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ABSTRACT 
 
End-to-end learned image and video codecs, based on auto-encoder architecture, adapt naturally to image 

resolution, thanks to their convolutional aspect. However, while coding high resolution images, these 

codecs face hardware problems such as memory saturation. This paper proposes a patch-based image 

coding solution based on an end-to-end learned model, which aims to remedy to the hardware limitation 

while maintaining the same quality as full resolution image coding. Our method consists in coding 

overlapping patches of the image and reconstructing them into a decoded image using a weighting 

function. This approach manages to be on par with the performance of full resolution image coding using 

an endto-end learned model, and even slightly outperforms it, while being adaptable to different memory 

sizes. Moreover, this work undertakes a full study on the effect of the patch size on this solution’s 
performance, and consequently determines the best patch resolution in terms of coding time and coding 

efficiency.     Finally, the method introduced in this work is also compatible with any learned codec based 

on a conv/deconvolutional autoencoder architecture without having to retrain the model.   
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1. INTRODUCTION 
 

During the past few years, deep learning based end-to-end image and video coding field achieved 

great improvements, and performance of such algorithms can now compete with traditional 
coding systems like JPEG [1], JPEG2000 [2] or BPG [3].  

 

Their auto-encoder architecture, built with convolutional layers, enables processing different 

image resolutions, no matter the resolution used during the training step. However, with growing 
model sizes or picture and video resolutions (4K, 8K), these solutions face hardware memory 

saturation. In fact, authors in [26] present a comprehensive study of computational limitations 

related to deep-learning models, and they rightly predict that the constraints will grow up.  
  

For example, coding a standard resolution such as an HD image using a powerful GPU as 

NVIDIA GeForce RTX 2080ti with a memory capacity of 11Go, is not possible as it does not fit 
into the memory requirement. For 4K resolution, it is of course worse.   

 

One way to solve this issue is to use a patch-based coding approach. The image is divided into 

patches having the same size that can be encoded independently. The patch size should be 
smaller than the image size and should fit into the memory constraints. Then, the decoded patches 

are gathered to reconstruct the decoded image, as illustrated in Fig.1. Moreover, this method 
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enables to implement several forms of parallelization as well as the ability to access a sub-part of 
the image without entirely decoding it.  Flexible image subdivision is classically required in 

practical video compression applications. The latest video coding standard, Versatile Video 

Coding (VVC) [27], provides three means for subdividing pictures, namely slices, tiles and sub-

pictures. The latter can for instance be used for viewport access in virtual reality (VR) 
applications without decoding or even transmitting the whole bitstream. The two formers are 

traditionally used for processing parallelization.  

 
The proposed solution addresses the hardware limitation issues, but the reconstructed picture can 

have block artifacts in the patch boundaries, widely deteriorating the image quality (Fig.2).  

 
This paper is an extension of our previous work [28], the main goal is to address the hardware 

limitation issue of end-to-end learned codecs without deteriorating the decoded image quality 

(i.e. remove block artifacts). To do so, overlapping patches are encoded and then a weighting 

function is used to reconstruct the overlapping pixels. This method provides an objective and 
subjective quality slightly higher than the full image encoding approach, while leveraging the 

memory consumption flexibility of the patch-based coding solutions. However, it comes with a 

slight increase in coding time.  
 

Then, in order to determine the patch size that provides the best outcome in terms of trade-off 

between coding time and performance, this paper also presents a study about the effect of the 
patch size on the coding efficiency.  

 

 
 

Fig.1 Steps to patch-based image coding  

 

The rest of the paper is structured as follows. In section 2, the related work on end-to-end learned 

image coding as well as approaches to eliminate block artifacts are presented. Then, the 
patchbased image coding using overlapping method is explained in section 3. Section 4 presents 

the results of the driven experiments. Afterwards, the impact of the patch size on the proposed 

method is analysed. Finally, section 6 concludes the paper.  
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Fig.2 Reconstructed image per patch using an end-to-end learned codec  

 

2. RELATED WORK 
 

2.1. End-to-End Learned Image Compression  
 

Recently, deep learning codecs have accomplished promising results in a short period of time. In 
fact, end-to-end image compression managed to reach the state-of-the-art of traditional image 

coding in terms of coding efficiency. Authors in [4] proposed an image compression structure 

based on a conv/deconvolutional auto-encoder [5] whose role is to transform the input image into 
a latent representation. Then, a factorized entropy model is used to estimate the probability 

distribution of this representation allowing entropy coding. Ballé et al. [6] replaced the factorized 

entropy model by a hyperprior auto-encoder. This mechanism enables the probability model to 

adapt itself to the input image as well as to capture spatial dependencies in the latent 
representation.   

 

This work is considered as the reference design for numerous other state-of-the-art contributions. 
In the same context, [7] uses an autoregressive module to improve the entropy model. It succeeds 

in improving the coding performance compared to [6]. However, this improvement leads to an 

increase in complexity. [8] presented a model architecture based on residual blocks [9] and 

attention modules in order to extract a compact and an efficient latent representation. In addition, 
it presented an entropy model which exploits Gaussian mixture model to parameterize the latent 

distributions. This latter method achieves performances that compete with the versatile video 

coding (VVC) [10] encoder in Intra mode.   
 

Some works [11] used the ability of generative adversarial network (GAN) [12] to generate 

realistic and sharp images for image compression at low bitrate and for small resolutions, while 
[13], [14] combined adversarial loss with rate-distortion loss to include the fidelity aspect into the 

network allowing better subjective quality for high resolution images.  

 

Recurrent neural networks (RNN) are used in some approaches [15], [16]. They present 
progressive models with architectures designed on top of residuals. These approaches achieve 

results better than JPEG. However, they perform worse than conv/deconvolutional auto-encoder 

solutions with entropy models like [8], while having a higher complexity.  
 

The auto-encoder solution presented in [8] achieves the best performance among learned image 

codecs. It is competitive with VVC, the latest traditional codec. Despite the performance of these 
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solutions, they require specific hardware to operate effectively (GPU), which are limited in 
memory capacity.  

 

2.2. Deblocking with Neural Networks  
 

Deep learning approaches were also explored for post-processing decoded images, particularly to 

eliminate block artifacts. Some works focused on enhancing quality of images coded by 
traditional codecs. For instance, [17] provides a network architecture to remove block artifacts 

from JPEG compressed blocks using neighbouring blocks, while [18] tempted to deblock the 

whole decoded image. [19] introduced pre & post-processing networks to improve JPEG 

compression performance. In fact, [19] proposed an end-to-end framework composed of two 
convolutional neural networks (CNN) along with a handcrafted image codec such as JPEG, 

JPEG2000 or BPG. The first CNN learns an optimal and a compact representation of the image, 

which is compressed by the traditional image codec. Then, the second CNN enhances the quality 
of the decoded image. The results of [19] outperform several state-of-the-art methods of image 

deblocking and denoising. However, this work was only tested on grayscale, images with small 

resolutions, which is not compatible with real compression applications.     
    

Other works were interested in deblocking images coded by learned image codecs, especially 

progressive learned codecs. For instance, [20] proposed a patch-based image coding framework 

called BINet which uses binarized neighbouring patches to eliminate block artifacts. Each patch 
is reconstructed using 9 surrounding binarized neighbours. This approach outperforms JPEG at 

low bitrates.  

 
[21] and [22] address the same problem by introducing a postprocessing network to remove 

blocking artifacts, which increases the size of the model and the complexity of the training 

process.   
 

With a different objective, super resolution models, such as VDSR [23], showed promising 

results in enhancing decoded image quality.   

 
Nevertheless, all these related works are either networks which require a dependence on 

traditional image codecs, or their training process is difficult, and retraining is necessary if the 

learned codec changes, or, they are not consistent with codecs based on conv/deconvolutional 
auto-encoders architectures such as [8]. This paper proposes a patch-based image coding 

approach to address the hardware limitation of any conv/deconvolutional learned image codec 

without requiring a retraining. It achieves the same quality level as the full resolution coding and 

enables a flexible use of memory which make the method undemanding in terms of hardware 
material. However, these results are achieved at the expense of a slight increase of coding time 

(about 3%).  

 

3. PATCH-BASED IMAGE CODING USING OVERLAPPING 
 

3.1. Proposed Method  
 
In this approach, the process described in Fig.1 is followed. First, reflect padding is applied to the 

input image in order to make its size divisible by the patch size. While dividing the image into 

patches, every two consecutive patches must have a range of pixels in common horizontally and 
vertically, as it is illustrated in  Fig.3. Then, the coding step is performed by an end-to-end 

learned image codec on input patches of size 𝑃  + 𝑁, where 𝑃 is the size of the patch w/o 

overlapping and 𝑁 is the number of the overlapping pixels. In the next step, the image is 
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reconstructed from the patches. The overlapping areas are combined by a weighting function 

which generates a progressive transition from one patch to the other. In fact, if 𝑏𝑚 and  𝑏𝑚+1are 

two consecutive reconstructed patches overlapping horizontally on 𝑁pixels, the value of the 𝑖𝑡ℎ 

overlapping pixel 𝑝𝑟𝑒𝑐(𝑖), for a given line in the reconstructed image is determined by the 
following equation:   

 

 
 

where 𝑖 Є {0,   …  ,  𝑁 − 1} is the index of the overlapping pixels, P is the size of the patch w/o 

overlapping, 𝑝𝑏𝑚 and 𝑝𝑏𝑚+1 are pixels values, for a specific line, of two consecutive decoded 

patches 𝑏𝑚 and 𝑏𝑚+1 respectively.   
 

The same equation is valid for vertically overlapping patches. Once the decoded image is 

reconstructed, quality metrics can be computed.  
 

 
 

Fig.3 Method to overlap patches on N pixels  

 

3.2. Training and Evaluation   
 

The end-to-end learned codec used in this paper is an implementation of the model architecture 

introduced in [8]. It is a conv/deconvolutional auto-encoder model leveraging the efficiency of 
residual blocks and attention modules, in addition to using a Gaussian Mixture model as the 

entropy engine. It was trained on 400 000 samples from the CLIC 2020 dataset [24]. For training, 

256x256 sized patches were randomly cropped from each image of the training set. The model 
was trained on a total of 500 000 steps. It was optimized using an Adam optimizer, with a batch 

size of 4. The learning rate value was set to 10−4 for the first 200 000 steps and then it was 

decreased to 10−5 for the rest of the training. The loss function to be minimized is the 
ratedistortion loss function formulated as :  

 

𝐽 = 𝐷 + 𝜆𝑅,    (2)  
 

where D refers to the distortion between the original patch and the reconstructed one, measured 

by the Mean Square Error (MSE) or the Multi-Scale Structural Similarity Index [25] (MS-SSIM) 

metrics, and R refers to the rate used to transmit the bitstream, estimated using the Shannon 

entropy. 𝜆 is the Lagrangian multiplier, allowing to adapt the bit rate targeted by the learned 
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image coding model. The goal is the teach the model to minimize the distortion between the 
original patch and the reconstructed one while using a reasonable bit rate.   

 

Eight models have been trained, 4 for each quality metric (MSE and MS-SSIM), matching 4 

different bit rates. The corresponding Lagrangian multipliers are 𝜆 = {420, 220, 120, 64} for 

MSSSIM models and 𝜆= {4096, 3140, 2048, 1024} for MSE models.    

 
Our method is then evaluated on Class B, C, D, E and F of the JVET Common Test Conditions 

(CTC) sequences (8 bit sequences), which have different resolutions (1920x1080, 1280x720, 

840x832 and 416x240). The hardware limitation this paper addresses, start to occur at class B and 

class E resolutions, but it also concerns class A sequences. Although Class A is not included in 
this evaluation, the solution presented in this paper can be generalised to class A sequences.   

 

For each sequence, one frame is extracted and compressed both entirely (referred as the full 
image approach) and by the proposed patch-based approach, with and without overlapping. We 

used N Є {0, 2, 4, 8, 16, 32} overlapping pixels and we set 𝑃  =  256  similar to the training 

resolution.  
 

4. EXPERIMENT RESULTS 
 

4.1. Coding Time and Memory Analysis  
 

Our method allows using the available GPU memory in a flexible way by coding multiple 

patches simultaneously. In fact, instead of coding the largest possible patches sequentially, we 

explored the GPU ability to parallelize processing. Therefore, the model was fed a batch of 
patches as input. The input shape becomes then [B, C, H, W] where C, H and W refer, 

respectively, to the channel number, the height, and the width of the input patch while B 

corresponds to the number of patches processed in parallel, called the batch size.   
 

While fixing the patch size (W and H), the batch size value can be adapted to the available GPU 

memory. Hence, if the total number of patches to code cannot be fed to the model as one batch, 
the input patches are regrouped to smaller batches.  

 

Table 1 compares the coding time of our proposed approach using parallelization, with the coding 

time of the full resolution learned coding. For information purposes, the coding time of two more 
methods is computed: our approach without parallelization and the patch-based learned image 

coding without overlapping using parallelization.  

 
To achieve this experiment, images of different resolutions were extracted from the JVET CTC 

and were coded using two machines with two powerful GPUs: Nvidia GeForce RTX 2080ti and 

Nvidia GeForce RTX 3090 with memory capacity of 11Go and 24Go respectively.  
 

Full resolution coding of an HD image is not possible on both GPUs due to Out Of Memory 

(OOM) error, while full coding an 1280x720 image, can only be run on the machine with the 

GPU RTX 3090 since it has more available memory (24Go). It is important to note that these 
resolutions are standard resolutions in practical applications of image compression. Therefore, the 

fact that they cannot be run on one of the latest GPUs is inconvenient. In this case, our method 

provides a solution that enables coding high resolution images without deteriorating quality.   
 

While our method is necessary to code high resolution images (HD, 720p, ...), it increases coding 

time of the system for smaller resolutions. For instance, when running the resolution 832x480 on 
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2080ti GPU, patch-based coding increases the coding time by 3 % compared to full resolution 
coding. This is expected since our method requires coding more pixels in order to overlap 

patches. Patch-based coding w/o overlapping confirms this explanation since it has 

approximately the same coding time as full resolution coding.  

 
Table 1: Coding Time  

 

Resolution   Method   

Coding 

time GPU  

2080  

11Go  

Coding 

time GPU  

3080  

24Go  

Total  

Number 

of patches  

Number of 

patches  

coded in 

parallel  

N  

HD  Full resolution coding  OOM*  OOM*  -  -  -  

Patch coding in parallel w/o 

overlapping  
3.18s  1.96s  40  8  -  

Patch coding in parallel with 

overlapping  
3.39s  2.03s  40  8  16  

Patch coding sequentially 

with overlapping  
4.39s  2.32s  40  -  16  

1280x720  Full resolution coding  OOM*  0.93s  -  -  -  

Patch coding in parallel w/o 

overlapping  
1.75s   0.95s   15  5  -  

Patch coding in parallel with 

overlapping  
1.91s   1.01s   15  5  16  

Patch coding sequentially 

with overlapping  
2.73s  1.25s 15  -  16  

832x480  Full resolution coding  1.06s  0.52  -  -  -  

Patch coding in parallel w/o 

overlapping  
1.05s   0.54s   8  8  -  

Patch coding in parallel with 

overlapping  
1.10s   0.55s   8  8  16  

Patch coding sequentially 

with overlapping  
1.586s 0.70s 8 - 16 

 

* "OOM" stands for “Out Of Memory” 
 

To conclude this section, our approach addresses the hardware limitation problem since it allows 

coding resolutions such as HD and 720p. Moreover, it enables flexible adaptation to available 
memory. However, it increases slightly the coding time of the coding system. We believe this 

increase in coding time is worthwhile for the solution this method proposes, especially for coding 

high resolution images.  

 

4.2. Rate-Distortion aVisual Results  
 
Table 2 sums up the BD-rate gain of the patch-based learned image coding with and without 

overlapping comparing to learned full image coding on CTC sequences, using an end-to-end 

model trained to minimize MS-SSIM as distortion metric. For the purpose of this evaluation, full 

image approach for resolutions such as HD and 720p, was run on CPU. It is important to note 
that using CPU to run an end-to-end leaned codec is not considered because it is severely time 

consuming.  

 
Patch-based image coding without overlapping and with 2 overlapping pixels (N = 2) presents a 

loss in BD-rate, comparing to full image coding. The first observation confirms the block 
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artifacts issue caused by patch-based approaches. The second one is explained by the fact that 
two overlapping pixels are not enough to recover from these artifacts. Yet, the BD-rate loss of 

our proposed method with N=2 is decreased significantly compared to patch-based coding 

without overlapping. As the number of overlapping pixels increases, the loss in BD-rate 

decreases which indicates that the block artifacts are removed efficiently. Hence, our method has 
managed to be on par with the performance of full image coding.  

 

In fact, with N = 8 marginal gains are observed compared to full image coding. Though, these 
gains are at their peak with 16 overlapping pixels. As the end-to-end coding model was trained on 

256x256 cropped images, it performs better on coding patches of similar size than coding the full 

resolution image, which explains the gain in BD-rate. For N > 16, BD-rate gains saturation is 
observed.  

 
Table 2: BD-rate (MS-SSIM) gains (%) of patch-based coding schemes compared to full image coding 

system for CTC sequences.  

 

  

Sequence 

Patch w/o 

Overlapping  

Patch with Overlapping  

N = 2 N =  4 N =  8 N =  16 N =  32 

Class B  Cactus  0.573 -0.0003 -0.033 -0.066 -0.083 -0.079 

BasketballDrive  0.630 0.062 0.024 -0.013 -0.032 -0.030 

BQTerrace  0.744 0.025 -0.020 -0.060 -0.083 -0.090 

Class C  RaceHorses  0.503 0.013 -0.014 -0.041 -0.052 -0.048 

BasketballDrill  0.484 0.022 -0.004 -0.034 -0.049 -0.051 

BQMall  0.732 0.056 0.014 -0.023 -0.044 -0.038 

PartyScene  0.428 0.032 0.005 -0.020 -0.032 -0.027 

Class D  BasketballPass  0.286 0.025 0.010 -0.012 -0.015 -0.009 

BlowingBubbles  0.146 0.019 0.006 -0.008 -0.016 -0.012 

BQSquare  0.214 0.020 0.008 -0.005 -0.011 -0.012 

RaceHorses  0.281 0.026 0.009 -0.011 -0.022 -0.022 

Class E  Johnny  1.240 0.081 0.041 -0.004 -0.026 -0.029 

FourPeople  0.643 0.030 -0.012 -0.046 -0.068 -0.072 

KristenAndSara  0.991 0.062 0.021 -0.015 -0.043 -0.043 

Class F  BasketballDrillText  0.506 0.035 0.010 -0.019 -0.035 -0.035 

SlideShow  1.018 0.081 0.028 -0.006 -0.031 -0.031 

SlideEditing  0.533 0.019 -0.006 -0.030 -0.035 -0.031 

 

Rate-distortion curves for MS-SSIM models are reported in Fig.4(a) and confirm previous 
observations. The patch-based coding approach with overlapping allows to fill the gap with the 

full image coding one. While reaching a better quality, the proposed method increases slightly the 

rate comparing to patch-based coding without overlapping, which is expected as more pixels are 

encoded.  
 

The decoded images of the methods mentioned before are visualized in Fig.5. Overlapping with 

N = 2 (Fig.5.d) and N = 4 (Fig.5.e) reduces the block artifacts while overlapping with 8 pixels 

(Fig.5.f) eliminates them entirely.  
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(a) MS-SSIM Rate-Distortion results 

 

 
 

(b) PSNR Rate-Distortion results  

 
Fig.4 Rate-Distortion results of the proposed approach compared to Full Image coding and patch-based 

image coding without overlapping for Basketball Drill and Four People sequences.  

 

 
 

Fig.5 Visual results for Basketball Drill using MS-SSIM model with λ = 420  

 



Signal & Image Processing: An International Journal (SIPIJ) Vol.14, No.1, February 2023 

10 

 

The BD-rate results with distortion measured with Peak Signal to Noise Ratio (PSNR) are 
provided in Table 3, for the end-to-end learned codec trained to optimize the MSE metric. 

Compared with full image coding, patch-based image coding without overlapping showed a 

BDrate loss for PSNR metric (Table 3) less important than the BD-rate loss for MS-SSIM metric 

(Table 2). This is also illustrated in Fig.4(b) as the quality gap between image coding per patch 
without overlapping and the full image coding has narrowed. Furthermore, although block 

artifacts exist in the decoded image (Fig.6.c), they are less visible than the decoded image 

resulting from the MS-SSIM end-to-end codec (Fig.5.c). This behaviour may be explained by the 
fact that MS-SSIM is computed using a sliding window while MSE is a pixel-based metric.   

 

In any case, the proposed approach improves the BD-rate performance, the rate-distortion curves 
(Fig.4)  and the perceptual quality of the decoded image (Fig.6 and Fig.5).  

 
Table 3: BD-rate (PSNR) gains (%) of patch-based coding schemes compared to full image coding system 

for CTC sequences.  

 

 Sequence Patch w/o 

Overlapping  

Patch with Overlapping  

N = 2 N = 4 N = 8 N = 16 N = 32 

Class B  Cactus  -0.022 -0.073 -0.080 -0.086 -0.096 -0.089 

BasketballDrive  0.042 -0.010 -0.010 -0.010 -0.013 -0.010 

BQTerrace  -0.040 -0.100 -0.113 -0.121 -0.132 -0.123 

Class C  RaceHorses  0.010 -0.033 -0.037 -0.045 -0.046 -0.040 

BasketballDrill  -0.030 -0.071 -0.077 -0.078 -0.079 -0.070 

BQMall  0.013 -0.018 -0.023 -0.020 -0.021 -0.010 

PartyScene  0.033 -0.001 -0.006 -0.010 -0.016 -0.020 

Class D  BasketballPass  -0.014 -0.047 -0.046 -0.050 -0.040 -0.022 

BlowingBubbles  0.005 0.001 0.002 -0.008 -0.014 -0.012 

BQSquare  0.017 0.008 0.007 0.014 0.015 0.020 

RaceHorses  0.009 -0.005 -0.010 -0.013 -0.017 -0.017 

Class E  Johnny  0.049 0.016 -0.002 -0.013 -0.023 -0.010 

FourPeople  0.016 -0.023 -0.031 -0.045 -0.070 -0.070 

KristenAndSara  0.042 -0.001 -0.011 -0.026 -0.058 -0.030 

Class F  BasketballDrillText  0.011 -0.031 -0.036 -0.040 -0.042 -0.040 

SlideShow  0.051 -0.030 -0.032 -0.026 -0.034 -0.020 

SlideEditing  0.029 -0.006 -0.009 -0.016 -0.016 -0.010 
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Fig.6 Visual results for Four People using MSE  model with λ = 4096  

 

5. PATCH SIZE IMPACT ON PATCH BASED CODING WITH OVERLAPPING 
 

In this section, we study the impact of the patch size on the performance of our method. Hence, 

we aim to determine the patch size which provide the best results especially in terms of coding 

time and memory consumption.   
 

For this purpose, our approach is evaluated with different patch sizes, with and without 

parallelization, on Class B sequences of the JVET CTC which has the HD resolution. This 
resolution allows exploring a bigger range of patch sizes. For instance, testing our method with a 

patch resolution of 768x768, is possible on an HD frame while it is not possible with a frame 

which resolution is 1280x720.   

 
Furthermore, according to the first results presented in the previous section, the number of 

overlapping pixels that gives the best results in terms of coding efficiency, equals to 16. Thus, we 

set N = 16 in this study.    
 

5.1. Square Patch Sizes  
 

5.1.1. Coding Time and Memory Analysis  
 
First, a range of square patch size is explored: P Є {128x128, 192x192, 256x256, 384x384, 

512x512, 768x768}. Then, in Table 4, the coding time on both GPUs : RTX 2080ti with 11Go 

and  RTX 3090 with 24Go, is measured with and without parallelization. We tested different 

values of the number of patches processed in parallel going from 1, where parallelization is not 
used, to the maximum value that is possible giving the amount of memory available on the GPU. 

For example, for the patch size 128x128, 30 is the maximum number of patches that can be coded 

in parallel if run on the GPU “RTX 2080ti with 11Go”. Beyond this value, the memory saturation 
problem occurs.  

 

Table 4 compares the coding time of our approach with and without parallelization for each patch 
size. For a given a patch size, the coding time decrease while increasing the number of the 

patches coded in parallel. This shows the importance of parallelization in reducing the coding 

time and taking advantage as much as possible from the possible memory available.   
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(a) Without parallelization                                (b) With parallelization 

 
Fig.7 Impact of the patch size on the coding time with and w/o parallelization.  

 

Fig.7 shows how the execution time of our method, run on both GPUs, varies with different patch 
sizes. Without parallelization (Fig.7.a), our method has the highest coding time when the patch 

size is the smallest. Then it decreases when increasing the patch size. This is because when the 

frame is divided into small patches, the total number of patches is high. Each patch is transmitted 
separately to the GPU and then processed by that GPU sequentially, while with parallelization, a 

set of patches are transmitted at once, then the GPU process those patches simultaneously. The 

transmission of one single patch takes less time than the transmission time of one set of patches. 

However, coding the whole frame sequentially is slower.   
 

In fact, Fig.7.b illustrates the results of the execution time, according to different patch sizes, 

while using parallelization. The number of patches coded in parallel is chosen so that the 
maximum number of patches, allowed in the GPU memory, are processed simultaneously. As a 

result, the coding time is reduced significantly for small patch size such as : 128x128, 192x192, 

256x256 and 384x384 while for the 512x512 and 768x768, parallelization is less efficient. This 
can be explained by the fact that only 1 or 2 patches can be coded simultaneously for these patch 

sizes.  

 

In these cases, there might still have available memory in the GPU but not enough to process 
another patch. Hence, we do not benefit from all the available memory. This assumption is 

confirmed in Table 5 where we measure the memory consumption of our approach using 

different patch sizes on the GPU RTX 2080ti with the memory capacity of 11Go.  For 512x512 
and 768x768 patch sizes, only 8 Go out of 11Go is used where for other patch sizes such as 

128x128 and 192x192, the consumed memory is up to 10 Go. To sum up, high patch size does 

not allow an optimal memory consumption and does not benefit from parallelization to reduce the 

execution time.    
 

However, small patch size should not be privileged either since they come along with more 

overlapping pixels to code and thus increasing the coding time. Therefore, the patch size that is 
considered a trade-off between optimal memory consumption and coding added overlapping 

pixels, is 384x384.  
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Table 4: Coding time of the patch based coding with overlapping using different patch sizes with and w/o  

parallelization.   

 
  128x128   192x192   256x256  

N Total 

patches 

GPU RTX 

2080ti 11Go  

GPU RTX 3080      

24 Go  

N Total 

patches  

GPU RTX 

2080ti 11Go  

GPU RTX 3080      

24 Go  

N Total 

patches  

GPU RTX 

2080ti 11Go  

GPU RTX 

3080      24 Go  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s)  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s)  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s) 

Nbr of 

patches  

coded 

in 

parallel 

Coding 

Time 

(s) 

Nbr of 

patches  

coded 

in 

parallel 

Coding 

Time 

(s) 

Nbr of 

patches  

coded 

in 

parallel 

Coding 

Time 

(s) 

Class 

B  

135  1  7,71  1  3,95  60  1  5,06  1  2,58  40  1  4,39  1  2,32  

135  15  4,00  27  2,15  60  8  3,76  12  1,99  40  4  3,71  8  2,03  

135  27  3,89  33  2,09  60  12  3,67  30  1,96  40  8  3,39  10  1,97  

135  30  3,79  71  2,03  60  15  3,45  36  1,92  40  -  -  20  1,94  

 
  384x384   512x512   768x768  

N Total 

patches 

11 GO  24 GO  N Total 

patches  

11 GO  24 GO  N Total 

patches  

11 GO  24 GO  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s)  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s)  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s) 

Nbr of 

patches  

coded 

in 

parallel 

Coding 

Time 

(s) 

Nbr of 

patches  

coded 

in 

parallel 

Coding 

Time 

(s) 

Nbr of 

patches  

coded 

in 

parallel 

Coding 

Time 

(s) 

Class 

B  

15  1  3,90  1  1,98  12  1  3,79  1  2,15  6  1  3,76  1  2,13  

15  2  3,29  3  1,96  12  2  3,67  2  2,11  6  -  -  2  2,03  

15  3  3,17  5  1,91  12  -  -  3  2,01  -  -  -  -  -  

15  4  3,17  10  1,89  12  -  -  6  1,94  -  -  -  -  -  

 
Table 5: Memory Consumption per patch size . The Used GPU is RTX 2080ti with the  memory capacity 

of 11 Go 

 

Patch Size  GPU memory consumption  

128x128  10784MiB / 11016MiB  

192x192  10496MiB / 11016MiB  

256x256  9302MiB / 11016MiB  

384x384  9470MiB / 11016MiB  

512x512  8306MiB / 11016MiB  

768x768  8864MiB / 11016MiB  

 

5.1.2. Rate-Distortion and Visual Results  

 

Here, the coding efficiency of our approach is evaluated on class B sequences using different 
patch sizes. For this experiment, the number of overlapping pixels is fixed to N = 16, since 

according to the previous section this value provides the best results in terms of rate-distortion 

results. Then, the BD-rate of our method compared to full coding system using MS-SSIM and 

MSE models are computed for different patch sizes in Table 6 and Table 7 respectively.   
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Table 6: BD-rate (MS-SSIM) gains (%) of patch-based coding with overlapping (N = 16) compared to full 

image coding system using different patch size for Class B sequences.  

 

 Sequence   Patch size   

128x128  192x192  256x256  384x384  512x512  768x768  

Class 

B  

BasketballDrive  -0,095  -0,077  -0,080  -0,049  -0,046  -0,045  

BQTerrace  -0,067  -0,052  -0,030  -0,018  0,004  -0,0001  

Cactus  -0,096  -0,072  -0,080  -0,038  -0,060  -0,062  

 Average  -0,086  -0,067  -0,064  -0,035  -0,034  -0,035  

 

Table 7: BD-rate (PSNR) gains (%) of patch-based coding with overlapping compared to full image coding 

system using different patch size for Class B sequences.  

 

 Sequence   Patch size   

128x128  192x192  256x256  384x384  512x512  768x768  

Class 

B  

BasketballDrive  -0,104  -0,105  -0,125  -0,076  -0,082  -0,097  

BQTerrace  -0,014  -0,022  -0,012  0,004  0,027  -0,001  

Cactus  -0,064  -0,057  -0,093  -0,037  -0,073  -0,076  

 Average  -0,060  -0,061  -0,076  -0,036  -0,042  -0,058  

 

As expected, slight gains are obtained for almost all patch sizes, for both MS-SSIM and MSE 
models. Moreover, Fig.8 and Fig.9 represent the visual results for our solution using two different 

patch sizes for MSE and MS-SSIM models. In all cases, border artifacts are successfully 

eliminated no matter the patch size is.   
 

 
 

Fig.8 Visual results for BQTerrace using MS-SSIM  model with λ = 420, for patch size :  

384x384 and 512x512  
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Fig.9 Visual results for Cactus using MSE model with λ = 4096, for patch size: 384x384 and 

512x512 

 

Next, the behaviour of the BD-rate gains according to patch size is visualised in Fig.10. The 

BDrate used is the BD-rate average among all Class B sequences. The learned codec used is 

trained to optimize MS-SSIM as quality metric. This choice is explained by the fact is MS-SSIM 
is a metric computed using a sliding window making it aware of neighbour pixels, while MSE is 

a pixel wise metric. As a result, it does not take into consideration, border artifact.  

 

 
 

Fig.10 Variation of the BD-rate gains as per patch size  

 
Fig.10 shows that BD-rate gains increase when the patch size is small. This behaviour confirms 

that learned codecs perform better in low resolution patches since they were trained on small 

image crops. Nevertheless, the more patch size decreases, the more overlapping pixels are added 
to be coded. Therefore, at some point, the overhead of the overlapping pixel will lead to 

deteriorate the performance of our method in terms of coding efficiency.  

  
Hence, for square patch size, we privilege the patch resolution 384x384 because it allows 

parallelization and benefits largely (Table 5) from the available memory, which reduce the 

coding time. Moreover, it provides a BD-rate gain, without risking deteriorating the rate-

distortion results due to the overlapping pixels overhead.   
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5.2. Patch Sizes Adapted to Practical Applications 
 

5.2.1. Coding time and memory analysis  

 
In this part, we test commonly used patch resolutions that are close to HD/2, HD/3, HD/4 and 

HD/5, which corresponds respectively to 960x540, 640x360, 480x272, 384x216.   

 
Table 8 presents the results of our approach run on the same two GPUs mentioned previously, 

while using parallelization. For all patch sizes, the coding time decreases when the number of 

patches coded in parallel increases.   

 
Table 8: Coding time of the patch based coding with overlapping using different patch sizes with and w/o 

parallelization. Range of patch sizes : HD/2, HD/3, HD/4 and HD/5 

 

  HD/5    HD/4    

N 

Total 

patches 

GPU RTX 

2080ti 11Go  

GPU RTX 3080      

24 Go  

N 

Total 

patches  

GPU RTX 

2080ti 11Go  

GPU RTX 3080      

24 Go  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s)  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s)  

Nbr of 

patches  

coded 

in 

parallel  

Coding 

Time 

(s) 

Nbr of 

patches  

coded 

in 

parallel 

Coding 

Time 

(s) 

Class B  25  1  3,91  1  2,14  16  1  3,36  1  2,00  

25  3  3,63  10  1,86  16  2  3,23  4  1,89  

25  5  3,51  15  1,86  16  4  3,09  8  1,88  

25  7  3,43  17  1,85  16  5  3,09  12  1,86  

 

  HD/3    HD/2    

N Total 

patches 

GPU RTX 

2080ti 11Go  

GPU RTX 3080      

24 Go  

N Total 

patches  

GPU RTX 

2080ti 11Go  

GPU RTX 3080      

24 Go  

Nbr of 

patches  

coded in 

parallel  

Coding 

Time (s)  

Nbr of 

patches  

coded in 

parallel  

Coding 

Time (s)  

Nbr of 

patches  

coded in 

parallel  

Coding 

Time (s) 

Nbr of 

patches  

coded in 

parallel 

Coding 

Time (s) 

Class B  9  1  3,26  1  1,99  4  1  3,09  1  1,92  

9  2  3,11  3  1,88  4  -  -  2  1,92  

9  3  3,07  6  1,85  4  -  -  -   

9  -  -  7  1,83  4  -  -  -  -  
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(a) Without parallelization                                 (b)  With parallelization                                           

 
Fig.11 Impact of the patch size on the coding time with and w/o parallelization. The range of patch sizes is 

: HD/2, HD/3, HD/4 and HD/5 

 

To enhance the benefits of parallelization, the curve of the variation of the execution time 
according to the patch size with and without parallelization is illustrated in Fig.11 . As before, the 

execution time of our method without parallelization is the highest when the patch size had the 

lowest resolution (HD/5). Then, the use of parallelization reduces the coding time significantly 

for the patch sizes: HD/5, HD/4 and HD/3, while it does not improve the coding time of the 
proposed approach with HD/2 as a patch size. In fact, Table 9 shows that the high patch size of 

HD/2 does not benefit completely from the memory capacity available. 

    
Table 9: Memory Consumption per patch size. The Used GPU is RTX 2080ti with memory capacity of 11 

Go and the range of patch sizes is : HD/2, HD/3, HD/4 and HD/5 

 

Patch Size  GPU memory consumption  

HD/5   10250MiB / 11016MiB  

HD/4   10162MiB / 11016MiB  

HD/3   10546MiB / 11016MiB  

HD/2   8024MiB / 11016MiB  

 

However, in Fig.11.b, the coding time with parallelization for HD/5 patch size, run on the GPU 

“RTX 2080ti 11Go”, is still higher comparing to the other patch sizes. This might be because of 
the added overlapping pixels.    

 

We aim to determine a patch size that allows benefiting as much as possible from the available 

memory in the GPU and at the same time avoids a significant overhead of the overlapping pixels. 
As a compromise to these both constraints, we privilege the patch size HD/4 (480x272).   

 

5.2.2. Rate-Distortion and Visual Results  
 

Afterwards, in  Table 10 and Table 11,  the BD-rate gains are computed to compare the proposed 

solution with the full coding image with MSE and MS-SSIM models, for the patch sizes: HD/2 

(960x540), HD/3 (640x360), HD/4 (480x272), HD/5 (384x216).   In general, our method 
manages to achieve slight gains for both MSE and MS-SSIM models, for all patch sizes. Fig.12 

and Fig.13 show the visual results of our method with the resolutions HD/4 and HD/5, for MSE 

and MSSSIM models. In any case, the border artifacts are entirely eliminated.  
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Table 10: BD-rate (MS-SSIM) gains (%) of patch-based coding with overlapping compared to full image 

coding system using different patch size for Class B sequences. The range of patch sizes is  HD/2, HD/3, 

HD/4 and HD/5  

 

 Sequence  Patch size  

HD/5  HD/4  HD/3  HD/2  

Class B  BasketballDrive  -0,039  -0.025 -0,025  -0,015  

BQTerrace  -0,04  -0.017  -0,016  -0,006 

Cactus  -0,043  -0.026  -0,026  -0,012  

 Average  -0,041  -0,023  -0,022  -0,011  

 
Table 11: BD-rate (PSNR) gains (%) of patch-based coding with overlapping compared to full image 

coding system using different patch size for Class B sequences.  The range of patch sizes is  HD/2, HD/3, 

HD/4 and HD/5  

 

 Sequence  Patch size  

HD/5  HD/4  HD/3  HD/2  

Class B  BasketballDrive  -0,045  -0,041 -0,036  -0,033  

BQTerrace  -0,032  -0,010  -0,010  -0,004  

Cactus  -0,027  -0,023  -0,021  -0,011  

 Average  -0,034  -0,025  -0,023  -0,016  

 

 
 

Fig.12 Visual results for BasketballDrive using MS-SSIM  model with λ = 420, for patch size : 

HD/4 and HD/5 

 

 
 

Fig.13 Visual results for BasketballDrive using MSE model with λ = 4096, for patch sizes :  

HD/4 and HD/5  
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Fig.14 illustrates the variation of BD-rate gains per patch size. The behaviour is similar to Fig.10, 
the BD-rate gains increases when the patches are smaller. Nevertheless, using low patch 

resolutions with our approach leads an important overhead of overlapping pixels. Therefore, 

small patch sizes cannot be privileged.    

 
In terms of coding efficiency, our method with the patch size HD/4 allows achieving slight 

BDrate gains (0.23%) comparing to full image coding, as well as avoiding a significant overhead 

of additional overlapping.   
 

 
 

Fig.14 Variation of BD-rate gains as per to patch resolution. Patch resolutions : HD/5, HD/4, HD/3 and 

HD/2 

 
To conclude this section, the impact of the patch size on our approach was analysed using two 

different ranges of patch sizes. In terms of coding time, the bigger the patch size is the less the 

parallelization is effective. In addition, the proposed method does not benefit fully from the 

available memory in case of high patch resolution, which increases the coding time of the 
solution. However, small patch size cannot be privileged either since they increase the overhead 

of the overlapping pixels. Therefore, the patch size that present a trade-off between both 

constraints corresponds in the first range of patch sizes to 384x384 and in the second range to 
480x272 (HD/4).  It is important to note that both these patch resolutions are close in their total 

number of pixels, which shows that our results are consistent.   

  
In terms of coding efficiency, the patch size does not have an important impact on the 

performance of our method. It manages to achieve marginal gains compared to the full image 

approach.  Nevertheless, it is expected that the use of small patch sizes will lead to BD-rate loss 

at some point because of the overhead of overlapping pixels.   
 

6. CONCLUSION AND PERSPECTIVES 
 

This work proposes a solution to the memory saturation problem that end-to-end learned codecs 
face while coding high resolution images such as HD. This solution consists in patch-based 

image coding while removing block artifacts using overlapping. This method benefits from 

flexible memory consumption and manage not only to achieve full image coding performance, 

but also to improve it slightly (-0.034% for MSE models and -0.024% for MS-SSIM models), 
even though it increases lightly the coding time (about 3%). Results are provided on JVET CTC 

sequences with MSE and MS-SSIM based models. The network architecture of [8] is used as our 
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baseline end-to-end learned codec, but this method is compatible with any learned codec based 
on a conv/deconvolutional auto-encoder architecture.  

 

Furthermore, this work provides an analysis on the effect of the patch size on the performance of 

the proposed solution. Thereby, the best patch in terms of coding time and coding efficiency is 
determined. In this study, Class B sequences were targeted since they have a high resolution 

(HD) which make them more exposed to the hardware limitation this paper aims to address. 

Moreover, two different ranges of patch sizes were explored. The number of overlapping pixels 
was set to 16.   

In our future works, we aim to remedy to the increase in coding time, caused by coding additional 

overlapping pixels, by training an end-to-end image coding model to smooth the patch borders 
and hence remove the border artifacts automatically.  
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