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ABSTRACT

Deep neural network (DNN) image classification has grown rapidly as a general pattern detection

tool for an extremely diverse set of applications; yet dataset accessibility remains a major limiting

factor for many applications. This paper presents a novel dynamic learning approach to leverage

pretrained knowledge to novel image spaces in the effort to extend the algorithm knowledge do-

main and reduce dataset collection requirements. The proposed Omni-Modeler generates a dynamic

knowledge set by reshaping known concepts to create dynamic representation models of unknown

concepts. The Omni-Modeler embeds images with a pretrained DNN and formulates compressed

language encoder. The language encoded feature space is then used to rapidly generate a dynamic

dictionary of concept appearance models. The results of this study demonstrate the Omni-Modeler

capability to rapidly adapt across a range of image types enabling the usage of dynamically learning

image classification with limited data availability.
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1. Introduction

Visual classification has an extremely wide area of application. It is now used across almost
every industry from inventory management to plant identification to medical diagnostics
to manufacturing quality control to worker safety to UAS visual navigation [1, 2, 3, 4,
5, 6, 7, 8, 9]. Cameras are becoming cheaper, their sensors are becoming more complex,
and wireless connection more widespread all generating a growing visual information flow.
Deep neural network (DNN) visual classification is an effective tool for handling this river
of information.

Each of these applications requires a a large training dataset that covers the expected
appearance ranges seen while in operation. The more complex the scenes, the larger the
necessary dataset, an often underestimated caveat to these state-of-the-art visual classifi-
cation algorithms.

Further more, these training requirements limit implementation in real-time dynamic
learning tasks. A rapid visual classification system with low dataset requirements can
be used for variety of tasks such as dataset annotation, customized visual classification,
online learning, tracking, re-detection, and in data environments with changing concept
appearances.

Few-shot learning (FSL) provides a more adaptable framework focusing on reducing train-
ing sample sizes [10]. This has recently evolved to meta-learning where the task transforms
into learning how to learn [11]. Further development of few-shot learning led to the ad-
dition of a mutable memory component known as dynamic learning. The Omni-Modeler
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is a simple, efficient, and generalized few-shot visual classification framework that intro-
duces a novel language encoding methodology. The Omni-Modeler language generation
provides a highly flexible approach for distilling the large latent feature space of a DNN
into a compressed discriminative description. The Omni-Modeler differential advantage
lays in its simplicity in implementation, its generalizability to any DNN, and its flexible
image-to-description encoding.

The objective of the Omni-Modeler is to ease the implementation of deep visual recog-
nition in new areas of application through a generalized, understandable, and dynamic
framework. This work specifically provides the following contributions:

• The novel Omni-Modeler architecture which:
– Reduces dataset annotation requirements
– Extends DNN operational domains to novel spaces
– Enables a dynamically adaptable knowledge domain

• A user interface to aid in the implementation
• Results demonstrating the Omni-Modeler performance

2. Related Work

The Omni-Modeler is an agnostic few-shot learning (FSL) visual classification algorithm
that can dynamically adapt to variations in visual input. The focus of this paper is to
demonstrate its ability to classify across concept domains with minimal training data. The
remainder of this section will cover general visual classification, FSL image classification,
and dynamic learning.

Classification is the prediction of an object’s class based on its attributes compared to
a known model. DNN based visual classification embeds the image space into a latent
feature space which is then followed by a class separation task projecting the latent feature
space into a predictive metric. With traditional DNN classification, the network is trained
through an iterative regressive process. Batches of training images are passed through
the network and the network parameters are updated according to a loss function; first
attributed to LeNet in 1989 [12]. This is known as an end-to-end classification algorithm
and is highly demonstrated as an effective approach for tasks with sufficient training data
and static concepts.

FSL takes a different approach of generating object appearance models with a minimal
number of shots (a.k.a. sample reference images). This is known as metric learning where
query images are classified by a similarity score to a set of reference examples. There
is a long history of FSL using DNN learned features. For example, the Siamese network
architecture [13] and the Matching network [14] and the Prototypical-Net [15]. The current
trend in FSL algorithms follow a line of transforming pretrained DNN embedded features
using a series of linear transforms, DNN classifiers, and iterative solvers [16, 17, 18]. The
current state-of-the-art FSL algorithm, PT+MAP+SF+SOT, combines power transform
(PT) mapping with discrete cosine transform spatial frequency (SF) features and adds
Self-Optimal-Transport Feature Transform (SOT) achieving 89.94% for a 5-way 1-shot on
the CIFAR dataset [19].

FSL can also be viewed from a perspective of domain adaptation or meta-learning [10,
11]. Domain adaptation looks to map one latent feature space to another, calculating an
optimal transform. With DNN, this can be in the form of transfer learning and fine tuning,
both retraining a pretrained network on a new dataset using traditional back propagation.
Meta-learning is a more recent approach to the task formulating the problem into a learn-
to-learn training, focusing on optimizing the feature embedding space. Dynamic learning,
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an even more recent approach, extends FSL learning into adaptable dictionary learning
enabling management of the classifier knowledge domain [20].

The Omni-Modeler takes the dynamic learning approach a step closer to practical applica-
tion through its novel encoding process and concept dictionary learning that leverage the
widely available general visual classification networks trained on ImageNet. This gives a
significant advantage by removing the need for updating any network parameters through
back propagation and enables the knowledge domain to be updated without the need to
recalculate the feature transform. The encoding process generates a rich compressed fea-
ture space adequate for rapidly calculated class descriptors without back propagation that
can be periodically updated as new imagery is obtained. The presented Omni-Modeler
application simplifies implementation of dynamic learning for a wide set of users and their
particular classification needs.

3. Approach

The Omni-Modeler was developed to capture transferable patterns in the DNN latent fea-
ture space that are locally learned in a dictionary of bag-of-words representation models[21,
22]. The transference of knowledge occurs through a series of linear transforms that select
the most distinctive features for the given task. The overview of this process is diagrammed
in Figure 1 with the following sections presenting the details behind this process.

Figure 1: This algorithm overview illustrates the flow of the Omni-Modeler classifica-
tion process. First a series of references images are DNN embedded, encoded using that
calculated language, and then stored in concept dictionary. The query images are then
embedded and encoded in the same manner. The query images are then classified using
concept dictionary and k-Nearest Neighbors.

3.1. Problem Formulation
The objective of FSL visual classification is to generate the function that best predicts the
class, yi ∈ 1, . . . , C, of a query sample image, xi ∈ Rdimg , represented by the function:
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f(xi) = yi (1)

The function f(xi) is trained from a sub-sample of k images random selected from a
dataset of known images D = (xi, yi)

N
i=1, known as the support or reference set Sτ . The

best FSL function is defined by Eτ [
∏

Qτ p(y∗i |f(x∗i , Sτ )].

3.2. Language Calculation

DNN visual classification trains to generate feature extracting filters corresponding to the
most discriminative features between classes in a training set with an output of a class
probability vector.

p(y∗ = c|x∗) = Φ(x∗) (2)

Class probabilities can be viewed as a Gaussian mixture model (GMM) of class attributes
in the latent feature manifold [23]. Extending this view, the images being passed through
the DNN become instances of attributes produced by a GMM source. The Central Limit
Theorem states that linear combinations of Gaussian distribution generates a Gaussian
distribution. Even more generally it has been shown that the partial sum of randomly
indexed m-dependent random variables tends toward Gaussian distributions as well [24].
Therefore, the DNN embedded latent features can be viewed as a GMM produced from
random distribution of visual attributes with a class probability defined by:

p(y∗ = c|x∗) = πcNc(µc,Σ
τ
c )

Σc′π′
cN (µc′ ,Στ

c )
(3)

where p(y∗ = c|x∗) is the probability of x∗ belonging to class c given the class distribution
πcNc(µc,Σ

τ
c ) over the sum of all class distribution Σc′π

′
cN (µc′ ,Σ

τ
c ).

The Omni-Modeler uses a combination linear transforms on the GMM of the latent feature
manifold generating a local language of features for describing the novel image space from
the embedded latent space of the DNN. This local language consists of letters, words, and
sentences. The first level of transform on the embedded latent space forms the letters.
Combinations of the transformed letters form the words. Each image is then translated
into a sentence by concatenating the encoded words into a description vector.

The independent component analysis (ICA) is used to calculate the letters of the given
dataset independent of class labels. This transforms the manifold to extract the most
pronounced factors seen across the novel image space. Reducing the transformed space
to only the most informative dimensions distills the GMM signal into persistent primitive
patterns seen across the dataset.

The vocabulary of the feature space is organized into word structures using k-means clus-
tering. This process condenses the common groupings of letters into semantically relevant
concepts. When translating an image, each given region of the image space is given a
description according to its Mahalanobis distance from the calculated words.

This feature encoding process is formally described in the equations below, where Φ is the
embedding DNN and ai is the resulting embedded feature:

Φ(xi) = ai. (4)
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The embedded feature is then encoded into letter space, bi, the with the ICA transform
P :

PaTi = bi. (5)

.

Next the letter feature space is compared to each word in the vocabulary Vj using the
Mahalanobis distance resulting in the vocabulary description ri,j :

M(b∗i , µVj
) =

1

2
(b∗i − µVj

)TΣ−1
Vj

(b∗i − µVj
) = ri,j . (6)

Repeating for each word in the vocabulary produces the word descriptor of the image
space ri:

distance(bTi , V ) = ri. (7)

In practice, the DNN latent space embeds a grid of image tiles across the image space
creating an embedded image (a.k.a. a class activation map). The word descriptions are
concatenated across this grid of tiles to transform the encoded image space into sentence
descriptor vector:

concatenate(ri, x, y) = ri. (8)

The full language encoding process is visualized in the Figure 2.

3.3. Dictionary Generation

The conception dictionary is generated from a set of k reference samples randomly selected
from a selected dataset. Each of the selected images is encoded with the learned language
into the image description vector ri. The concept dictionary is stored as the list of learned
descriptions from the reference set and the list of class labels for each description. It is
this dictionary structuring that enables dynamic concept model updates with the addition
or subtraction of concept references.

3.4. Training

The Omni-Modeler has three levels of training, shown in Figure 3. Please note that
no DNN training was required for this application. The Omni-Modeler uses the off-the-
shelf pre-trained DNN readily available from the PyTorch library. The second level of
training is the language calculation. This training is completed using randomly selected,
unlabeled images from the desired image space. The third level of training is the dictionary
generation. This requires k annotated samples from each class.

4. Implementation

The Omni-Modeler user interfaces (UI), shown in Figures 4 and 5, simplifies the process
of implementing the application for a given dataset. Initially selecting the appropriate
hyper-parameter configuration for a new image space and classification task can be a
cumbersome process. The number of available DNN and the number of layers to each
DNN creates an extremely large search space.
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Figure 2: This diagram shows the encoding process used by the Omni-Modeler. First the
image space is transformed into the embedded feature space by pulling from the latent
feature space of the DNN. Then the embedded features are transformed into the letters
space using the learned ICA alphabet. Next the letter space is transformed into the words
space using the learned k-means vocabulary. Finally, the encoding process is completed
by concatenating the words space into a full sentence descriptor.

The UI is split into screens focusing on the language generation, shown in Figure 4, and
the dictionary generation, shown in Figure 5. The Language UI allows users to select the
dataset, the network, the network layer, the alphabet length, and vocabulary size to be
considered. The resulting embedded and encoded spaces are visualized wit tSNE plots
allowing the user to asses the separability of classes for selected configuration. Once the
language configuration is selected, the user then moves to the Dictionary UI. On this
screen the user can explore the effects of the number of reference samples and the number
of k neighbors used in the classification process. The embedded and encoded samples
are again visualized using tSNE. The classification performance is visualized with the
confusion matrix and quantified with accuracy.

5. Experiments

5.1. Overview

The evaluation of the Omni-Modeler was designed to mimic the practical application of
the algorithm. In this intended use scenario, the user is attempting to rapidly build a
classification algorithm for their novel image space as their available training data grows.
For example, a researcher in the medical field is collecting a set of tissue samples they
would like to classify for a nuanced determination of disease tissue states.
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Figure 3: The training process occurs in three steps. First is the offline DNN training.
Please note that the Omni-Modeler utilizes off-the-shelf DNN trained on the ImageNet
dataset and readily available in the PyTorch library. The Omni-Modeler then calculates
the language from a sampling of unlabeled images from the novel image set. The Omni-
Modeler dictionary is the only portion that requires labeled images for training.

5.2. Datasets

A variety of datasets were gathered to evaluate the Omni-Modeler performance across
range of image types. The consider datasets include character recognition MNIST [25],
object classification CIFAR [26], and across modality object classification SAR [27]. These
datasets were specifically selected to evaluate the Omni-Modeler across concept domains,
complexity, and image modality. Each of these datasets contain 10 classes. Examples
images from each dataset are shown in Figure 6.

5.3. Setup

The considered cases vary across two factors, the dataset and the number of samples
used to generate the dictionary. The three considered datasets are presented above. The
number of samples considered are set to 8, 64, and 128. All experiments are ran using the
VGG19 DNN with all its layers using a 64 letter alphabet, 64 word vocabulary, 15 nearest
neighbors. All images were resized to 56 by 56.

The Omni-Modeler has a stochastic performance dependent on the randomly selected set of
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Figure 4: The Language Development UI allows the user to visualize the discriminability of
the embbedded and encoded feature space as configuration hyper-parameters are selected.

Figure 5: The Dictionary Generator UI allows to visualize and quantify the selection of
the number of training samples and nearest neighbors used in the dictionary generation
and classification process.

k training samples for each class. Therefore, to understand its performance it is necessary
to evaluate over multiple trials. In this study 10 trials are completed for each considered
case. Each trial consist of language calculation, dictionary generation, and evaluation on
100 randomly selected images from the dataset. The results are presented as histograms
and their probability distribution functions (PDF) in the following section.
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Figure 6: Example images from the MNIST, CIFAR, and SAR datasets.

6. Results

The results on the Omni-Modeler evaluation are presented in Figure 7 for each of the
three considered datasets. The histograms and resulting PDF are plotted side-by-side for
each dataset. The Omni-Modeler classification performances are evaluated using 8, 64,
128 training samples per class.

These results show an increasing classification performance with increasing number of
training samples. The CIFAR dataset proved to be the most challenging with an average
accuracy of 43% using 128 training samples per class. MNIST was a less challenging task
with an average accuracy of 97% using 128 training samples per class. The SAR dataset
fell in-between with 88% using 128 training samples per class. The SAR data set showed
the most rapid increase in performance with increasing training samples jumping from
40% to 82% with 8 and 64 training samples per class.

7. Discussion

Overall, these results demonstrate the Omni-Modeler capability to rapidly adapt to a
variety of novel image datasets. The classification performance of 43% with 10-way 128-
shot was not state-of-the-art compared to PT+MAP+SF+SOT with 89.94% with 5-way
1-shot [19]. However, the intended task and training requirements are not the same as
traditional benchmark FSL. The Omni-Modeler was intended to a generalized approach for
applications with limited training sets and from that perspective performed well shown
by the SAR results. The Omni-Modeler was able to extend across imaging modalities
achieving 88% accuracy with 128-shots while the previous state-of-the-art achieved 36.44%
[27].

The Omni-Modeler provides several advantages for practical implementation of visual
classification in training data limited applications. It provides: 1.) a direct generalized
transform, the encoding language, that extracts, adapts, and compresses the latent feature
space that only needs to be calculated once per dataset with a subset of unannotated
images, 2.) a transparent design path allowing the user to visualize the effects of selecting
different DNN embedding networks, layers, alphabet length and vocab size, 3.) a dynamic
dictionary learning approach that allows for multi-modal class distributions and knowledge
domain updates as simple as updating a list.
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Figure 7: The results of the Omni-Modeler classification performance evaluation are pre-
sented as the raw histograms and the accompanying PDF. The evaluation looked at per-
formance across three datasets (MNIST, CIFAR, and SAR) under three conditions of
training samples: 8, 64, 128).

8. Conclusion

The Omni-Modeler was developed as a generalized image classification algorithm with min-
imal training requirements and dynamic learning. This study evaluated the Omni-Modeler
classification performance on the MNIST, CIFAR, and SAR datasets and demonstrated
its ability to rapidly learn to distinguish novel concepts with a few training samples,
particularly shown with its 88% classification accuracy on the SAR dataset. With its gen-
eralized nature and UI aided implementation, the Omni-Modeler is a suitable classification
approach for tasks with limited availability of training data.
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