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ABSTRACT 
 
The two fundamental components of a complete computer vision system are detection and classification. 

The Lane detection algorithm, which is used in autonomous driving and smart vehicle systems, is within the 

computer vision detection area. In a sophisticated road environment, lane marking is the responsibility of 

the lane detection system. The warning system for a car that leaves its lane also heavily relies on lane 

detection. The two primary stages of the implemented lane detection algorithm are edge detection and line 
detection. In order to assess the trade-offs for latency, power consumption, and utilisation, we will 

compare the state-of-the-art implementation performance attained with both FPGA and GPU in this work. 

Our analysis highlights the benefits and drawbacks of the two systems. 
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1. INTRODUCTION 
 

Lane detection has long been a significant issue with driver assistance systems (ADAS). Lane 

detection, the initial stage of road segmentation, makes it easier for autonomous vehicles to 
comprehend the scene. For instance, many automotive features like lane departure warning 

(LDW), adaptive cruise control, lane centring, and lane change assist require lane detection. In 

recent years, there have been some improvements made to the lane detecting problem. 

 
Power consumption can be considerable to achieve real-time performance in a lane detection 

solution because of the computational complexity of the lane detection method. Even while 

power consumption isn't a factor in every design, low power options are frequently needed for 
embedded or edge computing solutions. Graphical processing units (GPUs) were formerly used 

to process computationally difficult images, but because to advancements in field programmable 

gate array (FPGA) technology, these tasks are now more practical with FPGA devices that use 

less power.  
 

So through this paper, two lane detection hardware implementation solutions are developed and 

compared. One solution is implemented on a ZYNQ-7 ZC706 Evaluation Board FPGA [1] and 
the other solution is implemented on Google Colab NVidia K80 Super GPU [2]. The 

implementation for both FPGA and GPU will be shown in Figure 1. 
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The implementation includes the following steps. 
 

Step 1: Sobel edge detection for a gray image. 

Step 2: Applying the image binarization. 

Step 3: Obtaining the Hough matrix as a result of the Hough transform. 
Step 4: MATLAB functions are used to process the Hough matrix to draw the lane lines. 

 

 
 

Figure 1.  Lane Detection implementation overview 

 

2. THE ALGORITHM EMPLOYED FOR LANE DETECTION 

 
Lane detection is divided into three parts [3]. 

 

2.1. Sobel Edge Detection 
 

In order to extract features from images, such as edges, the Sobel edge detection technique is 

utilised [4]. It works by figuring out the gradient of image intensity for each pixel in the image. 
The output indicates how abruptly or gradually the image changes at each pixel, and 

consequently, how much that pixel resembles an edge. It also indicates how that edge is oriented. 

It detects the direction with the largest change from light to dark and the change rating in that 
direction. A vector that transitions from darker to brighter values across an edge is produced 

when a Sobel filter is applied to a pixel on the edge. 

 

According to Figure 2, the Sobel filter employs two 3 x 3 matrix kernels. With one, changes in 
the horizontal direction are calculated, and with the other, changes in the vertical direction. The 

derivative approximations are calculated by convolving the two kernels with the initial grayscale 

pixel image. Where the approximated magnitude is  
 

G|Sx * Img||Sy * Img|     
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Figure 2. Sobel kernels coefficients for edge detection 

 

2.2. Image Binarization 
 
Binarizing images before further processing is the objective of this method. After that, every 

pixel in the image will either be 255 or 0. (A pixel is normally represented by 8 unsigned bits, 

making 255 the highest value in the 8-bit data format). 

 

2.3. Hough Transform 
 

The Hough transform is used to determine the two lines of the lane after image binarization [4]. 
The Hough transform is the most crucial method for identifying forms in pictures. It has been 

used particularly to extract random shapes like circles, lines, and squares. In other words, the 

Hough transform algorithm is the best approach for line identification because it has been 
acknowledged as a promising method for shape and motion analysis in images [5]. A line is 

represented by the following equation: 

 

yaxb 

      

In [r, ] coordinates, a line can be: 

r         

 

Where parameter  is the angle of the line, and parameter r is the distance from the line to the 

origin. Thus, the line can be represented by a single point of Polar (r, ) coordinate in Hough 

space. In this way, a line in the Cartesian (x, y) coordinate system can be mapped to a single 

point in (r, ) Hough space, as indicated in Figure 3. 

 

 
 

Figure 3. Mapping of single line to the Hough space 
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Conversely, a point in the (x, y) coordinate system represents all lines passing through that point. 
This way a point maps all possible lines that pass through it in Hough space. As shown in Figure 

4, a point maps to a line that looks like a sinewave in the Hough space [5]. 

 

 
 

Figure 4. Mapping of crossed lines to the Hough space 

 
Each point in the binarized generated image votes to its corresponding possible lines, which are 

pairs of (r, Ө) in Hough space, in order to identify straight lines inside an image. An accumulator 

array is created after each pixel in the input image has been processed. The line with the highest 

count value is the one with the greatest number of pixels on it. The process of picking the line 
with the most pixel value is called Hough Peak which is done in Matlab. 

 

3. HARDWARE IMPLEMENTATION ON FPGA 

 

3.1. Sobel Edge Detection FPGA Implementation 
 

To ensure that the output image size is the same as the input image after receiving the grayscale 
image, the first step is to perform zero padding on the original image. 

 

Figure 5 depicts a general architecture for computing kernel-based convolution. Adders and left 
shifters are used to implement the Sobel filter because its parameters only have three possible 

forms: 1, 2, and 0. 

 

Hardware resource usage can be decreased by replacing multipliers with left shifting by 1 to 
realise multiplication by 2 (Area optimization). 

 

 
 

Figure 5. FPGA implementation of Sobel edge detection 
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3.2. Image Binarization FPGA Implementation 
 

Image binarization on hardware is implemented by using a multiplexer and an unsigned 

comparator as shown in Figure 6. 

 
Figure 6. FPGA implementation of image binarization 

 

3.3. Hough Transform FPGA Implementation 
 
After Image binarization, lines from all possible directions are counted for every pixel that is 

equal to 255. The range of the line angles is [0, 180], and each angle's distance from the origin is 

calculated using the structure depicted in Figure 7, which may be thought of as the basic 
processing component of the Hough transform. Since there is a degree resolution of one degree 

between angles, 180 of these processing pieces are required to compute over a range of 180 

degrees. Each processing element's output is counted up and stored in memory [6]. 
 

Figure 7 demonstrates that each processing element cell requires two multipliers, and since there 

are 180 of these processing elements used, a total of 360 multipliers are required. By modifying 

the sine and cosine functions' characteristics, we further improve the use of multipliers [7]. The 
following equations provide expression to such features: 

 

 =       

 = -       
 

Where Ө1 + Ө2 = 180, sin (Ө1) = sin (Ө2), and cos (Ө1) = -cos (Ө2). In other words, once sin 

(Ө1) and cos (Ө1) are calculated, sin (Ө2) and cos (Ө2) can be done by simple add/minus 

operations. In this way, only 180 multipliers are used instead of 360, saving 50% of the total 
number of multipliers. 

 

 
 

Figure 7. FPGA implementation of Hough transform 
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4. HARDWARE IMPLEMENTATION ON GPU 
 
Our GPU implementation was based on Google Colab NVidia Tesla K80 Super GPU connected 

to a host CPU via PCIe. The GPU has 4992 NVIDIA CUDA cores with a base clock of 562 MHz 

it has 12GB global memory operating on a memory clock of 1253 MHz CUDA was used to 

program the GPU. 
 

With less modifications to C, NVidia's Compute Unified Device Framework (CUDA) offers a 

general architecture for GPUs that enables flexible programming. CUDA’s view of a GPU has 
plentiful Streaming Multiprocessors. Each multiprocessor has a shared memory which is a fast 

local memory shared by its streaming processors. All multiprocessors also have access to a global 

or device memory. A thread block can be formed by many threads on a streaming multiprocessor. 

A thread block maps to a Streaming Multiprocessor physically although the threads number 
inside a block can be bigger than the number of Streaming processors, in which case threads are 

split into multiple warps where only one warp is active at a time. Active threads can execute the 

same instruction in parallel. 
 

The components of the Lane Detection must be carefully mapped to the GPU computing 

architecture in order to make optimum use of GPU computing resources and to reduce the access 
cost of device memory access.  

 

Two principles guided our mapping: 

 
1. Avoid unnecessary device memory access and prefer shared memory for repeated 

memory access and 

2. Avoid branches to keep all the processors doing useful computation work. 
 

Currently available GPUs have a limited amount of shared memory per multiprocessor, with the 

majority of them providing roughly 48KB of shared memory per block [8]. 
 

4.1. Sobel Edge Detection GPU Implementation 
 
After receiving the gray image, we start with doing the zero padding for the original image and 

store it inside the device memory then we use a 2D grid which contains a 2D Block with a size of 

16*16 threads, as in the following equation  
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Figure 8. GPU block diagram of grid thread blocks 

 

Where width and height are the dimensions of the original gray image. Each block will perform 

the Sobel operator convolution on the gray image and all the grid blocks will perform the 

computations in parallel.  
 

4.2. Image Binarization GPU Implementation 
 
Each block thread will be responsible for the threshold of the post-Sobel pixels to be 255 or 0. 

 

4.3. Hough Transform GPU Implementation 
 

The Hough transform voting space (r, ) is divided into partitions for each  and the voting 

method for each partition is performed concurrently. A thread block in the GPU implementation 

[9], is assigned to each  where threads in the thread block concurrently vote for input post-

binarization pixels. Partitioning the voting space for each  where each voting space can be 

stored in the shared memory. Therefore, the voting mechanism is performed to the voting space 
in the block shared memory. In the GPU implementation, the voting space is partitioned into 180 

spaces where thread blocks can vote in parallel. The values of the trigonometric functions cos  

and sin  are initially computed in each thread block since the values are commonly used for 

every thread in a thread block. Then threads read the coordinates of input pixels stored in the 

global memory.  
 

Some threads may vote to the same r simultaneously in the parallel voting procedure. To avoid it, 

we use the atomic add operation supported by CUDA [10]. 
 

5. EXPERIMENTAL RESULTS 
 

The two systems’ performance was evaluated based on latency, power consumption, and resource 

utilization. 
 

1- Latency was measured for both implementations between the first valid pixel of the 

image entering the system and the generation of the Hough Matrix.  
2- Power was measured for both implementations as an average power using the devices’ 

specific tools.  
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3- Memory resource utilization for both implementations was measured for the Hough 
transform as BRAM memory in FPGA and shared memory in GPU. 

 

The results obtained for the proposed lane detection algorithm for the gray image in Figure 9 and 

the Sobel detection and binarization output for both implementations as in Figure 10. Some 
MATLAB built-in functions were used to detect the Hough peaks as in Figure 11. For the Hough 

Matrix generated from both FPGA and GPU and Hough lines as in Figure 12 to draw the lane 

lines.  
 

Table 1 shows the resource utilization of the Lane Detection Algorithm on ZYNQ-7 ZC706 

Evaluation Board FPGA for 100 MHz frequency whereas Table 2 shows the performance 
comparison of the Lane Detection Algorithm between FPGA and GPU. 

 

 
 

Figure 9. [512 x 512] pixel gray image 

 

 
 

Figure 10. Image after Sobel detection and binarization 
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Figure 11.Matlab Hough peaks for Hough Matrix 

 

 
 

Figure 12. Matlab drawing of lane lines 

 
Table 1. The resources utilization on ZYNQ-7 ZC706 FPGA 

 

Resources Utilization Available Percentage % 

LUT 20022 218600 9.159195 

FF 9439 437200 2.158966 

BRAM 180 725 24.8 

DSP 180 900 20.0 

 
Table 2. the performance comparison of THE Lane Detection Algorithm between FPGA and GPU 

 

 GPU FPGA 

Model Tesla K80 ZYNQ-7 ZC706 Evaluation Board 

latency 4.874000ms 2.62ms 

Power Consumption 74.22 W 1.619 W 

utilization 6.5 MB memory 2.88 MB memory 
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6. CONCLUSION 
 
Two lane detection implementations were designed in this paper using two different types of 

hardware acceleration. Tests were performed out applying only the acceleration component of the 

lane detecting method, and the two types of hardware acceleration used were an FPGA and a 

GPU. 
 

According to tests, FPGAs have low latency, whereas GPUs have low relative memory resource 

use. In terms of memory resource usage, GPUs handle resolution scaling equally well or better 
than FPGAs. In terms of latency, FPGAs handle resolution scaling equally well or better than 

GPUs. GPU is definitely a better option if your project will be implemented in this job and you 

need high resolution, which may be required later in the project. If performance and latency are 

critical and resolution may be limited, FPGAs are probably a better choice. 
 

Finally, the results demonstrated that the FPGA outperformed the GPU in terms of latency, 

power consumption, and resource utilisation for [512x512] pixel images, but that the GPU 
handled resolution scaling better than the FPGA in terms of memory resource consumption. 

 

7. FUTURE WORK 
 

In future work, it would be beneficial to use canny edge detector instead of Sobel edge detector 
and analyze its effect on the performance of the output image after the edge detection. 
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