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ABSTRACT 
 
Lung Tuberculosis (TB) remains a critical health issue globally. Accurately detecting TB from chest x-rays 

is vital for prompt diagnosis and treatment. Our study introduces an innovative approach using the swin 

transformer to assist healthcare professionals in making faster, more accurate diagnoses. This method 

also aims to lower diagnostic costs by streamlining the detection process. The swin transformer, a 

sophisticated vision transformer, leverages hierarchical feature representation and a shifted window 

mechanism for improved image Analysis.  

 

Our research utilizes the nihchest x-ray dataset, comprising 1,557 non-tb and 3,498tb images. We divided 

the dataset into training, validation, and testing sets in a 64%,16%, and 20% ratio, respectively. The 

images undergo preprocessing—random resized crop, horizontal flip, and Normalization—before being 

converted into tensors. We trained the swin transformer model over 50 epochs, with a batch size of 8, 

using the adam optimizer at a learning rate of 1e-5. We closely monitored the model's accuracy and loss, 

assessing its performance using metrics like the f1-score, precision, and recall.  

 
Our findings show the model achieving a peak accuracy of 0.88 in the 43rd epoch for the training set, and 

the same accuracy for the validation set after 20 epochs. During testing, we observed a precision of 0.7928 

and 0.9008, recall of 0.7749 and 0.9099, and f1-scores of 0.7837 and 0.905 for the negative and positive 

classes, respectively. The swin transformer demonstrates promising results, suggesting its adaptability and 

potential in significantly enhancing diagnostic efficiency and accuracy in medical settings.  
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1. INTRODUCTION 
 
Lung tuberculosis (TB) is a significant global health issue, affecting millions of people 
worldwide, with an estimated 10 million individuals developing the disease and 1.4 million TB 
related fatalities in 2019 alone [1]. Rapid diagnosis and effective treatment are crucial for 
mitigating the spread of TB and enhancing patient outcomes. Chest X-ray imaging represents a 
commonly employed, non-invasive technique for identifying lung abnormalities, including TB, 

and plays a vital role in the diagnostic process.  
 

https://airccse.org/journal/sipij/vol14.html
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The application of deep learning techniques for automating lung TB detection from chest X-ray 
images has garnered substantial interest in recent years. Various convolutional neural network 
(CNN) architectures have been proposed for this purpose, including CheXNet, which 
demonstrated radiologist-level performance in detecting pneumonia, and the ChestX-ray8 

project, which concentrated on classifying and localizing prevalent thorax diseases. Despite these 
methods achievements, there remain opportunities for enhancing model accuracy and 
generalizability.  
 
The reason behind this method selection for detecting lung tuberculosis from chest X-ray images 
due to its innovative hierarchical feature representation and shifted window mechanism, which 
allows for more efficient capture of both local and global context within images. In medical 
image analysis, capturing both local and global context is particularly important due to the 

inherent complexity and variability of the images. Incorporating both contexts enables the model 
to account for individual variations among patients, identify subtle abnormalities that might 
otherwise be overlooked, and understand the relationships between various structures and 
features within the image. This holistic understanding leads to improved performance, ultimately 
contributing to better patient outcomes through early diagnosis and appropriate treatment 
planning. As a result, this architecture holds significant promise for the future of medical image 
analysis, particularly in the context of disease detection and diagnosis. By successfully applying 

the Swin Transformer in lung tuberculosis detection, researchers and medical professionals can 
unlock its full potential and contribute to improved patient outcomes through early diagnosis and 
timely intervention.  
 

2. RELATED WORK 
 
In the quest to enhance lung tuberculosis (TB) detection using chest X-ray images, recent years 
have seen a surge in deep learning-based methodologies. This section reviews pivotal studies in 
this domain, outlines their constraints, and underscores the innovative aspects of our research. 
  

A landmark study by Wang et al. (2017) in the ChestX-ray8 project marked a significant stride in 
automated chest X-ray analysis. Utilizing over 100,000 X-ray images, they trained a deep 
convolutional neural network (CNN) to identify and localize common thoracic diseases, 
including TB. The project's cornerstone was its weakly-supervised classification approach, where 
image-level labels guided the CNN in learning disease-specific visual features. This 
methodology, while not solely focused on TB detection, greatly influenced medical image 
analysis, particularly in training robust models on large datasets without exhaustive manual 
labeling [1].  

 
CheXNet, introduced by Rajpurkar et al. (2017), exemplifies another deep learning milestone. 
This 121-layer CNN, based on DenseNet architecture, attained radiologist-level accuracy in 
pneumonia detection from chest X-rays. However, its primary orientation towards pneumonia, 
underpinned by pneumonia-specific training data, potentially limits its adaptability to TB, where 
visual cues are more nuanced [2].  
 

In 2017, Lopes et al. proposed a novel TB detection method, combining CNNs with handcrafted 
image features. While their approach showcased high accuracy, it relied heavily on manual 
feature engineering. This process, though effective, could be labor-intensive and less adaptable to 
varying datasets or imaging modalities [3].  
 
Vision transformers (ViTs) have recently set new benchmarks in various computer vision tasks. 
Their ability to process image patches sequentially via transformer encoders allows them to 

discern long-range dependencies and demonstrate resilience to image noise and occlusion. Yet, 



Signal & Image Processing: An International Journal (SIPIJ) Vol.14, No.6, December 2023 

3 

their application in medical imaging, particularly TB detection, remains limited due to high 
computational demands, substantial data requirements, and a scarcity of specialized medical 
imaging datasets [4].  
 

Our work introduces a novel application of the Swin Transformer, a sophisticated vision 
transformer, in detecting lung TB from chest X-ray images. The Swin Transformer's hierarchical 
feature representation and shifted window mechanism adeptly capture both local and global 
image contexts. This dual-focus approach is crucial in TB detection, where discerning both 
specific lesion characteristics and broader lung patterns is key to accurate diagnosis. Prior to this 
study, the Swin Transformer's utility in lung TB detection had not been explored, making our 
research a pioneering effort in this field. By showcasing the Swin Transformer's effectiveness in 
TB detection, we aim to contribute significantly to improving early diagnosis and treatment in 

this crucial area of global health [5].  
 
The presented research in “a hierarchical vision approach for enhanced medical diagnostics of 
lung tuberculosis using swin transformer”introduces the application of the Swin Transformer, a 
vision transformer, for lung TB detection from chest X-ray images. This model's hierarchical 
feature representation and shifted window mechanism efficiently capture both local and global 
contexts within images. The Swin Transformer's application in TB detection is novel, potentially 

offering enhanced accuracy and efficiency in diagnosis. This approach addresses the limitations 
of previous methods and contributes significantly to the early diagnosis and treatment of TB [7].  
 

3. PROPOSED METHOD 
 
In our study, we introduce a novel approach for detecting lung tuberculosis (TB) from chest Xray 
images, utilizing the advanced capabilities of the Swin Transformer, an innovative vision 
transformer architecture.  
 
3.1. Swin Transformer Model  
 

Origin and Adaptation: 

 
• The Swin Transformer, an adaptation of the transformer architecture originally designed 

for natural language processing, has been re-engineered for computer vision tasks. 
Transformers, known for their proficiency in handling sequential data, are now being 
leveraged for image analysis.  

 

Hierarchical Feature Representation: 

 
• A defining characteristic of the Swin Transformer is its hierarchical structure. It processes 

the input image in stages, systematically reducing spatial resolution. This hierarchical 
approach enables the model to capture features at multiple scales, from intricate local 
details to broader global patterns.  

 

Shifted Window Mechanism: 

 
• The Swin Transformer incorporates a unique shifted window mechanism. This design 

allows each image patch to interact not only with adjacent patches but also with those 
slightly offset. Such a mechanism ensures a comprehensive understanding of the image, 
blending local and global contextual information. This aspect is critical in lung TB 
detection, where recognizing both specific lung lesions and overall lung patterns is crucial 

for accurate diagnosis.  
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Advantages in Lung TB Detection: 

 
• Accuracy: The Swin Transformer has shown exceptional accuracy across various 

benchmarks in lung TB detection.  

• Efficiency: Its efficiency surpasses many other vision transformer architectures, making 
it a practical choice for real-world medical applications.  

• Generality: As a versatile architecture, it holds promise beyond lung TB detection, 
applicable to a range of computer vision challenges.  

 
In conclusion, the Swin Transformer presents a groundbreaking method for lung TB detection. 
Its potential to enhance diagnostic accuracy and efficiency could significantly improve patient 
care and outcomes in managing this critical global health concern.  

 

 
 

Figure 1.  The architecture of Swin Transformer (Swin-T) [6] 
 

3.2. Dataset  
 
For this study, we utilized data sourced from the National Institutes of Health (NIH). Access to 
this data is granted to registered collaborators who have agreed to the Data Use Agreement 
(DUA) and can be found on the Aspera platform (available at: NIH Data Sharing). The dataset, 
updated as of January 2022, consists of 6,635 chest X-ray images. Within this collection, 1,557 
images were labeled as not exhibiting signs of tuberculosis, and 3,498 images were identified as 
showing indications of the disease. We then systematically divided this dataset into distinct sets 

for training, validation, and testing purposes, adhering to a distribution ratio of 64%, 16%, and 
20%, respectively.  
 
This approach ensured a balanced representation of data across different stages of model 
development and evaluation, facilitating a comprehensive assessment of the model's performance 
in TB detection.  
 

Table 1.  The chest X-ray dataset.  

 

Type  ‘Positive’ Class  ‘Negative’ Class  Total  

Train  2240  997  3237  

Validation  559  249  808  

Test  699  311  1010  

Total  3498  1557  5055  

 

The training and validation datasets are employed to both train the models and adjust them to 
attain optimal weights. Then, the acquired weights and biases are applied to make predictions on 
the test dataset.  

https://sharingwith.niaid.nih.gov/
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3.3. Experiment Setting  
 
Our methodology involved a meticulous preprocessing routine for the chest X-ray images, aimed 

at enhancing the model's efficiency and its ability to generalize across various cases.  
 
Initially, the images underwent resizing to ensure uniformity, with each being transformed 
through a random resized crop process to a dimension of 512x512 pixels. This step is crucial to 
standardize input sizes for the model, facilitating more consistent analysis.  
 
Subsequently, to introduce variability and robustness in the dataset, horizontal flip augmentation 

was employed with a 50% chance. This technique mirrors the images horizontally, effectively 
doubling the dataset and aiding the model in learning to recognize patterns irrespective of 
orientation, a practice well-documented in image processing research.  
 
Finally, normalization of the images was carried out. This step involved adjusting the pixel 
values to have a specified mean and standard deviation — in this case, a mean of (0.491, 0.482, 
0.447) and a standard deviation of (0.247, 0.243, 0.261). Normalization is a critical step in 

preparing images for deep learning models as it helps in reducing internal covariate shift and 
expedites the training process.  
 
After preprocessing, the images were converted into tensors, the standard format for image data 
in deep learning frameworks, using the ToTensorV2 function. Tensors facilitate efficient 
handling and manipulation of the data during the model training phase. This comprehensive 
preprocessing pipeline is designed to optimize the images for effective learning and prediction by 
our deep learning model.  

 

3.4. Training Procedure and Hyperparameters  
 
Our training regimen for the Swin Transformer model encompassed 50 epochs, utilizing a batch 
size of 8. We implemented the Adam optimizer, a method developed by Kingma and Ba in 2014, 
setting the learning rate at 1e-5. To enhance the model's ability to generalize, we incorporated 

image augmentation techniques during training. We meticulously tracked the model's accuracy 
and loss throughout the training period to gauge its convergence. For a comprehensive 
assessment of the model's performance, we computed key metrics such as the F1-score, 
precision, and recall.  
 

Table 2.  Parameter configurations.  

 

Name  Configuration  

Learning rate  1e-5  

Batch Size  8  

Optimizer  Adam  

Epoch  50  

 
By harnessing the Swin Transformer's capabilities, the research aims to assist physicians in 

making more accurate and time-efficient decisions regarding lung tuberculosis detection using 
chest X-ray images. This, in turn, contributes to enhancing early diagnosis and treatment for this 
crucial global health challenge, ultimately improving patient outcomes and reducing the burden 
on healthcare systems.  
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4. EXPERIMENTS AND RESULTS 
 

4.1. Dataset Split 
 
The NIH Chest X-ray dataset was partitioned into three distinct subsets: training, validation, and 
testing, adhering to a distribution ratio of 64%, 16%, and 20%, respectively. This random 

allocation was designed to ensure a representative sample of the entire dataset across all subsets. 
We utilized the training and validation sets for model development, fine-tuning the models to 
optimize their performance parameters. Subsequently, the testing set was employed to rigorously 
evaluate the effectiveness of the final model.  
 

4.2. Evaluation Metrics  
 
In evaluating our proposed model's efficacy, we employed a suite of key metrics: accuracy, 
F1score, precision, and recall. These metrics provided a comprehensive assessment of the 
model's proficiency in accurately categorizing chest X-ray images as TB-positive or TB-
negative, offering a robust comparison to alternative methodologies  
 

4.3. Results  
 
As illustrated in Figure 2, the model's training accuracy demonstrates a progressive improvement 
across epochs. Commencing at an initial accuracy of 0.76, the model's performance escalates 
consistently, achieving a peak accuracy of 0.88 in the 43rd epoch. This trend signifies the 
model's effective learning from the training dataset and its subsequent capability to predict 
accurately on previously unseen data.  

 

 
 

Figure 2.  The Training Accuracy  

 
In contrast, the validation dataset attains its highest accuracy of 0.88 after only 20 epochs. It is 
notable that while the accuracy of the training dataset increases with the number of epochs, the 
validation dataset’s accuracy does not follow the same trend.  
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Figure 3.  The Validation Accuracy  

 

Upon analyzing the results, we saved the checkpoint that exhibited the highest performance 
within the validation dataset and utilized it as the model for testing purposes. The results 
obtained are presented in Table 3 (below). The model's predictions demonstrated greater 
accuracy for the "Positive" class as compared to the "Negative" class, albeit the difference was 
not particularly pronounced. This outcome can be attributed to the fact that the number of images 
in the "Positive" label is considerably larger than that in the "Negative" label in both the training 
and testing datasets, as well as the validation dataset.  
 

Table 3.  The Testing Result.  

 

Class  Precision  Recall  F1-score  

Positive  0.9008  0.9099  0.9053  

Negative  0.7928  0.7749  0.7837  

 
The training loss is a measure of how well the model is performing on the training dataset. It is 
calculated by averaging the loss over all the training examples. A lower train loss indicates that 

the model can make more accurate predictions on the training data. In this case, the training loss 
of 0.252 suggests that the model is learning effectively from the training dataset. This is because 
the loss is relatively low, indicating that the model is able to make accurate predictions on the 
training examples. 
 

 
 

Figure 4.  The Training Loss  

 
The validation loss is a measure of how well the model is performing on unseen data. It is 
calculated by averaging the loss over all of the validation examples. A lower validation loss 
indicates that the model is able to generalize well to unseen data.  
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Figure 5.  The Validation Loss  

 
In our study, we observed that the validation loss, at 0.292, is marginally higher than the training 

loss, which stands at 0.252. This slight discrepancy indicates effective model generalization to 
new data.  
 
Crucially, the closeness of these loss values is a key indicator in our research, as it implies that 
our model is adeptly balanced, avoiding both overfitting and underfitting. This equilibrium in the 
model's performance is essential, as it demonstrates the model's capability to accurately identify 
patterns within the data and, importantly, apply these learnings effectively to data it hasn't 

encountered before. Such an attribute instills confidence in the model’s predictive accuracy, 
bolstering its suitability for practical applications in medical diagnostics, where reliability is 
paramount.  
 

4.4. Capabilities  
 

The findings from our study underscore the Swin Transformer architecture's promise in medical 
imaging, especially for identifying and diagnosing lung tuberculosis (TB). Demonstrating a 
remarkable ability to discern lung TB from chest X-ray images accurately, this model has shown 
significant proficiency in this domain. The training progression indicates effective learning and 
extraction of relevant features from the dataset, alongside successful generalization to the 
validation set. Future research avenues could include experimenting with diverse augmentation 
strategies, fine-tuning hyperparameters, and implementing ensemble techniques to further 

enhance the model's efficacy and reliability in medical diagnostics. These enhancements could 
potentially lead to more precise and reliable TB detection, contributing to better healthcare 
outcomes.  
 
For reference, the Swin Transformer's capabilities in image processing are detailed in works like 
Liu et al.'s "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" which 
can provide deeper insights into the model's underlying mechanisms and potential applications.  
 

5. DISCUSSION 
 

5.1. Strengths and Weaknesses  
 
Our Swin Transformer model showcases notable strengths in lung tuberculosis (TB) detection 
from chest X-ray images. Its hierarchical feature representation and shifted window mechanism 
adeptly capture both global and local image contexts, contributing to its high accuracy in test 
datasets. The model also demonstrates effective generalization to the validation set, as observed 
during training.  
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Nonetheless, there are areas for improvement. The model exhibits slightly lower performance in 
identifying the "Negative" class, potentially due to the dataset's class imbalance. Moreover, the 
model's performance plateauing after 20 epochs on the validation set suggests that further 
enhancements might be constrained without modifications to the architecture, training methods, 

or dataset.  
 

5.2. Comparison with Existing Methods  
 
Direct comparisons with other TB detection methods are challenging due to variances in datasets 
and metrics. However, the Swin Transformer's structure and mechanism mark an advancement 

over previous models like ViTs and CNNs, particularly in integrating global and local features. 
This indicates that our model could potentially surpass existing methods in similar settings.  
 

5.3. Future Work and Improvements  
 
Key limitations include the dataset's imbalance and unexplored areas like augmentation 

techniques, hyperparameter tuning, and ensemble methods. Addressing these could enhance the 
model's performance and robustness. Tackling the dataset's complexity remains a significant 
challenge.  
 

5.4. Strengths and Weaknesses  
 

Future enhancements could involve advanced data augmentation to diversify the training set and 
strategies to counter class imbalance, such as oversampling or cost-sensitive learning. An 
extensive search for optimal hyperparameters and exploring ensemble methods can also elevate 
the model's efficacy. It's vital to focus on acquiring original medical data to ensure the model's 
reliability. Through addressing these aspects, future research can substantially advance the Swin 
Transformer's application in medical imaging.  
 

6. CONCLUSION 
 
In our investigation, we explored a cutting-edge method for lung tuberculosis (TB) detection 

using chest X-ray imagery, employing the Swin Transformer model. This model stands out due 
to its unique architectural features, including hierarchical feature representation and a shifted 
window mechanism, adeptly capturing both the broader and finer details within the images. Such 
a dual-focus approach proved highly effective in accurately identifying lung TB.  
 
This research marks a significant advancement in medical image analysis, particularly in 
addressing the public health challenge posed by lung TB. The Swin Transformer demonstrated 
impressive accuracy, particularly in identifying positive TB cases. However, we faced some 

challenges, such as class imbalance and a performance plateau in the validation dataset. Despite 
these hurdles, the results clearly suggest the immense potential of the Swin Transformer in 
medical imaging.  
 
The primary impact of this study lies in its contribution to improving TB diagnosis. By 
enhancing diagnostic accuracy and efficiency, it paves the way for improved patient care and 
treatment outcomes. Looking forward, we aim to build on this foundation by implementing 

advanced data augmentation techniques, addressing class imbalances, refining hyperparameters, 
and considering ensemble methods to further boost the model's diagnostic capabilities.  
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In summary, the Swin Transformer model, with its innovative approach to image analysis, holds 
promise for significantly enhancing lung TB detection in chest X-rays. As we continue to refine 
and improve this model, it has the potential to become an invaluable tool in the realm of medical 
imaging, transforming the way we detect and diagnose lung TB.  
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