. Kepler Feature List with Variable Name, Importance, Meaning, and Description 

 
Variable Importance Meaning Description 

koi_fpflag_ss 0.30512 Stellar Eclipse  
1 means some phenomena caused by an 
eclipsing binary observed 

koi_fpflag_co 0.27971 Centroid Offset  
1 means the source of the signal is from a 

nearby star 

koi_fpflag_nt 0.27158 Non-Transit-Like  
1 means the light curve is not consistent 

with that of a transiting planet 

koi_period 0.05115 Orbital Period Measured in days and is taken in log scale 

koi_count 0.03464 Number of Planets 
Number of exoplanet candidates identified 

in a solar system 

koi_fpflag_ec 0.03245 

Ephemeris Match 

Indicates 

Contamination  

1 means the candidate shares the same 

period and epoch as another object 

koi_time0 0.01978 Transit Epoch Measured in Barycentric Julian Day (BJD) 

 
Finally, we visualized the exoplanets in the same cluster as the earth in Fig. 9. As a result, these 

exoplanets are most likely to be habitable for human beings. For example, HD 7924 d, HD 33564 

b, HD 17156 b, GJ 96 b, Teegarden’s Star b are among these exoplanets. There are totally 39 

exoplanets in the same cluster as the earth. 
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Figure 9. Star Map of the Exoplanets in the Same Cluster as the Earth 

 

6. CONCLUSION 

 
In this project, we conducted both supervised and unsupervised learning on two datasets collected 

by NASA, the Kepler dataset and confirmed exoplanets dataset. The Kepler dataset was used to 

predict the existence of exoplanet candidates by classification techniques, including decision tree, 
random forest, naïve Bayes, and neural network. The confirmed exoplanets dataset was used to 

find habitable exoplanets by picking up exoplanets in the same cluster as the earth. 

 

For the supervised learning task, comprehensive data cleaning and EDA were performed to help 
visualize the data and get a higher-level understanding of the samples. Then correlation-based 

feature selection was conducted, several redundant features were removed because of low feature 

target correlation or high feature-feature correlation. The selected machine learning models were 
then implemented. The optimal hyper-parameters were obtained by experiment and accuracy was 

improved. Our models finally achieved accuracies of 99.06%, 92.11%, 88.50%, and 99.79%, 

respectively, and were compared by 10-fold cross validation. As a result, the random forest 
model performed the best among these four. 

 

For the unsupervised learning task, basic EDA and feature selection were also performed. Then 

the earth’s features were added to the dataset before clustering. All exoplanets were divided into 
100 clusters and exoplanets that are most likely to be habitable were found in the cluster that 

contains the earth. 

 
As an extension of this project, it might be interesting to create new features from the current 

feature set using feature engineering techniques, because they can be helpful to improve the 

model performance. In addition, we can investigate the receiver operating characteristics (ROC) 
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and the precision-recall curves to understand the diagnostic ability of different machine learning 
models. McNamara’s test can also be applied to compare different algorithms [10]. Finally, the 

discussion of statistical significance tests and execution time can be included in model 

evaluation. 

 
People from different cultures may connect to the concept of a “planet” as follows, they live on 

one, our mother earth, view the moon shared by all human beings, and learn the names of the 

other planets in our solar system from an early age. Planets that circle the star, rather than nebulae 
or galaxies, are easier to fit into our shared cultural view of the universe. For us, exoplanet 

exploration bridges the heaven with human consciousness and opens a vast exploration area to 

look forward to—seeking other habitable worlds. Finally, it has increased the likelihood that our 
long-term study points toward, we are not alone in the universe. 
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