NEIGHBOUR LOCAL VARIABILITY FOR MULTI-FOCUS IMAGES FUSION

Ias Sri Wahyuni¹ and Rachid Sabre²

¹Universitas Gunadarma, Jl. Margonda Raya No. 100 Depok 16424, Indonesia
²Laboratory Biogéosciences CNRS, University of Burgundy/Agrosup Dijon, France

ABSTRACT

The goal of multi-focus image fusion is to integrate images with different focus objects in order to obtain a single image with all focus objects. In this paper, we give a new method based on neighbour local variability (NLV) to fuse multi-focus images. At each pixel, the method uses the local variability calculated from the quadratic difference between the value of the pixel and the value of all pixels in its neighbourhood. It expresses the behaviour of the pixel with respect to its neighbours. The variability preserves the edge function because it detects the sharp intensity of the image. The proposed fusion of each pixel consists of weighting each pixel by the exponential of its local variability. The quality of this fusion depends on the size of the neighbourhood region considered. The size depends on the variance and the size of the blur filter. We start by modelling the value of the neighbourhood region size as a function of the variance and the size of the blur filter. We compare our method to other methods given in the literature. We show that our method gives a better result.

KEYWORDS

Neighbour Local Variability; Multi-focus image fusion; Root Mean Square Error (RMSE)

1. INTRODUCTION

The limitation of the depth of field of optical lenses often causes difficulty in capturing an image containing all objects in focus on the scene. Only objects in depth of field are sharp, while other objects are out of focus. Merging multi-focus images is the solution to this problem. There are different approaches that have been carried out in the literature. These approaches can be separated into two kinds: the spatial domain method and the multi-scale fusion method. The spatial domain fusion method is performed directly on the source images. The techniques of the spatial domain directly consider the pixels of the image. We quote some methods of fusion of the spatial domain approaches: the mean, the principal component analysis (PCA) [1], the rule of maximal selection, the methods bilateral gradient based [2] and guided image filter (GIF) method [3] and maximum selection rule. We relate to the spatial domain approaches the fact that they produce a spatial distortion in the merged image. Spatial distortion can be handled very well by multiscale approaches to image fusion. The merging process in multi-scale merging methods is done on the source images after their decomposition into several scales. We cite some examples of these methods: The discrete wavelet transform (DWT) [4] - [9], fusion of images of the Laplacian pyramid [10] - [17], discrete cosine transform with variance calculation (DCT + var) [18], method based on salience detection (SD) [19] are examples of image fusion techniques under transformation domain. The objective of this work is to propose a multi-focus image fusion at the pixel level based on the neighboring local variability (NLV). It consists in calculating for each pixel the quadratic distance which separates it from the other pixels belonging to its neighborhood. It expresses the behavior of the pixel with respect to all the pixels belonging to its
The variability preserves the edge function because it detects the sharp intensity of the image. The fusion of each pixel is given by a linear model of the values of the pixel in each image hanging by the exponential of its local variability.

The precision of this fusion depends on the width of the region of pixels considered in the neighbourhood. To determine this optimal width, we minimize the RMSE error. We propose a model giving this width as a function of the variance and the size of the blur filter.

A comparative study of our method with other existing methods in the literature (DWT and LP-DWT), it was carried out and showed that our method gave the best result using the mean squared error (RMSE).

This paper is organized as follows: The second section reveals the stages of the process of fusing the proposed method and a model giving the size of the neighbourhood. In section 3, we studied the experimental results and compared our method to some recent methods. Section 4 gives the conclusion of this work. In section 5, we give mathematical details to show the property of local variability.

2. Neighboring Local Variability Method

Let be the fusion of two images, I1 and I2 that respectively have blurred parts B1 and B2. These images have the same size: N1 x N2 where B1 and B2 are disjoint. The idea of the NLV merge method is to add the pixel values of the two images weighted by the local variability of each image. This local variability at \((x, y)\) is calculated from the exponential of average of the square difference between the value of the pixel \((x, y)\) and the value of its neighbors. The NLV at \((x, y)\) is defined as follows:

\[
v_{a,k}(x,y) = \sqrt{\frac{1}{R} \sum_{m=-a}^{a} \sum_{n=-a}^{a} |I_k(x,y) - I_k'(x+m,y+n)|^2}
\]

where \(k\) is the index of \(k^{th}\) source image \((k = 1, 2)\), \(a\) is the size of neighborhood

\[
I_k'(x+m,y+n) = \begin{cases} I_k(x+m,y+n), & \text{if } 1 \leq x+m \leq N_1 \text{ and } 1 \leq y+n \leq N_2 \\ I_k(x,y), & \text{otherwise} \end{cases}
\]

\[
R = (2a + 1)^2 - card(S),
\]

\[
S = \{(m,n) \in \mathbb{Z}^2 | 0 \leq x+m \leq N_1, 0 \leq y+n \leq N_2 \}.
\]

In the annex 1, we show that this local variability is small enough where the location is on the blurred area \((B_1 \text{ or } B_2)\).

In this work, we give a novel fusion method where each pixel of each image is weighting by exponential of neighbour local variability. We calculate the neighbour local variability from the quadratic difference between the value of the pixel and the all pixel values of its neighbours. The idea came from the fact that the variation of the value in blurred region is smaller than the variation of the value in focused region. We used the neighbour, with the size “\(a\)”, of a pixel defined as follows:

\[(x+i, y+j) \text{ where } i = -a, -a+1, \ldots, a-1, a \text{ and } j = -a, -a+1, \ldots, a-1, a.\]
For example, the neighbor with the small size ("a" = 1) contains:

\((x-1, y-1), (x-1, y), (x-1, y+1), (x, y-1), (x, y+1), (x+1, y-1), (x+1, y), (x+1, y+1)\).

![Image of pixel neighborhood](image)

**Fig. 2.** Pixel at \((x,y)\) within its neighborhood, \(a = 1\).

The fusion with size "a" follows the steps:

Consider \(M\) original source images, \(I_1, \ldots, I_M\), with different focus and same size \((N_1 \times N_2)\).

**Step 1:** For each pixel of each image, we calculated the neighbor local variability (NLV) of every source image, \(v_{a,k}(x,y)\) defined in (1).

**Step 2:** The proposed fusion for the pixel \((x,y)\) is \(F(x,y)\) calculated by the following model:

\[
F(x,y) = \frac{\sum_{k=1}^{M} \exp(v_{a,k}(x,y))I_k(xy)}{\sum_{k=1}^{M} \exp(v_{a,k}(x,y))} \tag{2}
\]

We remark that method depends on the size "a". To determine the value of "a", we find the value minimizing the Root Mean Square Error (RMSE), where RMSE is defined in section 3. For that, we showed that the value of "a" depends on the blurred area.

The choice of the size of the neighborhood "a" used in NLV method depends on variance \(v\) and the size(s) of the blurring filter. Our problem is to have a model that gives the value of the "a" according to the "v" and "s"; we take a sample of 1000 images that we blurred using Gaussian filter with different values of \(v\) and \(s\) \((v=1,2,3,\ldots,35\) and \(s=1,2,3,\ldots,20\)).

After that, for each image we blurred with parameters "v" and "s", we applied our fusion method with different values of "a"("a=1,2,\ldots,17") and determined the value of "a" that gives the minimum RMSE, denoted by \(a_f(v,s)\). Then, we took the mean of the \(a_f(v,s)\) for 1000 images, denoted \(a(v,s)\), because the coefficient of variation is smaller than 0.1.

Firstly, we have studied the variation of "a" in according to variance "v" for each fixed size of blurring filter "s". We noted that this variation is logarithmic. For example, "s=8" on Fig. 4. By using nonlinear regression, we obtained the model:

\[
a = 2.1096 \ln v + 2.8689.
\]
In general, the model is:

\[ a = c_1(s) \ln v + c_2(s) \]  

(3)

where the \( c_1 \) and \( c_2 \) are functions that depend on "s". The graphs that describe \( c_1 \) and \( c_2 \), respectively, are revealed in Fig. 5. and Fig. 6.

\[
\begin{align*}
\text{Fig. 5. graph of } c_1(s) \\
\text{Fig. 6. graph of } c_2(s).
\end{align*}
\]

By giving a model of \( c_1 \) and a model of \( c_2 \) and introducing these models in (3), we get the general following model:

\[
a(v,s) = \frac{3.0348761}{1 + 29.0909139 \exp\left(-0.5324955s\right)} \ln(v) + 0.434 \left(\frac{75.062269}{1.225175s}\right) \exp\left[-0.5 \left(\frac{\log(s) - 2.655551}{1.225175}\right)^2\right]
\]

(4)

As "a" is integer, we have two choices of \( a \). It is either the floor of \( a(v,s) \), denoted by \( \lfloor a(v,s) \rfloor \) or the ceiling of \( a(v,s) \), denoted by \( \lceil a(v,s) \rceil \). Since the RMSE values of both "a" are very slightly different, then we can choose any "a" of them. We use "a" = \( \lfloor a(v,s) \rfloor \) in the remaining part of this paper.

To validate this model we applied it to 100 images (we generated 100 pairs of multi-focus images with different variance and blur filter size values) and the result is as good as expected. To use this NLV method, you must first estimate the variance and size of the blur filter from the blur image. For this, there are some articles giving the methods to estimate the variance of the blur
filter and the blur detection as in [23] - [27]. subsequently, we developed another method in which we combined the method of the Laplacian pyramid and the NLV method where the Laplacian pyramid was used with NLV as selection rule, denoted LP-NLV.

3. EXPERIMENTAL STUDY

We have applied the NLV method on a dataset of images [26] using Matlab2013a. These images were blurred using a Gaussian filter with many values of variance and size. To simplify the reading of the article, we have presented only two examples in 256x256 format (N1 = N2 = 256). The first “bird” image Fig.1 and the second “bottle” image Fig.2. All images consist of two images with a different focus and a reference image.

We then compare the NLV method to other methods existing in the literature such as: PCA method [1], Discrete Wavelet Transform (DWT) method [6], Laplacian Pyramid LP_PCA [15], LP_DWT [17] and Bilateral gradient (BG) [2].

For that, we used the following the evaluation criteria frequently used:

Root Mean Square Error (RMSE)

RMSE gives the information how the pixel values of fused image $F$ deviate from the reference image $R$. RMSE is defined as follows:

$$RMSE = \sqrt{\frac{1}{rc} \sum_{i=1}^{r} \sum_{j=1}^{c} [R(x, y) - F(x, y)]^2}$$

(5)

where $R$ is a reference image, $F$ is a fused image, $r \times c$ is the size of the input image, and $x, y$ represents the pixel locations. A smaller value of RMSE shows a good fusion result. If the value of RMSE is equal to zero then it means the fused image is same the reference image.

For two images that are presented in this paper and blurred with variance = 10 and size of blurring filter = 5, the model (5) gives the neighbour size "a" = 5 and "a" = 6. Here, we use "a" = 6 because it results the smaller RMSE compared to "a" = 5 however the RMSE values of "a" = 5 and "a" = 6 are very slightly different.
We have found that the NLV method better fusion compared to other methods, see Fig.1.

Table 1. Performance evaluation of image 'bird'

<table>
<thead>
<tr>
<th></th>
<th>PCA</th>
<th>DWT</th>
<th>LP-DWT</th>
<th>LP-PCA</th>
<th>DCT+var</th>
<th>Bilateral gradient</th>
<th>GIF</th>
<th>SD</th>
<th>NLV</th>
<th>LP-NLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS</td>
<td>6.920</td>
<td>3.567</td>
<td>1.519</td>
<td>1.468</td>
<td>2.6860</td>
<td>8.8378</td>
<td>2.279</td>
<td>10.454</td>
<td>0.546</td>
<td>0.843</td>
</tr>
</tbody>
</table>

The table 1 gives the values of RMSE calculated for ten methods. As we can see on the Table 1 for image 'bird': the smallest RMSE is given by NLV method, the second smallest is LP-NLV, the third is LP-PCA. NLV method is the best method among the above methods and LP-NLV is better than LP-PCA and LP-DWT.
We have found that the NLV method performs better compared to other methods, see Fig.2.

To confirm our visually result, we calculated the evaluation metrics: RMSE for ten methods see Table 2. We can classify these methods from the smaller value of RMSE. The smallest value is NLV, the second smallest is LP-NLV and the third smallest is LP-PCA.

Table 2. Performance evaluation of images of 'the bottle'

<table>
<thead>
<tr>
<th></th>
<th>PCA</th>
<th>DWT</th>
<th>LP-DWT</th>
<th>LP-PCA</th>
<th>DCT+var</th>
<th>Bilateral gradient</th>
<th>GIF</th>
<th>SD</th>
<th>NLV</th>
<th>LP-NLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>15.00</td>
<td>5.384</td>
<td>2.528</td>
<td>2.485</td>
<td>2.642</td>
<td>20.380</td>
<td>3.681</td>
<td>16.9</td>
<td>0.902</td>
<td>1.584</td>
</tr>
</tbody>
</table>

According to the evaluation measure RMSE, the Table 3 gives the mean and standard deviation of RMSE for the considered methods applied on 150 images.
Table 3. Statistic parameters of the sample (150 images)

<table>
<thead>
<tr>
<th>Methods</th>
<th>PC A</th>
<th>DWT</th>
<th>LP_DWT</th>
<th>LP_PCA_t</th>
<th>DCT_val</th>
<th>BG</th>
<th>NLV</th>
<th>LP_NLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>8.713</td>
<td>4.194</td>
<td>2.049</td>
<td>1.995</td>
<td>2.839</td>
<td>11.044</td>
<td>0.591</td>
<td>1.344</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3.866</td>
<td>1.381</td>
<td>0.756</td>
<td>0.743</td>
<td>1.308</td>
<td>4.859</td>
<td>0.204</td>
<td>0.697</td>
</tr>
<tr>
<td>Time of execution by image</td>
<td>7s</td>
<td>5s</td>
<td>7s</td>
<td>7s</td>
<td>6s</td>
<td>6s</td>
<td>5s</td>
<td>7s</td>
</tr>
</tbody>
</table>

Table 3 shows that the proposed method (NLV) has a smaller average of the RMSE. The RMSE histograms for 150 images by different methods (Figures 3, 4, 5, 6, 7, 8 and 9) show for almost all methods that the RMSE values are almost symmetrically centered around the mean value.
In order to compare analytically the proposed method to other methods, a study of the Analysis of variance (ANOVA) with dependent samples (dependence by image) is done. The software R gives the following Anova table:

Table 4. Anova table with one factor: method

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>9</td>
<td>25467</td>
<td>2829.6</td>
<td>742 &lt;2e-16 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>1341</td>
<td>5114</td>
<td>3.8</td>
<td></td>
</tr>
</tbody>
</table>

As Pr(>F) is smaller than 1%, in table 4., the methods are significantly different. Then, the Newman Keuls test is performed for comparing the methods two-by-two and giving groups having significantly the same mean of RMSE. The software R shows the results of the test as follows:

Table 5. Test of Newman Keuls

<table>
<thead>
<tr>
<th>$ groups</th>
<th>RMSE</th>
<th>groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>12.6072900</td>
<td>a</td>
</tr>
<tr>
<td>BG</td>
<td>11.0447767</td>
<td>b</td>
</tr>
<tr>
<td>PCA</td>
<td>8.7139600</td>
<td>c</td>
</tr>
<tr>
<td>DWT</td>
<td>4.1941660</td>
<td>d</td>
</tr>
<tr>
<td>DCT_var</td>
<td>2.8395233</td>
<td>e</td>
</tr>
<tr>
<td>GIF</td>
<td>2.5146353</td>
<td>e</td>
</tr>
<tr>
<td>LP_DWT</td>
<td>2.0496413</td>
<td>f</td>
</tr>
<tr>
<td>LP_PCA</td>
<td>1.9954953</td>
<td>f</td>
</tr>
<tr>
<td>LP_NLV</td>
<td>1.3446913</td>
<td>g</td>
</tr>
<tr>
<td>NLV</td>
<td>0.5921593</td>
<td>h</td>
</tr>
</tbody>
</table>

From table 5, we obtained the methods significantly different except the methods DCT_var and GIF form the group “e” and the methods LP_DWT and LP_PCA form the group “f”.

The proposed method NLV in group “h” has a smaller mean (0.5921593) and significantly different of the all methods. We conclude that the proposed method gives the better result than other methods.

4. CONCLUSION

In this paper we propose an image fusion method based on local neighbour variability (NLV). This method has been described in detail. Applying this method to 150 images gives a result of significant improvement in both visual and quantitative image fusion compared to other fusion
methods. We used Laplacian pyramid with NLV as selection criterion, LP-NLV. Based on the result of the experiment, we notice that LP-NLV is better than LP-DWT and DWT.

The proposed method has the advantage of taking into account the variability between each pixel and its neighbours. Thus the coefficient of the pixels located in the focused part will be more imposing. This method can be extended to multimodal images used in particular in medicine (scanner, ultrasound, radiography, etc.) to give the presence of certain cancer cells seen in one image and not visible in another image.

1) Drone is considered as a technological means allowing to capture images at different altitudes. It opened up limitless possibilities for improving photography. The captured images can be on the same scene by zooming in on different objects and at different altitudes. It produces several images on the same scene but with different objects in focus.

2) In the food industry to control the quality of some products, cameras have been used to take pictures. Each camera targets one of many objects placed on a conveyor belt to detect an anomaly. To have a photo containing all the objects clearly, we can use the proposed merge method which gives more details.

The perspectives of this work:

- We intend to extend our method to color images because color conveys additional information.
- Encouraged by these results, we plan to extend the NLV method to the fusion of more than two images, taking into account the local variability of each image (intra-variability) and the variability between the images (inter-variability). Inter-variability can detect “abnormal pixels” among images.

REFERENCES

Consider, without loss the generality that we have a focus pixel \((x, y)\) in image \(I_1\) and blurred in image \(I_2\) as in Fig. 1.

Fig. 1. Two multi-focus images, the yellow part is blurred area and the white part is clear (focus) area.

The neighbor local variability of images \(I_1\) and \(I_2\), respectively is defined in (1) by:

\[ \text{Neighbor Local Variability} \]
\[ v_{a,1}(x,y) = \exp\left(\frac{1}{\sqrt{2}} r_1(x,y)\right) \quad \text{and} \quad v_{a,2}(x,y) = \exp\left(\frac{1}{\sqrt{2}} r_2(x,y)\right) \]

where \( r_1(x,y) \) and \( r_2(x,y) \) can be written as follows:

\[ r_1(x,y) = \sum_{m=0}^{2a} \sum_{n=0}^{2a} |I_1(x,y) - I_1(x + (m - a), y + (n - a))|^2 \]  
(6)

\[ r_2(x,y) = \sum_{m=0}^{2a} \sum_{n=0}^{2a} |I_2(x,y) - I_2(x + (m - a), y + (n - a))|^2 \]  
(7)

Let \( I_R \) is the reference image of multi-focus images \( I_1 \) and \( I_2 \). Moreover, it is shown in [20] and [21] that the blurred image can be seen as the product convolution between the reference image and Gaussian filter:

\[ I_1(x,y) = \begin{cases} 
  w_1 * I_R(x,y), & (x,y) \in B_1 \\
  I_R(x,y), & (x,y) \in B_1 \end{cases} \]

\[ I_2(x,y) = \begin{cases} 
  w_2 * I_R(x,y), & (x,y) \in B_2 \\
  I_R(x,y), & (x,y) \in B_2 \end{cases} \]  
(8)

where \( w_1 \) and \( w_2 \) are Gaussian filter defined by:

\[ w_1(k,l) = w_2(k,l) = \frac{\exp\left(-\frac{k^2 + l^2}{2\sigma_1^2}\right)}{\sum_{k=-s_1}^{s_1} \sum_{l=-s_1}^{s_1} \exp\left(-\frac{k^2 + l^2}{2\sigma_1^2}\right)}, \quad (k,l) \in [-s_1,s_1]^2, \]

\[ w_2(k,l) = \frac{\exp\left(-\frac{k^2 + l^2}{2\sigma_2^2}\right)}{\sum_{k=-s_2}^{s_2} \sum_{l=-s_2}^{s_2} \exp\left(-\frac{k^2 + l^2}{2\sigma_2^2}\right)}, \quad (k,l) \in [-s_2,s_2]^2 \]

The product convolution is defined as follows:

\[ w_1 * I_R(x,y) = \sum_{k=-s_1}^{s_1} \sum_{l=-s_1}^{s_1} w_1(k,l) I_R(x-k,y-l), \quad w_2 * I_R(x,y) = \sum_{k=-s_2}^{s_2} \sum_{l=-s_2}^{s_2} w_2(k,l) I_R(x-k,y-l), \]

\[ r_1(x,y) = \sum_{m=0}^{2a} \sum_{n=0}^{2a} |D_{1(m,n)}^1(x,y)|^2 \quad r_2(x,y) = \sum_{m=0}^{2a} \sum_{n=0}^{2a} |D_{1(m,n)}^2(x,y)|^2 \]  
(9)

Put

\[ D_{1(m,n)}^1(x,y) = I_1(x,y) - I_1(x + (m - a), y + (n - a)) \]

\[ D_{1(m,n)}^2(x,y) = I_2(x,y) - I_2(x + (m - a), y + (n - a)) \]  
(10)
\[ D_{(m,n)}^2(x, y) = I_2(x, y) - I_2\left(x + (m-a), y + (n-a)\right) \]  

(11)

**Proposition:**

The local variability on blurred part is smaller than the local variability on focused part. Let \((x, y) \in B_2\) (the blurred part of \(I_2\)) and \((x, y) \notin B_1\) (focus par of \(I_1\)), then \(r_2(x, y) \leq r_1(x, y)\).

**Proof:**

For that, we use Plancherel theorem:

\[
\sum_{m=0}^{2a} \sum_{n=0}^{2a} |D_{(m,n)}^1(x, y)|^2 = \frac{1}{(2a+1)^2} \sum_{m=0}^{2a} \sum_{n=0}^{2a} |\hat{D}_{(n,m)}^1(x, y)|^2
\]

(12)

where \(\hat{D}_{(n,m)}^1(x, y)\) is Fourier transform of \(D_{(m,n)}^1(x, y)\).

\[
\hat{D}_{(n,m)}^1(x, y) = FT[D_{(m,n)}^1(x, y)] = FT[I_1(x, y) - I_1(x + (m-a), y + (n-a))]
\]

(13)

As \((x, y) \in B_2\) therefore \((x, y) \notin B_1\), from (12), equation (13) can be written as follows:

\[
\hat{D}_{(n,m)}^1(x, y) = FT[I_R(x, y) - I_2(x + (m-a), y + (n-a))]
\]

(14)

and

\[ I_2(x, y) = \sum_{k=-s_2}^{s_2} \sum_{l=-s_2}^{s_2} w_2(k, l) I_R(x-k, y-l) \]

(15)

By using the definition of convolution, equation (15) can be written as:

\[ I_2(x, y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} w_2(k, l) 1_{[-s_2,s_2]^2} I_R(x-k, y-l) \]

(16)

and

\[ I_2(x, y) = (w_2 1_{[-s_2,s_2]^2}) * I_R(x, y) \]

(17)

where

\[ 1_{[-s_2,s_2]^2}(k, l) = \begin{cases} 1, & \text{if } (k, l) \in [-s_2, s_2]^2 \\ 0, & \text{otherwise} \end{cases} \]

The Fourier transform of \(D_{(m,n)}^2(x, y)\) is

\[
\hat{D}_{(n,m)}^2(x, y) = FT[w_2 1_{[s_2,s_2]^2} * I_R(x, y) - w_2 1_{[s_2,s_2]^2} * I_R(x + (m-a), y + (n-a))]
\]
\[ \begin{align*}
\text{(18)}
\end{align*} \]

Substitute (10) into (14), we get

\[ \hat{D}_{(n,m)}(x, y) = FT[w_2 1_{[2s_s, s_s]}^2 (k, l) e^{-i2(kp + lp)}] \hat{D}_{(n,m)}^1(x, y) \] (19)

Hence, from equation (19), we can obtain

\[ |\hat{D}_{(n,m)}^2(x, y)| = \sum_{k=-s_s}^{s_s} \sum_{l=-s_s}^{s_s} \sum_{k'=-s_s}^{s_s} \sum_{l'=-s_s}^{s_s} e^{-\left(\frac{k^2+l^2}{2\sigma_2^2}\right)} e^{-i2(kn+lm) \hat{D}_{(n,m)}^1(x, y)} \]

\[ \leq \sum_{k=-s_s}^{s_s} \sum_{l=-s_s}^{s_s} e^{-\left(\frac{k^2+l^2}{2\sigma_2^2}\right)} |\hat{D}_{(n,m)}^1(x, y)| \leq |\hat{D}_{(n,m)}^1(x, y)| \] (20)

On the other hand, from equation (13) and Plancherel-Parseval’s theorem, we have

\[ r_2(x, y) = \sum_{m=0}^{2a} \sum_{n=0}^{2a} |\hat{D}_{(m,n)}^2(x, y)|^2 = \frac{1}{(2a + 1)2} \sum_{m=0}^{2a} |\hat{D}_{(n,m)}^1(x, y)|^2 \]

From (16), we get

\[ r_2(x, y) \leq \frac{1}{(2a + 1)^2} \sum_{m=0}^{2a} \sum_{n=0}^{2a} |\hat{D}_{(p,q)}(x, y)|^2 \leq \sum_{m=0}^{2a} \sum_{n=0}^{2a} |\hat{D}_{(m,n)}^1(x, y)|^2 \]

\[ r_2(x, y) \leq r_1(x, y) \]
This proves that the local variability in blurred part is smaller than local variability in focused part.

AUTHORS

Rachid Sabre received the PhD degree in statistics from the University of Rouen, Rouen, France, in 1993 and Habilitation (Hdr) from the University of Burgundy, Dijon, France, in 2003. He joined Agrosup Dijon, Dijon, France, in 1995, where he is an Associate Professor. From 1998 through 2010, he served as a member of “Institut de Mathématiques de Bourgogne”, France. He was a member of the Scientific Council AgroSup Dijon from 2009 to 2013. In 2012, he has been a member of “Laboratoire Electronique, Informatique, et Image” (Le2i), France. Since 2019 has been a member of Laboratory Biogeosciences UMR CNRS, University of Burgundy. He is author/co-author of numerous papers in scientific and technical journals and conference proceedings. His research interests lie in areas of statistical process and spectral analysis for signal and image processing.

Ias Sri Wahyuni was born in Jakarta, Indonesia, in 1986. She earned the B.Sc. and M.Sc. degrees in mathematics from the University of Indonesia, Depok, Indonesia, in 2008 and 2011, respectively. In 2009, she joined the Department of Informatics (COMPUTING) System, Gunadarma University, Depok, Indonesia, as a Lecturer. She is currently a PhD student at University of Burgundy, Dijon, France. Her current research interests include statistics and image processing.