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ABSTRACT 
 

The non-invasive Fetal Electrocardiogram (FECG) signal has become a significant method for monitoring 

the fetus's physiological conditions, extracted from the Abdominal Electrocardiogram (AECG) during 

pregnancy. The current techniques are limited during delivery for detecting and analyzing fECG. The non - 

intrusive fECG recorded from the mother's abdomen is contaminated by a variety of noise sources, can be 

a more challenging task for removing the maternal ECG. These contaminated noises have become a major 

challenge during the extraction of fetal ECG is managed by uni-modal technique. In this research, a new 

method based on the combination of Wavelet Transform (WT) and Fast Independent Component Analysis 

(FICA) algorithm approach to extract fECG from AECG recordings of the pregnant woman is proposed. 

Initially, preprocessing of a signal is done by applying a Fractional Order Butterworth Filter (FBWF). To 

select the Direct ECG signal which is characterized as a reference signal and the abdominal signal which 

is characterized as an input signal to the WT, the cross-correlation technique is used to find the signal with 

greater similarity among the available four abdominal signals. The model performance of the proposed 

method shows the most frequent similarity of fetal heartbeat rate present in the database can be evaluated 

through MAE and MAPE is 0.6 and 0.041209 respectively. Thus the proposed methodology of de-noising 

and separation of fECG signals will act as the predominant one and assist in understanding the nature of 

the delivery on further analysis. 
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1. INTRODUCTION 
 

Among 80% of perinatal events, 20% of pregnancies are high risk, whereas the rest are 

preventable as per the record of the World Health Organization (WHO). Intelligent detection and 

analysis of fECG signals help in identifying the preventable ones at the earlier stage. 

Furthermore, fetal deaths worldwide are 2.65 million annually, with 45% of intra-partum deaths 

can occur. Heart defects are the primary cause of mortality. Nine out of 1,000 infant children in 

the UK are estimated to have a congenital cardiopathy at birth [1]. Using Fetal heart rate activity 

many scientific community has developed a brilliant technologies to control the physiological 

status of the fetus [2,3]. It is possible to obtain valuable knowledge about the physiological 

condition of the fetus by analyzing the fECG waveform. The morphological characteristics of 

fetal ECG can be successfully identified using an invasive approach involving an electrode 
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connected to the fetal scalp. The direct fetal ECG measurement is very time dependent method 

that can only be recorded after the membrane ruptures. There are various electrodes mounted on 

the mother's abdomen that may also be used to extract fECG from AECG recordings. The 

accuracy of fetal heart parameters has recently been demonstrated by an ECG record as well as 

their excellent adherence with the values of scalp electrodes. Electro hysterogram (EHG), 

Maternal ECG, and fECG are the electrical activity of the uterus that is very strong during 

childbirth in which electrophysiological signals are presented in each measurement. Since fetal 

ECG seems to be combined with several other causes of disturbance including maternal muscular 

noise, skin resistance interference, acoustic noise, respiration caused by fetal movement, and 

power line distribution. Today, the fetal monitoring is completely based on the FHR monitoring 

assisting Doppler & Ultrasound/ Sonography techniques only and does not integrate the 

characteristics of the fECG waveform. The fECG signal provides useful information to define the 

variability of FHR and further measures for heart function. Cord compression, fetal heart block, 

fetal arrhythmia, fetal malposition such as Asphyxia, Bradycardia, congenital heart disease, 

tachycardia, hypoxia, and some other abnormal situations can also be detected by the fECG 

analysis [3]. The ranges of FHR should be between 120 and 160 beats per minute. Bradycardia 

has the FHR as less than 120 beats and Tachycardia has the FHR greater than 180 beats per 

minute. At last, oxygen levels have been associated with changes in the width of the QRS-

complex, PR, and PQ intervals, the P-wave, T-wave, and ST-segment [4]. 

 

To utilize the advantages of such a Non-invasive method, several signal processing techniques to 

retrieve the fECG from the non-invasive recordings are developed. Besides this, fetal 

electrocardiography has not been demonstrated to be an effective method to imagine such major 

flaws even during labor. Rather, fetal electrocardiography is often used to diagnose more 

common problems including general ischemia caused by fetal positioning that suffocates the 

umbilical cord. The noninvasive FECG is contaminated by movement objects, fetal brain activity, 

myographic (muscle) signals, and several layers of dielectric physiological environments the 

electrical signals must pass, which is the reason for this restriction. So, an efficient algorithm for 

extraction fECG from AECG providing an exact cardiograph (morphology) is required.  

 

This research work introduced the design of FBWF is applied for pre-processing of FECG from 

the multichannel abdominal ECG recordings in complex w plane. Initially, FBWF has been built 

in the w-plane rather than the complex s-plane with integer-order filters. Then the definition of 

fractional order derivatives has been discussed with the stability of w-plane linear fractional-

order systems. Then fast ICA (FICA) algorithm with the combination of fast Fourier Transform 

(FFT) and the undecimated Wavelet transform (WT) was successfully used to extract FECG from 

AECG separation with constant coefficients that changes the weights according to the signal. 

Finally, to measure the FHR, fetal R-waves are observed. The R-R intervals are reliable in 

duration based on the extracted from the various fECG signals. This study offers a numerical 

representation of HR variations around a mean, which reflects a subject's average HR. It is shown 

that the HR variability defines the capacity of the heart to respond to and control various stimuli. 

This research work aims to monitor the fetus physiological conditions which are non - intrusive 

fECG recorded from the mother's abdomen during the pregnancy. 

 

The organization of the paper is as follows. Section 2 presents a literature survey based on 

various fetal ECG extraction methods, Section 3 describes a proposed methodology based on pre-

processing, extraction of fetal ECG using FICA, post-processing, and analysis of Fetal ECG 

feature extraction stage, Section 4 describes experimental results, Section 5 describes 

performance evaluation and Section 6 ends with a conclusion. 
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2. LITERATURE REVIEW 
 

In recent studies, many researchers have addressed the techniques based on extraction of Fetal 

ECG during pregnancy. Initially, this section focuses survey based on extracting fECG such as 

the Adaptive filtering technique, WT, and features for analyzing fetal heart rate. Since an 

examination of the fECG, which allows for high efficiency and precision in measuring FHR, 

there has been an increasing interest in tracking fetal cardiac bioelectric activity for many years. 

Invasively recording the fECG are directly from the fetal head while labor whereas non-

invasively recording the fECG are indirectly mounted on the maternal abdominal wall from 

electrodes during labor [5]. The amplitude of the Fetal QRS complex (FQRS) in abdominal 

signals exceeds 20 V and is highly influenced by the maternal BMI. There are various muscle 

interference are available but the most strong and efficient is Maternal Electrocardiogram 

(MECG) with a significantly larger amplitude [6]. The fECG signal remains undesirable with 

further study due to incomplete MECG suppression [7], FHR determination, preventing the 

identification of FQRS complexes, and accurate location of R waves. During labor, an abdominal 

fECG and a reference direct fECG had been recorded at the same time. The clinical experts 

corrected reference pregnancy signal data obtained from an automated detector. The resulting 

data set contains a wide range of clinically relevant FHR interferences, which can establish new 

techniques for the study of fECG signals and eventually promote the use and accuracy of 

abdominal ECG [8]. To extract FECG signal from AECG signal by utilizing a FIR Adaptive 

Noise Canceller (ANC) with adaptive algorithms to update the filter coefficients. Adaptive filters 

are suitable for the current problem of interest and Least Mean Square (LMS) are analyzed for 

the problem of fECG extraction [9]. The benefit of using FIR ANC is that it has a lower 

computational cost and performs better with two input signals, one of which is primary and the 

other is reference, as opposed to other non-adaptive techniques such as PCA and ICA, which can 

only provide better performance when multichannel input is present. To update adaptive filters in 

ANC, LMS and RLS algorithms can be employed. In the literature, both LMS and RLS 

algorithms for FECG extraction may be discovered. [10]. To handle this challenge, several 

adaptive filtering and artificial intelligence algorithms are used. As an intelligent system, 

complex real-world problems require a combination of information, skills, and approaches from 

diverse sources. That intelligent system should have human-like abilities, be able to adapt to 

changing environments, and learn to improve on its own. [11]. Using an ANC device, the 

extracted signal of the FHR from the mother was enhanced. It employs widely used adaptive 

Normalized LMS algorithms (NLMS). Fetal extraction and de-noising are suggested in this 

paper. The NLMS algorithm is combined with the Savitzky–Golay (SG) filter in this system [12]. 

Wavelet decomposition and an ICA algorithm are used to develop a novel approach. The 

proposed method was evaluated and attain 96% accuracy in detecting the R wave of fECG, which 

is capable of future research [13]. To remove fetal ECG from the mixed-signal, Vaidya and 

Chaitra describe comparing the three separate adaptive filters namely Kalman filter, LMS, and 

NLMS. A required inference is reached by comparing the characteristics such as computational 

complexity, reliability, signal-to-noise ratio, and stability [14]. MATLAB was used to apply fetal 

extraction procedures and the fetal ECG was successfully extracted. The Fast fixed-point 

approach for Independent Component Analysis (FastICA) has been widely employed in fECG 

extraction. The FastICA algorithm affects the convergence which is responsive to the initial 

weight vector. To address this problem, an improved Fast ICA method for extracting fetal ECG 

was proposed [15]. Adaptive filtering [5], [16], wavelet analysis [17], matched filtering [18], 

blind source separation [19], ICA [20], neural network [21], [22], and Singular Value 

Decomposition (SVD) [23] are the most common fetal ECG extraction algorithms are currently 

accessible. In case that the source signals are statistically independent, ICA can isolate the source 

signals from the mixed signals, without the need for information concerning the source signals 

and the combined matrix. ICA is thus regarded as an advantageous tool for fetal ECG extraction. 
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Researchers have suggested several improving ICAs in recent years, allowing non-Gaussian 

signals to be separated. 

 

3. MATERIALS AND METHODS  
 

This research work consists of three major stages. Initially, preprocessing of the signal is done by 

using FBWF which is mainly used to eliminate interfering signals such as certain physiological 

signals, baseline wander, and power line signals. Then cross-correlation can be used to select the 

reference signal as a Direct ECG and the abdominal signal as an input signal based on the greater 

similarity between them. Then the extracted signals from Direct and abdominal ECG can be 

processed by wavelet transform. This wavelet and the FICA decomposition property helps to 

eliminate noise from abdominal signals as well as separate fetal ECGs from the maternal ECG. 

After, the extracted features such as QRS peaks were analyzed for FECG signal which is 

performed to validate with sample heart rate from the database. The general block diagram of the 

work presented in this paper is shown in Figure.1. 

 

 
 

Figure 1. Flowchart of the research work 
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3.1. Pre-processing 
 

The noise from the input fetal ECG signal is removed during preprocessing by applying 

fractional-order Butterworth Filter with the suitable and precise cut of frequencies. The signal-to-

noise ratio is minimal during pregnant women since the FHR is just a few uV in amplitude 

whereas interfering signals may be represented as hundreds of uV. As a result, FBWF was built 

in the w-plane to remove interfering signals. In this paper formulated W plane as (w ¼ sq; q∈ℝ+) 

which contains all the possible types of poles such as under, hyper and ultra-damped were also 

taken into consideration. In the w-plane, diagnostic design of the filter has been performed, as 

well as certain criteria for the position of the poles such as stable and unstable have been 

determined. In the case of fractional order, derivation found the principle of classical Butterworth 

filter which are kept unchanged whose radius is equal to cut off frequency whereas the poles are 

located along with the perimeter of the circle. As a result, the suggested formulation takes into 

account all of the stable poles. The relation s =    can be used for the w-plane by obtaining the 

transfer function and then mapped back into the s-plane. To confirm the maximally flat 

Butterworth existence, the corresponding reaction curves are obtained. In the fractional domain, 

the resulting complexity would make more difficult generalization filters and fabrication costs are 

outweighed by the benefits of greater flexibility. Hence the designing system has been adopted by 

considering a relative tradeoff between accuracy and complexity. Therefore, the filter has 

truncating up to the first decimal place which is better to realize whose overall order is a fraction. 

To improve the characteristics of the frequency domain the accuracy can be increased by intuitive 

judgments. The FBW filter considers the stability of fractional linear systems which has been 

developed on the line of integer order BW filter [24]. 

 

The goal of this study is to extract clean fetal electrocardiogram (fECG) signals from non-

invasive abdominal ECG recordings for monitoring the health of the fetus during pregnancy and 

childbirth. The proposed extraction was implemented in MATLAB® by processing the 

abdominal and direct ECG with a fractional Butterworth filter for the separation of direct fetal 

ECG signals. 

 

3.2. Data Collection 
 

The data obtained from the Abdominal and Direct Fetal Electrocardiogram Database on 

PhysioNet is used in this work [23]. Referring to patient 1 and patient 2, a set of multichannel 

electrocardiogram (ECG) recordings acquired from two distinct women in labor between 38 and 

41 weeks of pregnancy, were used in this study. By using the KOMPOREL system for fetal ECG 

manipulation and processing, those recordings were obtained in the Department of Obstetrics at 

the Medical University of Silesia (ITAM Institute, Zabrze, Poland) [13]. Four distinct signals 

were obtained from the maternal abdomen for each recording, as well as from the fetal head a 

reference direct fetal ECG is recorded. All recordings were selected at 1 kHz and coded in 16 

bits, with a total duration of 5 minutes. Figure 2 depicts the Investigation of moral characteristics 

and also the extraction of the fetal electrocardiogram as the technical outline format. The signal 

recorded from the mother’s abdomen and from the fetal head are pre-processed using FBWF. The 

pre-processed signal is then used to extract the fetal ECG with the help of FICA and Wavelet 

transform technique. 
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Figure 2. System diagram of FECG extraction 

 

3.3. Phases of pre-processing 
 

Typically, the range of the EHG signal spectrum is between 0.1 Hz to 3Hz in each signal [14]. 

We used the MATLAB signal processing toolbox to create a high-pass Fractional Butterworth 

Filter (FBWF) with a stopband edge frequency of 0.5 Hz and a passband edge frequency of 3 Hz 

to eliminate baseline wandering and cancel most EHGs. A narrow band noise of less than 1Hz 

centered at 50 Hz is the interference of the power line. We utilized a severe notch filter (Q-factor 

equal to 30) at 50 Hz to minimize this noise kind. Furthermore, we constructed a 100th order IIR 

Butterworth filter from our bandwidth range (0.5 – 34) Hz to reduce high-frequency noises from 

motion artifacts, as the frequencies of relevance for PQRST wave mining are predominantly 

situated in the domain. 

 

3.4. Methods of Independent Component Analysis 
 

To breakdown the multivariable signal into a set of mutually separate non-Gaussian elements, a 

statistical method of Independent Component Analysis (ICA) is used, provided that the observed 

signals are mathematically specified by the ICA model [5], as a mixture of independent sources; 

x = A∙s, where x= [x1, x2, x3, … …  xm] T is the noticed multivariate signal, s = [s1, s2, s3, … … sn] T 

is the original unknown multivariate source signal, M is the number of noticed signals, N is the 

number of sources and A is the mixing matrix. In order to acquire estimated independent 

components y, the goal of ICA is to return the linear unmixing matrix W is such that: y = W. x 

Neural algorithms have many benefits towards the Fast ICA they are; It is parallel, Evenly, 

distributed, Simple in computation and consumes less memory space. Moreover, independent 

components, approximately equal to projection, may be estimated one by one [5]. The TSA 

(Time Sample Analysis) independent component analysis VI with which fast ICA approach is 

readily adopted thanks to its convergence speed, as offered by the advanced signals processing 

toolbox. 

 

3.5. Post-processing 
 

The wavelet function in 5 levels of decomposition enhanced the Fast ICA extraction quality for 

ECG signals [l5], using biorthogonal 4.4. The denoise stage of wavelets transformed. We have 

used Undecimated Wavelet Transformation (UWT) from the Wavelet Denoise toolbox to remove 

the multiband noise from ICA extracted fECG signals. A biorthogonal wavelet filter was chosen 

at eight decomposition levels to better identify the acquired signal, and its scaling function is 

intricately linked to the shape of the ECG.  
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Regrettably, even after effectively de-noising with wavelet transforms, some noise components 

remained, necessitating the use of additional filtering techniques must be needed to increase the 

signal-to-noise (SNR) value. We used FFT and Inverse FFT from the Signal Processing toolbox 

to create a signal processing pair consisting of Fast Fourier Transform (FFT) and Inverse Fast 

Fourier Transform (IFFT). Signals were translated from time to frequency domain using the FFT 

transform, with high and low-frequency components sorted out to highlight undesired noise 

components. In the frequency domain, the signal is separated from the first and final 5*FFT 

length/sampling rate samples and therefore filtered. After that, the filtered signal is converted 

back to the time domain and ready for feature extraction by using IFFT. 

 

3.6. ECG of a fetus with extraction stage 
 

We used a combination of Peak Detector from Signal Operation toolbox and WA Multiscale 

Peak Detection from Wavelet Analysis toolbox to extract fECG features to detect QRS peak 

positions and maximum amplitudes. Using the Extract Heart Rate, FHR may be detected 

automatically for various time intervals of recordings. 

 

4. RESULT AND DISCUSSION 
 

MATLAB® tool is used for extracting fECG for analyzing fetus heart rate. For a better analysis 

of the algorithm, the ECG acquired in a real-time scenario will be the best choice. Physionet 

provides free web access to PhysioBank, which contains a large collection of recorded 

physiologic signals.  

 

The recordings in EDF format have already been preprocessed by filtering for noise removal and 

an excellent source of data for evaluating new fECG processing techniques. The database used 

for Non-invasive fetal electrocardiogram is involved with the data of 55 series in multichannel 

abdominal recordings that have been collected from 10 subjects among the pregnancy period of 

21 to 40 weeks. The implemented algorithm is tested on 10 records having a better trace. Figure. 

3 (A) and (B) have discussed Direct and followed by abdominal 1, 2, 3, and 4 signals. Figure. 3 

(A) corresponding to 1 clinical case of raw ECG signal which contains few uV in amplitude 

whereas interfering signals may be represented as hundreds of uV. Figure. 3 (B) shown maternal 

ECG signal after removal of hundreds of uV. 

 

 
 

Figure.3. (A) Raw ECG signal (B) Pre-processed ECG signal 

 

Figure 4 shown post-processing using FICA and undecimated WT which contains all the QRS 

complexes are extracted. The resulting signal obtained fetal ECG which can be separated from 
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the mother’s ECG. The red color indicates fetal ECG whereas the blue color indicates mother 

ECG. 

 

 
 

Figure 4. The resulting signal of Fetal ECG separation 

 

4.1. Performance Evaluation 
 

In Figure 5, the analysis of the heart rate signal extracted from fECG is shown. It also recognizes 

time slots that increase or decrease in accordance with fetal heart rate normal ranges, with R 

waves indicated by a pink peak.  

 

 
 

Figure 5. R waves detection in fECG signal 
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Figure 6. Comparison of beats per minute for 10 different subjects 

 

In figure 6 shows that the proposed method has most frequent similarity except subject 5 which 

are mismatched in database samples. 

 

4.2. Calculation of Error Rate 
 

The average of absolute percentage error was calculated for 10 different subjects using the 

following formula. 

 

Mean Absolute Error (MAE): The MAE was calculated as the average absolute difference 

between the fetal heart rate variability of bits per minute for proposed method(Y) and database 

samples (Ŷ ). 

 

 

MAE = ∑_(i=1)^(n=10)▒(Y_i-Ŷ)/n = 0.6   (1) 

 

 

Mean Absolute Percentage Error (MAPE): The MAPE was calculated by averaging the 

individual absolute percent errors. 

 

 

MAPE = (∑_(i=1)^(n=10)(Y_i-Ŷ)/n)/n x 100 = 0.041209  (2) 

 

 

Therefore the performance of the proposed method can be obtained as 0.6 MAE and 0.0412 

MAPE percentage error. 

 

5. CONCLUSIONS 
 

During pregnancy, one of the best methods of diagnosis is fetus ECG signals which assist in 

analyzing the fetus status in the uterus. However, the requirement of an automated method to 

extract the fECG and even analyze by noninvasive recording obtained from the chest and 

abdomen of pregnant women. Hence, the proposed method is developed based on FICA and the 

undecimated WT that is majorly focused on extracting fECG signals. These techniques were 
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employed for the cancellation of the mother’s ECG in such records. The combination of 

statistical properties and PCA gives a powerful method for studying FECG signals to validate the 

heart bit rate. The model performance of the proposed method shows the most frequent similarity 

of fetal heartbeat rate present in the database can be evaluated through MAE and MAPE is 0.6 

and 0.041209. These techniques can be utilized to develop a real-time fECG monitoring and 

analysis system that helps obstetricians detect fetal distress in pregnant women's wombs and take 

appropriate measures to help them. In the future, this paper involves qualitative and quantitative 

analysis based on the threshold value will find the scoring scheme to indicate severe cases of 

abnormality. Moreover, the extension of this paper utilizes the extracting features of fetal heart 

rate based on the scoring scheme as the obtained values cross the threshold which depicts high-

risk of pregnancy Whereas if the obtained value is equal or less than the threshold depicts a 

possible risk that is indicated of normal pregnancy.   
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