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ABSTRACT 
 

In this paper, different machine learning algorithms such as Linear Discriminant Analysis, Support vector 

machine (SVM), Multi-layer perceptron, Random forest, K-nearest neighbour, and Autoencoder with SVM 

have been compared. This comparison was conducted to seek a robust method that would produce good 

classification accuracy. To this end, a robust method of classifying raw Electroencephalography (EEG) 

signals associated with imagined movement of the right hand and relaxation state, namely Autoencoder 

with SVM has been proposed. The EEG dataset used in this research was created by the University of 

Tubingen, Germany. The best classification accuracy achieved was 70.4% with SVM through feature 

engineering. However, our prosed method of autoencoder in combination with SVM produced a similar 

accuracy of 65% without using any feature engineering technique. This research shows that this system of 

classification of motor movements can be used in a Brain-Computer Interface system (BCI) to mentally 

control a robotic device or an exoskeleton. 
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1. INTRODUCTION 
 

Assistive technologies have witnessed tremendous attention and advancements both from the 

scientific community and industry partners in the last couple of decades. This has led to 

significant innovation and improvements in the following sector and fields: virtual surgical 

theatre, robotic surgery, Brain-controlled wheelchairs are the name of the few recent 

developments. The field of brain-computer interface has also caught the attention of researchers 

from different fields including neuroscience, cognitive psychology, computer science, and 

electrical engineering – as it provides the avenue for human welfare and improving life 

experience. It can be observed inefficient disease diagnosis, development of assistive 

technologies, health monitoring of the elderly and aiding humanity in general [1]. This study also 

seeks to explore further this very dimension by analyzing different methodologies used in 

studying Brain-Computer Interface (BCI). Electroencephalogram or EEG is one of the most 

common non-invasive methodologies of BCI to record brain signals. It measures the electrical 

activity of the brain using electrodes that are placed over the scalp. EEG is preferred because of 

its ease of portability and capturing high temporal brain information, however, it fails in 

capturing high spatial information [2]. BCI uses these EEG signals associated with the user’s 

activity and then apply different signal processing algorithms for translating the recorded signals 

into control commands for different applications. In an EEG there are five types of oscillatory 

waves that are commonly used for analysis, which are:  

 

(a) delta (0.5–4 Hz); 

(b) theta (4–7 Hz); 
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(c) alphaormu (7–13 Hz); 

(d) beta (13–25 Hz); 

(e) gamma (25–50 Hz). 

 

Motor imagery (MI) is a process in which an individual rehearses or stimulates an action. It is a 

very popular paradigm in the analysis of an EEG based BCI system. MI activity usually lies in 

alpha (or mu) and beta bands [3]. 

 

In the past few years, significant advances have been made in the BCI systems and they have 

revolutionized rehabilitation engineering by providing differently-abled individuals with a new 

avenue to communicate with the external environment. According to many works of literature, 

the strength of a BCI system depends upon the methods in which the brain signals are translated 

into control commands of machines. A novel method namely an arc detection algorithm to find 

an optimal channel was proposed by ErdemEkran and Ismail Kurnaz [4]. For feature extraction 

DWT was used and several machine learning algorithms were used for classification purposes, 

which were SVM, K- nearest neighbour, and Linear Discriminant Analysis. The best accuracy 

achieved by their methodology was 95% in classifying ECoG signals (BCI competition III, 

dataset I). Jun Wang and Yan Zhao proposed feature selection based on one dimension real-

valued particle swarm optimization, extracted nonlinear features such as Approximate entropy 

and Wavelet packet decomposition, and achieved the best accuracy of 100% [5]. Khan B. A. et 

al. (2020), employed feature engineering and linear discriminant analysis to accurately classify 

EEG signals associated with the seizure. The authors have suggested the use of novel features 

such as Gini’s coefficient to extract features and employed a very simple Linear discriminant 

analysis based method to accurately classify seizure data with an accuracy of 100% [16]. In 

another work, the authors' Khan B. A. et al., have used very simple statistical features to classify 

imagined and executed hand movements using EEG signals [17]. Aswinseshadri. K et al. used the 

wavelet packet tree for feature extraction. They used a genetic algorithm, applied information 

gain, and mutual information to find the best feature set and for classification K-NN and Naïve 

Bayes were employed [6]. Chea-Yau Kee et al. proposed a novel feature known as Renyi entropy 

that has been employed for feature extraction and BLDA for classification [7]. K. Venkatachalam 

et al. proposed the use of the Hybrid-KELM (Kernel Extreme Learning Machine) method based 

on PCA (Principal Component Analysis) and FLD (Ficher’s Linear Discriminant) analysis for MI 

BCI classification of EEG signals. The best accuracy reported was 96.54% [8]. Rajdeep 

Chatterjee et al. used the AAR (Auto Adaptive Regressive) algorithm for feature extraction, 

proposed a novel feature selection method based on IoMT (Internet of Medical Things), and 

classified EEG signals using SVM and ensemble variants of classifiers. The best accuracy 

reported was 80% [9]. The authors of [10] employed a combination of common spatial patterns 

(CSP) and local characteristic-scale decomposition (LCD) algorithm for feature extraction, a 

combination of firefly algorithm and learning automata (LA) to optimize feature selection, and 

spectral regression discriminant analysis (SRDA) classifier for classifying MI-EEG signals. They 

have used this method for a real-time brain-computer interface to show their method’s efficiency. 

 

Several studies have usually worked on the classification of right vs left-hand movement, or hand 

vs tongue movements, or hands vs legs movements. There is very limited literature that has 

studied and classified intricate hand movements such as opening and closing of a hand, or 

movements of different fingers, or classification of different hand gestures using neural signals, 

and those who have worked on these subjects either did not achieve high enough accuracy or 

failed to work in a real-world setup. This paper probed this very aspect of studying intricate 

human motions and worked on the classification of imagining of opening and relaxing of a hand 

using MI-EEG signals. 

 

 



Signal & Image Processing: An International Journal (SIPIJ) Vol.12, No.6, December 2021 

39 

The contributions of this paper are following: 

 

(i) Comparison of different machine learning algorithms to empirically establish a proper 

method that could provide satisfactory results for this dataset.  

(ii) Accurate classification of the motor imagery signals using a deep learning-based 

algorithm (Autoencoder) which utilizes raw EEG signals and sends them for 

classification. Since the pipeline is made independent of this dataset, it should work for 

other similar physiological signal datasets. 

 

The organization of this paper is as follows: the first part is the Introduction stage, where a brief 

introduction was provided and related works were reported, followed by the Materials and 

Methodology stage. In this part, the materials or data that was used in the paper is described and 

the methodology of this work was elucidated. The third stage involves the results of the study 

with a detailed discussion and a conclusion along with the limitation of this study and future 

scope. 

 

2. MATERIALS AND METHODOLOGY 
 

2.1. Data Used 

 

The data used in this study was taken from [11]. The data consist of EEG recordings of a single 

subject. The subject was connected with a high spinal cord lesion and was controlling an 

exoskeleton (Brain-Neural computer interface) attached to his paralysed limb. The cue-based 

BNCI paradigm consisted of two different tasks, namely the ‘imagination of movement’ of the 

right hand (Class 1) and ‘relaxation/no movement’ (Class 2). 

 

Figure 1. Timing Scheme of the trials used (a) and a subject during the EEG recording of the Dataset (b). 
 

A randomly shown visual cue is used to indicate to the user when to open (for Green square) and 

when to close (for Red Square). These two indications were given 24 times each in total 

separated by inter-trial intervals (ITIs) of 4-6 seconds. Each indication was displayed for 5 

seconds after which the device was driven back to the open position. Re-setting the exoskeleton 

into open position required one second. 

 

EEG was recorded from 5 conventional EEG recording sites F4, T8, C4, Cz, and P4 according to 

the international 10/20 system using an active electrode EEG system (Acti-cap® and 

BrainAmp®, BrainProducts GmbH, Gilching, Germany) with a reference electrode placed at FCz 

and ground electrode at AFz. EEG was recorded at a sampling rate of 200 Hz, bandpass filtered 

at 0.4-70Hz and pre-processed using a small Laplacian filter. 
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Figure 2. Showing raw EEG channel waveforms of different channels [11]. 

 

2.2. Pre-Processing 

 

At this stage, the data was processed or filtered to capture information related to Motor Imagery. 

While the recording of EEG stores different noise elements from line frequencyinterference to 

different unwanted artefact signals. All of which could frustrate the model’s classification 

progress. Therefore, it is necessary to first remove these noise elements and unwanted signals 

before the actual analysis. Many electrophysiological features are associated with the brain’s 

normal motor output channels [12]. Several studies have suggested the presence of mu rhythm in 

the frequency range of 7-13 Hz. Some of these important features are the mu (8-12 Hz) and beta 

(13-30 Hz) rhythms [13]. Therefore, this particular band has been selected for further analysis. To 

this end, an FIR filter was designed for the frequency range of 6 to 14 Hz with Hamming window 

of 0.0194 passband ripple and 53 dB stopband attenuation.  

 

 
 

(a) 
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(b) 

 

Figure 3. Showing power spectral density of EEG signal channel ‘C4’ (a) before filtering and (b) after 

filtering using the designed FIR filter. 

 

2.3. Feature Extraction 

 

A feature is a measurable property or characteristic of an observed signal. It should be 

informative, discriminative and orthogonal to other features. Feature extraction is the method of 

extracting these features. It can be defined as the process of transforming original data into a 

dataset with a reduced number of variables but with the most discriminative information. 

 

After the pre-processing stage, the channels were selected from the F4, T8, C4, Cz and P4 based 

on literature review and using correlation-based analysis. Finally, Cz and P4 channels were 

selected as they were amongst the most commonly used channels for motor imager classification 

purposes [17]. To compare different machine learning algorithms certain features were extracted. 

The choice of these features was based on the results from our previous work [19] and other 

commonly used features. These features include Mean absolute value (MAV), Variance, Median 

Absolute Deviation (MAD), Variance, Energy, Spectral Entropy, and Mean. Particularly, the two 

classes – which corresponds to imagining of the opening of hand as ‘class 1’ and relaxation or no 

movement as ‘class 2’ – differ in dispersion. The same can be observed from the histogram of 

class 1 and class 2 appears, where the class 1 histogram appears to be skewed from the normal 

distribution. Thereby justifying the choice of IQR, MAD, Variance, Standard Deviation, 

Skewness and Kurtosis. Energy and MAV were chosen because it has been reported in many 

works that mu rhythm has a lower amplitude than that of the alpha wave [14]. 

 

The following are the mathematical equations of the extracted features: 

 

2.3.1. Mean Absolute Value (MAV) 

 

It is defined as the mean value of the absolute values of the data. Mathematically,  

 

𝑀𝐴𝑉 =  
1

𝑁
∑ |𝑋𝑖(𝑛)|𝑁

𝑖=1    (i) 

 

2.3.2. Variance 

 

It is defined as the expectations of the squared deviation of a random variable from its mean.  

 

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2]   (ii) 
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Where Var(X) computes of variance of data X, ‘µ’ represents the average value, ‘E’ represents 

the expectation. 

 

2.3.3. Median Absolute Deviation 

 

It is defined, as the name suggests, as the median value of the absolute deviations from the data 

median value.  

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|)  (iii) 

 

Where Xi is the ith value of the data X.  

 

2.3.4. Spectral Entropy 

 

The spectral entropy (SE) of a signal is a measure of its spectral power distribution. X(m) is the 

discrete Fourier transform of the signal x(n). S(m) is the power spectrum of the X(m). P(m) is the 

probability distribution of S(m) and H is the Spectral Entropy, calculated based on the Shannon 

entropy formula. 

 

𝑆(𝑚) = |𝑋(𝑚)2| 
 

𝑃(𝑚) =  
𝑆(𝑚)

∑ 𝑆(𝑖)𝑖
 

𝐻 =  − ∑ 𝑃(𝑚)𝑙𝑜𝑔2𝑃(𝑚)𝑁
𝑚=1     (iv) 

 

2.3.5. Energy 

 

It is the area under the squared magnitude of the considered signal. Mathematically, 

 

𝐸𝑠 =  ∑ |𝑋(𝑛)|2∞
𝑛= −∞     (v) 

 

2.3.6. Mean 

 

It is defined as the averaged sum of a series of numbers. It can be calculated as,  

      𝑀𝑒𝑎𝑛 =  
∑ 𝑋𝑖𝑖

𝑛
    (vi) 

 

2.4. Methodology 
 

The study followed a very simple pipeline –starting from the pre-processing of unwanted 

artefacts and channel selection, then feature were extracted, and finally, different combinations of 

features were classified using different machine learning algorithms to empirically observe which 

algorithm would work best for this task.  

 

In this study, two classes are corresponding to the Motor Imagery (MI) tasks; hand opens and 

hand relaxes. The data was pre-processed and filtered using an FIR bandpass filter. This band 

was considered as it corresponds to the Mu rhythm (7 – 13 Hz) where the motor activity in the 

brain is usually associated [khan B. A.]. The total duration of ‘Class 1’ is 45 seconds and the 

sample rate is 200 Hz, which produces 9000 data points.  

 

One of the pipelines used in this study involves the use of traditional feature engineering steps 

and employing a classifier to do classification. To this end, the following steps have been 
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followed. A one-second sliding window is considered for the analysis of the signal and each 

second 200 samples are considered, for which 6 features were extracted which produce a feature 

vector of [45×1] corresponding to each feature. This process was performed until the end of the 

recording, thereby producing a feature vector of the size of [270×1]. This was repeated for the 

selected channels (Cz and P4) producing a feature matrix of [270×2]. After the feature extraction, 

different combinations of these features were considered. At each selected feature combination 

different training and testing sizes were split to see classification performance across different 

training and test split sizes. This has also provided insight into algorithms that are relatively more 

robust to such changes. Table 1. Shows different feature combinations considered in this study.  

 

The other pipeline – based on autoencoder with other classifiers – employed in this study does 

not make use of traditional feature engineering steps and skips over this. It directly utilizes raw 

EEG signals followed by the classification stage using SVM, Random Forest, and K-nearest 

neighbour. Details about these classifiers and used methodology have been described below: 

 
Table 1. showing features and their combination. 

 
Feature name Feature code Feature combination 

Mean absolute value F1 F5 

Variance F2 F5+F6 

Median absolute deviation F3 F3+F5+F6 

Spectral Entropy F4 F1+F3+F5+F6 

Energy F5 F1+F2+F3+F5+F6 

Mean F6 F1+F2+F3+F4+F5+F6 

 

Here, Autoencoder will be described as the other methodology is defined above. Autoencoders 

are feedforward neural networks that can learn efficient representations of the input data without 

the need for labels in the training data. Autoencoders are regarded as powerful feature extractors. 

So, autoencoders work by learning efficient ways to represent the input data by copying their 

inputs to their outputs. In the learning process of the autoencoders, we can put several constraints 

on the way these learn the internal representations of the input data, such as reducing the number 

of features, which will make the autoencoder work as dimensionality reduction networks.  The 

architecture of the autoencoder we used consisted of one input layer, one hidden layer and one 

output layer. The number of nodes used in the hidden layer was 5. The autoencoder network 

architecture consists of an encoder part and a decoder part, the encoder part is responsible for 

coding the input data while the decoder part reconstructs the input from the code [18]. The 

activation function we used in the autoencoder network was Exponential Linear Unit (ELU). The 

reason for choosing the ELU activation function was that it is a non-saturating function and thus, 

doesn’t suffer from the vanishing gradients problem. After encoding and decoding raw EEG 

signals, the decoded signals are sent for classification using the best classifiers observed by using 

classification accuracy as the metrics. These classifiers included – SVM, Random forest, and K-

nearest neighbour using Sklearn library of python [20]. Their corresponding accuracies are 

reported in the result section.  
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Figure 4. Autoencoder depiction with input layer, hidden layer and output layer. In this study, input layer 

has the dimension of input data, hidden layer has only 5 nodes and output layer is again of the same size as 

input. 

 

K-nearest neighbour (KNN) 

 

The k-nearest neighbours (KNN) algorithm is a non-parametric, supervised machine learning 

algorithm, that is both simple and powerful. The KNN algorithm works by assuming that the data 

points that are similar exists in close proximity to each other and works on the idea of a similarity 

function (example, distance functions like Euclidean). 

 

This method is used independently as well as along with the autoencoder pipeline. For the KNN 

classifier, the values of hyperparameters chosen were: the number of neighbours to use 

(n_neighbors) was taken as 5 and the distance metric we chose was ‘Euclidean’ distance.  

 

Support Vector Machine (SVM) 

 

One of the most powerful and versatile machine learning algorithms is Support Vector Machine 

(SVM), which can perform both linear and non-linear classification. The Support vector 

machines work by finding a hyperplane which is a decision boundary in N-dimensional space (N- 

the dimensions of feature space) for distinctly classifying the data points. The objective of the 

SVM is to generate a maximal marginal hyperplane that can divide the dataset into distinct 

classes in the best possible way. Next, we used Support Vector Machines using the Sklearn 

library of python [20]. 

 

For the SVM classifier, the values of hyperparameters chosen were 0.1 for the regularization 

parameter C, the kernel used was ‘radial basis function’ (‘rbf’) and the value for the kernel 

coefficient ‘gamma’ used was 1. 

 

Random Forest Classifier 
 

Random Forests are known as ensemble learning classifiers and usually gives good results 

without much hyperparameter tuning. These work by constructing a number of decision trees 

during training by using the split criteria for the decision nodes as ‘Gini’ impurity or ‘entropy, 
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and the output of which is chosen as the class most selected by the decision trees.Finally, we used 

the Random Forest Classifier using the Sklearn library of python [20]. 

 

For the Random Forest classifier, the values of hyperparameters chosen were 300 for the number 

of trees in the forest (n_estimators), the function to measure the quality of split of the nodes of the 

decision was ‘Gini’ impurity. 

 

Multi-layer Perceptron (MLP) 
 

The perceptron is a single neuron while the Multi-layer Perceptron (MLP) is a class of artificial 

neural networks that uses supervised learning and are composed of multiple layers of the 

perceptron. Multi-layer perceptron can classify data that is not linearly separable unlike that of a 

perceptron and consists of at least three layers, the input layer, the hidden layer, and an output 

layer. 

 

Linear Discriminant Classifier (LDA) 

 
Linear Discriminant Classifier (LDA) is a very simple supervised classification algorithm that 

works by finding a combination of linear features to separate the data into two or more classes. 

LDA considers two assumptions for the classification task, one is that it assumes that the data has 

Gaussian distribution and the second is that the classes in the dataset have the same covariance 

matrices. 

 

3. CLASSIFICATION 
 

The classification of EEG signals plays a vital role in biomedical research. According to [15], 

there are mainly 5 types of classifiers used in BCI research such as linear classifiers, 

nonlinearclassifiers, neural networks, nearest neighbour classifiers and a combination of these. In 

this study, all of these classifiers have been compared to empirically establish which classifier 

would be most appropriate for this “task”. These include Linear Discriminant Analysis (LDA), 

Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest (RF), Multi-layer 

Perceptron (MLP) and the combination of these classifiers using majority voting criteria. The 

best three classifiers were selected based on the classification accuracy to accurately classify 

motor imagery signals. 

 

Finally, a deep learning-based autoencoder along with SVM was used to classify imagined 

movement of hand using different classifiers including SVM, Random Forest, and K-nearest 

neighbour. EEG signals were directly input to the autoencoder which encodes and decode raw 

EEG and performs dimensional reduction. The decoded output will be used in the classification 

stage and will be classified using these different mentioned classifiers.  

 

4. RESULTS 
 

Different machine learning algorithms have been used in this study by comparing their 

classification accuracy and their robustness by changing parameters such as feature combination 

and train-test data size. Results from these changes have been reported here below from Table 2 

to Table10. We have used classification accuracy in order to evaluate the effectiveness of our 

method. 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
    (i) 

Where, 
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TP is True Positive; 

TN is True Negative; 

FP is False Positive; 

FN is False Negative 

 

Table 2 summarises results from Table 3 to Table 10. It provides a brief overview of how 

different classifiers have been used and which provided the best accuracy. Moreover, it also 

shows the combination of classifiers that have provided the best accuracy based on majority 

voting criteria. Table 2a shows a different combination of classifiers. For combining, classifiers 

are so chosen based on their classification accuracy. The top three classifiers have been chosen 

for each feature combination. Finally, only that classifier combination is reported which yielded 

the best performance. Table 3 onwards reports results for classification using different feature 

combinations – as has already been shown in Table 1 – by different classifiers and by their 

combination as well. As can be seen in Table 3, shows results for different feature combinations 

and corresponding classifier accuracies. Based on this table, the three best classifier combinations 

are selected and whichever combination yields higher accuracy were reported. These best 

combination accuracies have been reported in Table 4.  

 
Table 2. Summary table of best classification accuracy corresponding to different feature combination. 

 
S.no  Feature combination Best train-

test split 

Best 

classifiers 

Best combination accuracy 

1 F1+F2+F3+F4+F5+F6 85-15 SVM - 70.4 63 (RF+SVM+KNN) 

2 F1+F2+F3+F5+F6 85-15 SVM- 66.67 66.67 (RF+SVM+KNN) 

3 F1+F3+F5+F6 85-15 SVM- 66.67 63 (RF+SVM+KNN) 

4 F3+F5+F6 85-15 SVM- 70.4 63 (MLP+SVM+KNN) 

5 F5+F6 85-15 MLP - 66.67 63 (MLP+SVM+KNN) 

6 F5 85-15 SVM- 70.4 70.4 (MLP+SVM+KNN) 

 
Table 2a. Showing different combination of classifiers utilizing majority voting criterion for improving 

their performance. 

 
S. No.  Combination of Classifier Acronym 

1 Random Forest + Support Vector Machine + K-nearest neighbour : 

(RF+SVM+KNN) 

T1 

2 Multi-layer Perceptron + Support Vector Machine + K-nearest 

neighbour : (MLP+SVM+KNN) 

T2 

3 Linear Discriminant Analysis+ Random Forest + Support Vector 

Machine + Multi-layer Perceptron + K-nearest neighbour  

(LDA+RF+SVM+MLP+KNN) 

T3 

 
Table 3. Classification accuracies of different classifiers for channels ‘Cz’ and ‘P4’ for different feature 

combination. 

 
S. No. Train-

Test 

split 

Features LDA RF MLP KNN SVM 

1 85-15 F1+F2+F3+F4+F5+F6 44.45 55.6 44.45 55.6 70.4 

2 85-15 F1+F2+F3+F5+F6 51.9 63 44.45 55.56 66.67 

3 85-15 F1+F3+F5+F6 48.14 51.8 44.45 44.45 66.67 

4 85-15 F3+F5+F6 40.7 48.14 59.25 51.85 70.37 

5 85-15 F5+F6 44.45 55.56 66.67 62.9 62.9 

6 85-15 F5 29.6 48.14 66.67 59.25 70.37 
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Table 4. Showing best classification accuracy by combining best three classifiers using majority criterion 

for different combination of features. 

 

Train-Test 

split 

Features Best three classifiers Best Classification 

accuracy using 

majority voting 

criteria 

85-15 F1+F2+F3+F4+F5+F6 T1: MLP+SVM+KNN 62.96 

85-15 F1+F2+F3+F5+F6 T2: RF+SVM+KNN 66.7 

85-15 F1+F3+F5+F6 RF+SVM+KNN 62.96 

85-15 F3+F5+F6 MLP+SVM+KNN 62.96 

85-15 F5+F6 MLP+SVM+KNN 62.96 

85-15 F5 MLP+SVM+KNN 70.37 

 
Table 5. Showing results from a six selected combination of features for different training and test data 

split. 

 

 
Table 6. Showing results from a five selected combination of features for different training and test data 

split. 

 
Train-

Test 

Split 

Feature 

combination 

selected 

LDA RF MLP SVM KNN Best 

combined  

80-20 F1+F2+F3+F5+F6 47.22 58.33 55.56 55.56 55.56 63.88 (T1) 
70-30 F1+F2+F3+F5+F6 51.85 53.7 44.44 57.4 53.7 55.56 (T1) 
60-40 F1+F2+F3+F5+F6 54.16 52.8 40.3 54.2 55.56 55.56 (T3) 
50-50 F1+F2+F3+F5+F6 51.11 53.33 47.8 57.8 60 58.9 (T1) 

 
Table 7. Showing results from a four selected combination of features for different training and test data 

split. 

 
Train-

Test Split 
Feature 

combination 

selected 

LDA RF MLP SVM KNN Best 

combined  

80-20 F1+F3+F5+F6 44.44 55.56 50 55.56 47.22 58.33 (T1) 

70-30 F1+F3+F5+F6 46.9 57.4 44.44 61.11 51.85 59.3 (T2) 

60-40 F1+F3+F5+F6 47.22 52.78 40.3 56.9 51.3 52.8 (T1) 

50-50 F1+F3+F5+F6 45.56 51.11 47.8 55.56 52.22 52.2 (T1) 

 

Table 8. Showing results from a three selected combination of features for different training and test data 

split. 

 

Train-

Test Split 

Feature 

combination 

selected 

LDA RF MLP SVM KNN Best 

combined  

80-20 F3+F5+F6 50.0 55.56 66.67 51.11 55.56 61.11 (T2) 

70-30 F3+F5+F6 42.59 48.14 44.44 68.52 55.56 61.11 (T2) 

Train-

Test 

Split 

Feature combination 

selected 

LDA RF MLP SVM KNN Best combined  

80-20 F1+F2+F3+F4+F5+F6 41.67 61.11 47.22 55.56 58.33 61.11 (T1) 

70-30 F1+F2+F3+F4+F5+F6 46.3 55.56 44.44 50 55.56 57.4 (T3) 

60-40 F1+F2+F3+F4+F5+F6 50 56.9 40.3 40.3 47.22 47.22 (T1) 

50-50 F1+F2+F3+F4+F5+F6 46.7 52.22 47.8 57.8 47.8 50 (T1) 
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60-40 F3+F5+F6 41.67 51.4 40.3 66.67 55.56 61.11 (T2) 

50-50 F3+F5+F6 40 56.67 47.78 61.11 55.56 58.89 (T1) 

 

Table 9. Showing results from a two selected combination of features for different training and test data 

split. 

 
Train-

Test Split 

Feature 

combination 

selected 

LDA RF MLP SVM KNN Best 

combined  

80-20 F5+F6 44.44 58.33 63.88 58.33 55.56 58.23 (T1) 

70-30 F5+F6 42.22 48.89 62.22 57.80 55.6 62.22 (T2) 

60-40 F5+F6 36.11 51.38 45.83 48.61 47.22 50.0 (T1) 

50-50 F5+F6 41.11 57.78 41.12 56.67 54.45 60.0 (T1) 

 
Table 10. Showing results from a single for different training and test data split. 

 
Train-

Test Split 

Feature 

combination 

selected 

LDA RF MLP SVM KNN Best 

combined  

80-20 F5 30.55 52.78 66.67 66.67 58.33 66.67 (T2) 

70-30 F5 29.62 46.29 55.6 53.7 51.8 54.67 (T2) 

60-40 F5 26.38 47.22 36.11 48.61 47.22 47.22 (T1) 

50-50 F5 32.23 53.34 52.22 53.33 56.67 57.78 (T1) 

 
Table 11. showing results from Autoencoder based method of classification. 

 

S. NO. FEATURE CLASSIFIER ACCURACY (%) 

1 AUTOENCODER KNN 58 

2 AUTOENCODER SVM 65 

3 AUTOENCODER RANDOM FOREST 63 

 

5. DISCUSSION AND FUTURE WORK 
 

In this study, different statistical features such as Mean Absolute Value, Median Absolute 

Deviation, Variance, Spectral Entropy, Mean, and Energy were used to extract the underlying 

information from a dynamic EEG. This study has shown that the proposed features were 

successful in capturing the relevant distinguishing information. This study has also compared 

different machine learning algorithms with one another under different conditions to observe the 

method’s robustness to small changes. From the results, it can be observed that SVM has 

produced consistently decent accuracy and was very least affected by changes in different feature 

combinations or changes in train-test data split. After SVM, KNN and Random Forest were two 

other algorithms that have shown significant promise in that aspect. On the other hand, Linear 

Discriminant analysis has consistently performed very poorly. This is something that was 

expected as the data is not linearly separable, which means linear classifiers would not be able to 

work well on the dataset. This would also explain the inconsistent performance of MLP. This can 

also be observed from the best classifier combination – most of the classifier combination does 

not include a linear classifier. The summary table accurately summarizes this aspect in showing 

the classifier and method that have been robust and also produced decent classification 

accuracies.The important thing to note here is that the SVM has been reported in this study as the 

robust method for the classification of EEG signals. However, this does not mean that its 

performance was indifferent to the changes in the train-test data split. Its performance does get 

affected – it decreases with increasing train-test data split – but is relatively stable when 
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compared with other classifiers. The best accuracy has also been achieved with SVM based 

method of 70%. In our previous work, Hashmi A. et al. 2021, the best accuracy of 85% was 

achieved after carefully cleaning the signals, applying pre-processing steps, extracting desired 

frequency range through extremely computationally expensive method – wavelet decomposition 

method, carefullyextracting relevant features and then ranking those features with the help of 

random forest after which classification process was performed [19]. In this study, we tried to 

reduce these computational expensive methods and replaced them with other very simple 

methods such as using a simple FIR bandpass filter instead of wavelet decomposition to gain the 

desired frequency range. Even after so many additional processing steps, the overall average 

accuracy was around 75% which is quite similar to what this study has achieved. Also, this study 

has developed another method – autoencoder with SVM. In this method, raw EEG signals will be 

directly input in the autoencoder which will encode and decode it – reducing the dimensionality. 

The decoded output will go into the SVM classifier which has been classified into two classes. 

The average accuracy in this method was 65% and this method was very much indifferent to any 

type of changes in the train-test data split. This method was developed without considering any of 

the specificities of this dataset, so theoretically this method should be able to work decently on 

other physiological datasets. The other classifier used with the autoencoder method were K-

nearest neighbour and Random forest. The corresponding accuracies for these methods were 58% 

and 63%. It is worthwhile to mention here that these accuracies were not affected at all by the 

change in train-test data split, meaning this method is quite robust for future use. However, there 

is a need to improve these accuracy results by doing some sort of pre-processing of data. This can 

be further explored in future studies – how much pre-processing would be necessary to make a 

significant increase in classification accuracy? The other limitation of this study is that the data, 

although very real-world and relevant, was very limited. This can be frustrating if deep learning-

based methods are to be employed. With these limitations, this study has tried to empirically 

observe the effect of certain parameters such as train-test data split and features on the 

classification accuracy and has compared different machine learning-based algorithms against 

each other. A new robust approach based on deep learning-based methods has also been proposed 

along with the comparison with our previous work.  

 

The application of this method in the future is that it can be used to control an external device i.e. 

Neuro-prosthetics. The translated commands will be used as input to the external device via a 

computer (or micro-controller). This will, in turn, provide basic operations of the device. This 

study could also be used in the supervision of a trained physiotherapist to provide functional 

restoration to patients with spinal cord injury. In addition to that, this method can also be used in 

sports Biomechanics. 
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