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ABSTRACT 
 
The structure of retinal blood vessels is crucial for the early detection of diabetic retinopathy, a leading 

cause of blindness worldwide. Yet, accurately segmenting retinal vessels poses significant challenges due 

to the low contrast and noise present in capillaries.The automated segmentation of retinal blood vessels 

significantly enhances Computer-Aided Diagnosis for diverse ophthalmic and cardiovascular conditions. It 

is imperative to develop a method capable of segmenting both thin and thick retinal vessels to facilitate 

medical analysis and disease diagnosis effectively. This article introduces a novel methodology for robust 
vessel segmentation, addressing prevalent challenges identified in existing literature. 

  

The methodology PSO-HRVSO comprises three key stages: pre-processing, main processing, and post-

processing. In the initial stage, filters are employed for image smoothing and enhancement, leveraging 

PSO optimization. The main processing phase is bifurcated into two configurations. Initially, thick vessels 

are segmented utilizing an optimized top-hat approach, homo-morphic filtering, and median filter. Subse-

quently, the second configuration targets thin vessel segmentation, employing the optimized top-hat meth-

od, homomorphic filtering, and matched filter. Lastly, morphological image operations are conducted dur-

ing the post-processing stage.  

 
The PSO-HRVSO method underwent evaluation using two publicly accessible databases (DRIVE and 

STARE), measuring performance across three key metrics: specificity, sensitivity, and accuracy. Analysis 

of the outcomes revealed averages of 0.9891, 0.8577, and 0.0.9852 for the DRIVE dataset, and 0.9868, 

0.8576, and 0.9831 for the STARE dataset, respectively. 

 
The PSO-HRVSO technique yields numerical results that demonstrate competitive average values when 

compared to current methods. Moreover, it sur-passes all leading unsupervised methods in terms of speci-

ficity and accuracy. Additionally, it outperforms the majority of state-of-the-art supervised methods without 
incurring the computational costs associated with such algorithms. Detailed visual analysis reveals that 

the PSO-HRVSO approach enables a more precise segmentation of thin vessels compared to alternative 

procedures. 
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1. INTRODUCTION 
 
The examination of the eye fundus is extensively utilized by ophthalmologists and other medical 

practitioners as a standard clinical procedure for preventing, diagnosing, and monitoring the 

treatment of various ocular conditions including retinal thrombosis, glaucoma, and senile macu-

lopathy, among others [1]. This examination involves a color imaging method of the retinal sur-
face of the human eye, enabling the observation of key anatomical features such as the optic disc, 

macula, and vascular tree [66]. 

 
The segmentation of the retinal vascular tree holds significant importance in the realm of medical 

imaging because the retina offers a unique avenue to observe blood microcirculation non-

invasively, allowing for the detection of various systemic diseases such as hypertension, diabetes, 

arteriosclerosis, and liver diseases, among others [3,4,6]. By delineating the retinal vessels, valu-
able morphological data including size, length, width, branching patterns, and angles of the reti-

nal vasculature can be quantified [5]. However, manually performing this segmentation is a labo-

rious process that demands expertise and experience from medical professionals [2]. Moreover, 
inconsistencies may arise due to subjective interpretations, as experts might employ different 

criteria for pixel classification [9–11]. 

 
Hence, it is imperative to advance and implement automated techniques for robust vessel extrac-

tion in Computer-Aided Diagnosis to facilitate early detection and assessment of disorders, aim-

ing to mitigate medical expenses and enhance efficiency [8,7]. Nonetheless, segmentation en-

counters numerous hurdles. The foremost challenge emanates from the presence of various opti-
cal components in the eye fundus, including the optic disk, macula, and artifacts generated by 

pathologies, impeding the automated segmentation of vessels. The second challenge stems from 

the variability in vessel width and the subdued contrast of thin vessels against the background. 
Lastly, the third challenge arises from the diversity in shape, size, and intensity of vessel pixels, 

complicating accurate segmentation [3,16,14]. 

 
In recent decades, numerous techniques have emerged for automatically segmenting retinal ves-

sels using fundus examination, garnering considerable attention from the scientific community 

due to their increasingly accurate outcomes [13]. These methods are typically categorized as su-

pervised or unsupervised. Supervised methods involve training a classifier with a dataset (training 
set) to differentiate between vessel and non-vessel pixels, further classified into machine learning 

and deep learning algorithms. Machine learning approaches typically involve feature extraction, 

selection, and classification stages, with various feature extractors and classifiers PSO-HRVSO 
for medical image classification, including bag-of-visual-words, Gaussian filter, and Gabor filter, 

along with classifiers like K-Nearest Neighbors (K-NN), Random Forest, Support Vector Ma-

chine (SVM), and Artificial Neural Networks (ANN) [12–31]. 

 
Deep learning techniques offer an advantage over traditional methods by automatically extracting 

features from raw data, eliminating the need for handcrafted features [34,32]. While supervised 

methods yield satisfactory results for healthy retinal vessel extraction, a notable limitation is the 
necessity for ground-truth images, which can be challenging to obtain. Additionally, both ma-

chine learning and deep learning algorithms demand time-consuming and computationally ex-

pensive training processes to effectively handle new sets of images [9]. 
 

Conversely, unsupervised methods in medical image processing involve image segmentation 

without relying on a training dataset. These approaches utilize various image processing tech-

niques. Initially, the image undergoes enhancement procedures, typically employing morphologi-
cal operations [33], matched filter responses [39], the complex continuous wavelet transform 

[37], adaptive histogram equalization [35], Hessian-based filters [36, 38, 44], among others. Sub-
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sequently, segmentation occurs through multilevel thresholding [40–43, 48] or region-oriented 
techniques such as region growing [45, 49] or active contours [46, 47]. These conventional unsu-

pervised methods heavily rely on manual feature extraction for image element representation and 

segmentation. Generally, supervised methods exhibit higher efficiency and yield superior results 

[8]. However, unsupervised systems possess a significant advantage in performing vessel seg-
mentation without prior knowledge of ground-truth labels, particularly beneficial for datasets 

lacking pixel-level labeling information [16]. Additionally, unsupervised methods offer computa-

tional efficiency and faster results. Recent research has utilized both supervised and unsupervised 
methodologies, demonstrating promising performance in retinal vessel segmentation. Neverthe-

less, the challenge of accurately segmenting thin vessels remains a significant hurdle for optimal 

performance in existing literature. Thin vasculature offers crucial information for detecting neo-
vascular diseases [14], underscoring the importance of achieving improved vessel segmentation 

for enhanced detection and diagnosis of eye diseases [64]. 

 

This article presents a novel methodology aimed at accurately segmenting retinal vasculature to 
tackle prevalent challenges encountered in retinal vessel segmentation from eye fundus images. 

The PSO-HRVSO approach comprises three distinct phases: pre-processing, main processing, 

and post-processing. During the initial phase, a Gaussian filter is employed to yield a smoothed 
gray-scale fundus image, followed by PSO optimized image enhancement for obtaining an opti-

mized enhanced fundus image. The main processing phase entails two configurations: the first 

configuration targets thick vessel segmentation through a combination of filters (Optimized top-
hat, Homomorphic, and Median), whereas the second configuration focuses on thin vessel seg-

mentation using a similar combination of filters (Optimized top-hat, Homomorphic, and 

Matched). Subsequently, morphological image processing is applied during the post-processing 

phase. Extensive experiments are conducted on two publicly available databases, DRIVE (51) 
and STARE (50), to evaluate the methodology's performance. The results of performance metrics 

underscore the method's advantages, demonstrating comparable or superior values in contrast to 

many contemporary techniques, which often entail higher computational complexity for retinal 
vessel segmentation. 

 

The major contributions of this article can be outlined as follows: 

 

 Introducing a novel methodology for segmenting thin and thick retinal blood vessels. 

 Presenting a new variant of the classical top-hat operation termed as the optimized top-
hat. 

 Investigating the variation of parameters in the optimized top-hat filter and the homo-

morphic filter based on the vessel thickness. 

 Developing an automated method for robust retinal vessel segmentation suitable for 

Computer Aided Diagnosing tools. 

 Achieving a minimal false positive rate through this PSO-HRVSO method. 
 Demonstrating superior specificity and accuracy compared to recent unsupervised 

methods and competitive performance with supervised methods, while maintaining 

low computational costs. 
 

2. LITERATURE REVIEW 
 

In the preceding section, numerous relevant papers in contemporary research focus on retinal 

vascular tree segmentation within fundus images, broadly categorized as supervised and unsuper-
vised methods. Noteworthy advancements in retinal vessel segmentation are briefly outlined be-

low, serving as benchmarks against which the PSO-HRVSO methodology is evaluated. 
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Recent unsupervised methodologies, such as those introduced by Wang et al. [85] in 2019, in-
volved modifications to top-hat and bottom-hat transformations aimed at enhancing images by 

mitigating disturbances and noise. Their segmentation approach utilized a novel technique known 

as flattening of minimum circumscribed ellipse to identify vessels. Similarly, Diaz et al. [84] in 

the same year PSO-HRVSO employing the Lateral Inhibition technique (LI) to enhance contrast 
between fundus and retinal vessels. They employed the minimization of cross-entropy via the 

differential evolution (DE) algorithm for vessel segmentation, optimizing for efficient segmenta-

tion. 
 

In 2020, Shukla et al. [89] introduced a fractional filter to eliminate artifacts and noise while pre-

serving thin vessel edges. Their method involved extracting central line pixels using a proprietary 
algorithm and applying Principal Component Analysis (PCA) to assess eigenvalue maps, fol-

lowed by region growing operations and localized thresholding for vessel segmentation. Like-

wise, Dos Santos et al. [88] in the same year utilized Contrast Limited Adaptive Histogram 

Equalization (CLAHE) and the Wiener filter to enhance image contrast and reduce noise. An 
Artificial Neural Network (ANN) was employed to optimize filter parameters for optimal results. 

 

Furthermore, Zhou et al. [87] PSO-HRVSO an enhanced line detector followed by Hidden Mar-
kov Model (HMM) application for detecting thin vessel lines effectively. Finally, Pachade et al. 

[90] recommended a novel segmentation configuration involving contrast enhancement, 2D me-

dian linear filtering, morphological operations, background estimation, and iterative thresholding 
to achieve segmentation completeness. 

 

On the contrary, recent developments in supervised methodologies are outlined. In 2019, Adapa 

et al. [74] introduced a supervised technique involving initial image preprocessing. This involved 
enhancing the image using a CLAHE filter to improve local contrast, followed by a top-hat trans-

form. Subsequently, feature extraction utilized Zernike moments for binary classification through 

an Artificial Neural Network (ANN). Similarly, Yang et al. [71] employed the K-Singular Value 
Decomposition (K-SVD) to derive multiple complementary features using six distinct enhance-

ment algorithms. However, their PSO-HRVSO method required manually annotated ground-truth 

data for training, essential for vessel classification into thin or thick vessels using the K-SVD 

algorithm for vessel segmentation dictionary training. Jin et al. [72] introduced the Deformable 
U-Net (DUNet) for segmentation, a hybrid of the traditional U-Net and Deformable Convolution-

al Network (Deformable-ConvNet). In 2020, Cheng et al. [73] PSO-HRVSO a novel U-Net ar-

chitecture specifically tailored for retinal vessel segmentation, enhancing accuracy for vessels of 
various thicknesses by incorporating a dense block into the network configuration. Lastly, Wu et 

al. [75] introduced NFN+, a novel configuration comprising two cascading backbones connected 

by inter-network skip connections. The initial network processes image patches to generate prob-
ability maps of primary vessels, while the subsequent network refines these maps to produce 

segmented results. Supervised approaches entail learning from a model to predict pixel categori-

zation, demonstrating superior performance compared to unsupervised methods. However, cer-

tain unsupervised models, including those highlighted here and those PSO-HRVSO in this study, 
achieve comparable or even superior results with reduced computational overhead and time con-

straints. 

 

3. METHODOLOGY 
 

This section provides a concise overview of the PSO-HRVSO algorithm, as illustrated in the 

flowchart depicted in Figure 1. Key concepts integral to the PSO-HRVSO methodology are out-

lined herein. Notably, the eye fundus image exhibits both thick and thin blood vessels, with the 
latter often overlooked by previous algorithms. The primary objective of this approach is to effec-
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tively segment thick and thin vessels, resulting in two distinct images. These images are subse-
quently merged to produce a final segmentation outcome. 

 

 
 

Figure 1:PSO-HRVSO method of vessels segmentation 

 

3.1. Pre-processing 
 
Prior to executing the thick and thin vessels processing phases, it is crucial to implement a pre-

processing stage on a retinal eye fundus image, which significantly enhances the outcomes. This 

pre-processing task encompasses three stages: extracting the green channel of the image, employ-
ing a two-dimensional Gaussian filter, and enhancing it through PSO optimization. 

 

3.1.1. Green Component Extraction 

 
The input eye fundus image is presented in RGB format, indicating it's a 24-bit image, with each 

channel (red, green, and blue) comprising 8 bits. Consequently, the input can be viewed as a 

three-layered image, and its representation is as follows: 

𝐼𝐼𝑛𝑝𝑢𝑡 = [𝐼𝑅𝑒𝑑 + 𝐼𝐺𝑟𝑒𝑒𝑛 + 𝐼𝐵𝑙𝑢𝑒]                  (1) 

 

The RGB input image, denoted as 𝐼𝐼𝑛𝑝𝑢𝑡 , consists of three channels: red (𝐼𝑅𝑒𝑑), green (𝐼𝐺𝑟𝑒𝑒𝑛), 

and blue (𝐼𝐵𝑙𝑢𝑒). Each channel is represented by its respective layers. Upon analyzing individual 

channels, the green channel (𝐼𝐺𝑟𝑒𝑒𝑛) exhibits a significant contrast between vessels and the back-

ground. In contrast, the red (𝐼𝑅𝑒𝑑) and blue (𝐼𝐵𝑙𝑢𝑒) channels display higher levels of noise and 

comparatively lower contrast [56]. Moreover, human visual perception is more responsive to the 

green channel compared to both red and blue channels [54]. Consequently, the green channel 
(𝐼𝐺𝑟𝑒𝑒𝑛) is extracted as a grayscale image for further processing. 

 

3.1.2. Gaussian Filtering 
 

While the green-channel of the eye fundus image exhibits commendable vessel-background con-

trast compared to the RGB input image, incorporating a noise removal step prior to subsequent 

stages yields positive and productive outcomes. The utilization of Gaussian smoothing filtering 
algorithm proves advantageous for enhancing image structures, including previously contrasted 

elements. This filtering technique operates by employing a Gaussian function, rooted in the nor-

mal distribution widely utilized in statistics, to compute the transformation applied to each pixel 

within the two-dimensional set. The Gaussian filtering representation 𝐺(𝑥, 𝑦) of an image is ob-

tained through the convolution of the input image 𝐼𝐺𝑟𝑒𝑒𝑛(𝑥, 𝑦) and the two-dimensional Gaussian 

kernel 𝑔(𝑥, 𝑦), the mathematical representation as follows: 
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𝑔(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2
)                   (2) 

 
The parameter σ represents the standard deviation within the Gaussian distribution, governing the 

extent or breadth of the filter's dispersion. Then the Gaussian distribution can be found from the 

equation 3. 
 

𝐺(𝑥, 𝑦) = 𝑔(𝑥, 𝑦)  ∗  𝐼𝐺𝑟𝑒𝑒𝑛 (𝑥, 𝑦)                 (3) 

 

In the event that the variance value approaches zero, the filter demonstrates an impulse function 
response, as articulated in Equation 4. 

 

𝐺(𝑥, 𝑦) = 𝐼𝐺𝑟𝑒𝑒𝑛(𝑥, 𝑦)                      (4) 
 

With increasing 𝜎2, the filter's smoothing effect becomes more pronounced. Within this filter, 

 image details significantly smaller than the standard deviation are entirely eliminated. Follow-

ing various experiments, the variance is determined to be 0.472. The outcome of the pre-
processing stage is depicted in Figure 2c. 

 

 
 

Figure 2: Shows the Gaussian Distributed results (a) Input RGB, (b) Green Component, (c) Gaussian Dis-
tribution 

 

3.1.3. PSO Optimization 

 
Particle swarm optimization (PSO) stands out as a widely recognized population-based optimiza-

tion technique rooted in the principles of swarm intelligence. It leverages the collective behavior 

of a swarm to efficiently explore a designated search space in pursuit of the optimal solution. 
PSO operates by employing dynamic entities called "particles" that continually adjust their posi-

tions and velocities in a stochastic manner. These adjustments are directed both towards the most 

promising positions discovered by individual particles and across the entire search space. In a D-

dimensional search space, with a swarm size denoted as X, each particle's position is represented 

as 𝑃𝑖(𝑝𝑖1
, 𝑝𝑖2

, 𝑝𝑖3
, … … … … , 𝑝𝑖𝐷

), offering a feasible solution to the optimization problem at hand. 

Correspondingly, the velocity of each particle is characterized by 

𝑈𝑖(𝑢𝑖1
, 𝑢𝑖2

, 𝑢𝑖3
, … … … … , 𝑢𝑖𝐷

).The best previous position for each particle is denoted as 

𝑄𝑖(𝑞𝑖1
, 𝑞𝑖2

, 𝑞𝑖3
, … … … … , 𝑞𝑖𝐷

), while the overall best position identified by the entire swarm is 

represented as 𝑄𝑔(𝑞𝑔1
, 𝑞𝑔2

, 𝑞𝑔3
, … … … … , 𝑞𝑔𝐷

). These equations, as cited in [53, 52, 55], govern 

the behaviour of the particles within the PSO framework. 
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𝑢𝑖𝑑

𝑘+1 = 𝜔𝑘 ∗ 𝑢𝑖𝑑

𝑘 + 𝑎1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑞𝑖𝑑
− 𝑝𝑖𝑑

𝑘 )∆𝑡 + 𝑎2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑞𝑔𝑑
− 𝑝𝑖𝑑

𝑘 ) ∆𝑡⁄     (5) 

𝑝𝑖𝑑

𝑘+1 = 𝑝𝑖𝑑

𝑘 + ∆𝑡 ∗ 𝑢𝑖𝑑

𝑘                          (6) 

𝜔𝑘 = 𝜔𝑚𝑎𝑥 − 𝑘 ∗ (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) 𝑘𝑚𝑎𝑥⁄   
 

The acceleration coefficients, identified as 𝑎1 and 𝑎2, and the inertia weight, represented by 𝑤 

where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 denote the maximum and minimum values of 𝑤, are utilized within a ran-

dom function 𝑟𝑎𝑛𝑑() adhering to a uniform distribution. The updated value and the maximum 

number of iterations are denoted by 𝑢𝑖𝑑

𝑘+1 and 𝑝𝑖𝑑

𝑘+1 respectively, where 𝑑 ∈ [1, 𝐷]. The unit time 

is commonly denoted as ∆𝑡, and the conditions governing the restrictions on 𝑢𝑖𝑑

𝑘+1 and 𝑝𝑖𝑑

𝑘+1 are 

outlined as follows: 

 

𝑢𝑖𝑑

𝑘+1 = {

𝑢𝑖𝑑

𝑘+1 −𝑢𝑚𝑎𝑥 ≤ 𝑢𝑖𝑑

𝑘+1 ≤ 𝑢𝑚𝑎𝑥

𝑢𝑚𝑎𝑥 𝑢𝑖𝑑

𝑘+1 >𝑢𝑚𝑎𝑥

−𝑢𝑚𝑎𝑥 𝑢𝑖𝑑

𝑘+1 < −𝑢𝑚𝑎𝑥

               (7)  

𝑝𝑖𝑑

𝑘+1 = {

𝑝𝑖𝑑

𝑘+1 −𝑝𝑚𝑎𝑥 ≤ 𝑝𝑖𝑑

𝑘+1 ≤ 𝑝𝑚𝑎𝑥

𝑝𝑖𝑛𝑖𝑡 𝑝𝑖𝑑

𝑘+1 > 𝑝𝑚𝑎𝑥

𝑝𝑖𝑛𝑖𝑡 𝑝𝑖𝑑

𝑘+1 < 𝑝𝑚𝑖𝑛

               (8) 

𝑝𝑖𝑛𝑖𝑡
𝑘+1 = 𝑝𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑( ) ∗ (𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛)               (9) 

 

The term 𝑢𝑚𝑎𝑥  denotes the peak value of 𝑢 while 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 signify the upper and lower 

limits of 𝑝, respectively. Presented below is a concise overview of the fundamental stages en-

gaged in the processing of PSO and figure 3 depict the outputs of PSO optimization with a swarm 

size of 28 and 100 iteration: 
 

1. Commence by establishing the parameters of the Particle Swarm Optimization (PSO) 

framework, which encompass the maximum and minimum iteration weights, cognitive 
and social acceleration coefficients, population size, local window size, and the maxi-

mum iteration limit. 

2. Select an RGB Fundus image as input and subsequently transform it into its green com-

ponent. 
3. Initialize the particles by defining their initial positions and velocities. 

4. Evaluate the fitness values for the initialized particles. 

5. Identify the optimal individual position for each particle within the swarm. 
6. Employ equations 1, 2, and 3 to adjust the positions and velocities of the particles. 

7. Update the best individual position for each particle and determine the best group posi-

tion for the entire swarm. 

8. Assess whether the maximum iteration limit has been reached. A. If the limit has been 
reached, output the particle with the highest HIS value. B. If not, return to step 6 and iter-

ate the process. 

9. Conclude the optimization process. 
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Figure 3: PSO Optimization: (a) RGB Image, (b) Gaussian Distribution, (c) PSO Enhanced, (d) Fitness 

Curve 

 

3.2. Thick Vessels Segmentation 
 

As illustrated in Figure 1, the thick vessel segmentation procedure comprises three distinct stages, which 
will be elaborated upon subsequently. 

 

3.2.1. Optimized Top-Hat Algorithm 

 
Morphological image operations serve as a robust tool for image manipulation. Mathematical 

morphology encompasses algebraic arithmetic operators that are employed on a grayscale 2-D 

eye fundus image. The top-hat morphological operation entails the disparity between the original 

image and its morphologically closed-form. This operation elucidates the interplay between the 
image and a structuring element characterized by specific size and shape [59]. It is utilized to 

amplify bright objects of interest set against a dark background, such as prominent blood vessels 

discerned from an image complement (a concept clarified later) of the green channel image 

where the background transitions to darkness. Denoting a grayscale 2-D image as 𝐼𝐼𝑛𝑝𝑢𝑡  and the 

structuring element as 𝑆𝐸, the top-hat operation is defined by the following equation: 
 

𝐼𝑇𝑜𝑝_𝐻𝑎𝑡 = 𝐼𝐼𝑛𝑝𝑢𝑡 − (𝐼𝐼𝑛𝑝𝑢𝑡 ⊚ 𝑆𝐸𝑂)                (10) 

 

Various adaptations of the modified top-hat approach were introduced by Salembier et al. [57]. 

Mendonça et al. [58] and Bahadar Khan et al. [63] have previously applied these variations to 
blood vessel segmentation. This study proposes a novel optimized top-hat technique aimed at 

addressing certain issues identified in the conventional top-hat operation, as discussed in the 

aforementioned literature. One limitation is the failure to detect minor intensity fluctuations, 
which are crucial for identifying slender vessels. In this PSO-HRVSO method, the top-hat opera-

tor is first applied to a complementary image, and subsequently, morphological image operations 

are inverted. The PSO-HRVSO optimized top-hat can be described as follows: 

 

𝐼𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝑇𝐻 = 𝐼𝐼𝑛𝑝𝑢𝑡
𝐶 − (𝐼𝐼𝑛𝑝𝑢𝑡

𝐶 ⊚ 𝑆𝐸𝑂)⨀𝑆𝐸𝐶            (11) 
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𝑆𝐸𝑂 and 𝑆𝐸𝐸 represent the structuring elements utilized for opening ⊚ and closing ⨀ opera-

tors correspondingly, while 𝐼𝐼𝑛𝑝𝑢𝑡
𝐶  denotes the image complement of 𝐼𝐼𝑛𝑝𝑢𝑡 , delineated as fol-

lows:  

𝐼𝐼𝑛𝑝𝑢𝑡
𝐶 =

𝑈

𝐼𝐼𝑛𝑝𝑢𝑡
                         (12) 

 

The universe U represents all possible values that each pixel can assume. Subsequently, the oper-
ation defining the complement of an image is established as follows: 

 

𝐼𝐼𝑛𝑝𝑢𝑡
𝐶 (𝑥, 𝑦) = 𝑚𝑎𝑥(𝑈) − 𝐼𝐼𝑛𝑝𝑢𝑡(𝑥, 𝑦)                (13) 

 

The enhancement process for thick vessels utilizes a disk-shaped structuring element for both 

opening ⊚ and closing ⨀ operations, employing a radius of eight pixels for opening and sixteen 

pixels for closing. 
 

Figure 4dand 4e illustrate the outcome of employing the PSO-HRVSO optimized top-hat filter 

and binarized top hat respectively on the input fundus image depicted in Figure 3a whereas figure 
4b and 4c illustrate the outcome of employing global top-hat optimization and its binary part. 

Both Figure 4b and Figure 4d were generated using a structuring element of the same shape and 

size for both opening and closing operations (a disk with a radius of 10 pixels). A qualitative ex-
amination of the images reveals that the PSO-HRVSO optimized top-hat filter significantly im-

proves the contrast of the vessels compared to the classical top-hat filter, enhancing both thick 

and thin vessels. 
 

 
 

 
Figure 4: Optimized Top-Hat: (a) Input RGB, (b) Conventional Top-Hat, (c) Binary of (b), (d) Optimized 

Top-Hat, (e) Binary of (d). 

 

3.2.2. Homomorphic Filtering 

 
If we view it through the lens of the classical intensity model for digital images, an image can be 

seen as the outcome of light reflected from a scene, subsequently captured by a camera to create 

the image. Typically, this model is described in relation to the spatial distributions of intensity 

[60] within a two-dimensional function (such as an image represented by 𝐼𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)), and it is 

typically depicted as: 

 

𝐼𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦) = 𝑙𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)𝑟𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)              (14) 

 

In this context, 𝑙𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦) denotes the brightness of the illumination, while 𝑟𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦) de-

lineates the spatial spread of the reflectance, which is formed and influenced by the inherent 
characteristics of the object and the surrounding environment. 

 

Homomorphic filtering operates in the frequency domain, enabling the adjustment of both illumi-

nation and reflectance intensities across the spectral range of an image. This capability facilitates 
diverse analyses through the application of multiple frequency-domain filters. Typically, the re-
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flectance component, 𝑟𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦), spans the entire frequency spectrum, while the illumination 

component's intensity 𝑙𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦),  exhibits gradual changes characterized by low spatial fre-

quencies. Consequently, the illumination component is often centralized within the 2D-Fourier 

frequency domain. A common challenge in vessel segmentation involves enhancing the reflec-

tance from the fundus image while minimizing the influence of the illumination component's 

intensity. To address this, a linear frequency-domain filter is employed to attenuate low-
frequency components and enhance high-frequency intensities. 

 

The natural logarithm serves as a mathematical tool that transforms multiplication into addition. 
By applying this principle to Equation 14, we derive the subsequent equation: 

 

𝑧𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦) = 𝑙𝑛 (𝐼𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)) = 𝑙𝑛 (𝑙𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)𝑟𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)) =

𝑙𝑛 (𝑙𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)) + 𝑙𝑛 (𝑟𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦))                (15) 

 

The logarithm functions as a homomorphism, thus named the filtering process, which translates 

from a multiplicative number group to an additive number group. This transition enables the ap-

plication of linear filtering processes. Equation 15 undergoes Fourier transformation, a step that 
isn't directly feasible due to the inseparability of function multiplication in the Fourier domain. 

 

𝐹𝑛[𝑧𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)] = 𝐹𝑛𝑧(𝑢, 𝑣) + 𝐹𝑛𝑟(𝑢, 𝑣)             (16) 

 

Filtering is achieved through the multiplication of the image 𝐹𝑛𝑧(𝑢, 𝑣) by a frequency-domain 

filter 𝐻𝑓𝑛(𝑢, 𝑣). Among various transfer functions experimented with, the Gaussian high-pass 

response proves particularly effective for eye fundus images, as represented in Equation 17 in the 
frequency domain. 

 

𝐻𝑓𝑛(𝑢, 𝑣) = 1 − 𝑒𝑥𝑝 (
−𝐷2(𝑢,𝑣)

2𝜎2
)                  (17) 

 

Where 𝐷(𝑢, 𝑣) = √𝑢2 + 𝑣2 and 𝜎 represents the measure of the dispersion of the Gaussian 

curve. The greater the value of 𝜎, the higher the cut-off frequency and the gentler the filtering 

effect. Upon implementing the filter, we derive the following equation: 

 

𝐺𝑓𝑛(𝑢, 𝑣) = 𝐹𝑛𝑧(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣) = 𝐹𝑛𝑙(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣) + 𝐹𝑛𝑟(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣)    (18) 

 
The filtered spectrum of the processed signal is restored by applying a subsequent inverse Fourier 

transformation in the following manner: 

 

𝐹𝑛−1[𝐺𝑓𝑛(𝑢, 𝑣)] = 𝐹𝑛−1[𝐹𝑛𝑙(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣)] + 𝐹𝑛−1[𝐹𝑛𝑟(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣)]     (19) 

𝑔𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦) = 𝑙𝑓𝑢𝑛𝑑𝑢𝑠
′ (𝑥, 𝑦) + 𝑟𝑓𝑢𝑛𝑑𝑢𝑠

′ (𝑥, 𝑦)                (20) 

 

Ultimately, the filtered image, denoted as 𝑙𝑓𝑢𝑛𝑑𝑢𝑠
′ (𝑥, 𝑦), undergoes an exponential transformation 

to reverse the effects of the logarithmic transformation. Equation 21 encapsulates the formulation 
of this final step in the process. 

 

𝐼𝑓𝑢𝑛𝑑𝑢𝑠
′ (𝑥, 𝑦) = 𝑒𝑥𝑝[𝑔𝑓𝑢𝑛𝑑𝑢𝑠(𝑥, 𝑦)] = 𝑒𝑥𝑝[𝑙𝑓𝑢𝑛𝑑𝑢𝑠

′ (𝑥, 𝑦)]𝑒𝑥𝑝[𝑟𝑓𝑢𝑛𝑑𝑢𝑠
′ (𝑥, 𝑦)]    (21) 

 
Although the illumination and reflectance components aren't completely distinguished in the 

spectral domain, the homomorphic approach remains a valuable tool that produces significantly 
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enhanced images [61]. In this scenario, a sigma (𝜎) value of two is employed to amplify thick 
vessels, which have considerably higher reflectance values compared to thin vessels. 

 

3.2.3. Median Filtering 

 
Prior to the final operation, salt and pepper noise, induced by a low value of σ during the homo-

morphic filtering procedure, is eliminated using a median filter. It is noteworthy that the median 

filter is adept at retaining edges while eliminating noise. It possesses the capability to differenti-
ate between isolated noise and intrinsic features of the input image, such as sharp edges and other 

details. This capability pertains to high spatial frequencies, thereby preserving previously en-

hanced thick vessels. The median filter operates by substituting each pixel in the image with the 

median intensity value within a designated neighborhood 𝑅𝑛(𝑚, 𝑛). Mathematically, the resultant 

image 𝐼𝑚𝑒𝑑𝑖𝑎𝑛
′ (𝑥, 𝑦) after the median filtering process of an image 𝐼𝑖𝑛𝑝𝑢𝑡(𝑥, 𝑦) can be expressed 

as: 

 

𝐼𝑚𝑒𝑑𝑖𝑎𝑛
′ (𝑥, 𝑦) = 𝑀𝑒(𝐼𝑖𝑛𝑝𝑢𝑡(𝑚, 𝑛), (𝑚, 𝑛) ∈ 𝑅)            (22) 

 

The median value of pixels within the region 𝑅𝑛(𝑚, 𝑛) is denoted as 𝑀𝑒. Although the noise gen-
erated in earlier stages is minimal, it significantly impacts the outcome. The neighborhood size is 

represented by a matrix of dimensions [2, 2]. 

 

Recently, the optimized top-hat method has been reintroduced to enhance the profile of thick 
vessels, effectively filling small black pixel regions within them. In this instance, the dimensions 

of the disk-shaped structuring element are notably increased compared to the previous optimized 

top-hat approach. Operations involving both opening and closing are suggested, with radii of 
thirty-two and eighty-six, respectively. Figure 5 illustrates the outcome of these concepts. 

 

3.3. Thin Vessels Segmentation 
 

The process of segmenting thin vessels involves two stages similar to those used for thick ves-

sels, as outlined in figure 5. However, the specific methods are not elaborated upon in this sec-

tion. Nevertheless, the PSO-HRVSO parameters for these shared stages will be outlined here. 
 

Building upon the methodology described in the preceding section, and considering the finer 

scale of thin blood vessels which occupy smaller pixel sizes, a disk-shaped structuring element 
with radii of 5 and 25 pixels is PSO-HRVSO for opening and closing operations, respectively. As 

thin vessels encompass only a small percentage of the image, their total reflectance component 

value is comparatively lower than that of thick vessels. To enhance the visibility of these small 

white regions, a 𝜎 value of twenty is utilized to expand the cut-off regions of the filter. This en-
hancement improves all white components of the image, including the small vessels, albeit at the 

expense of thinning the thick and major veins of the vascular tree. However, this thinning effect 

will later be rectified by merging the segmented image of thick veins with the resultant image of 
subsequent steps. 

 

When analyzing a gray-scale image in segments, the parts within it often resemble certain distri-
bution curves. Two-dimensional matched filters are specifically crafted to amplify image sections 

that correspond to a particular distribution. Thus, this filtering technique seeks a level of correla-

tion between the specified distribution and the local image area. The strategy behind employing a 

matched filtering method aims to identify segmented linear segments of blood vessels in fundus 
images. These segments' grayscale profile can typically be approximated by a Gaussian-shaped 

curve [62]. This Gaussian distribution, referred to as the kernel, undergoes rotation by an angular 
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step 𝜃. Subsequently, it is convolved with the input image areas to enhance the matched regions. 

The rotation of the kernel is achieved through a rotation matrix 𝑅𝑀, represented as follows: 

 

𝑅𝑀 = [𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]                      (23) 

 

Non-vessel regions (i.e. low value of response) are not enhanced. The matched filter kernel is 
defined as follows: 

 

𝑓𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑥, 𝑦) = −𝑘 𝑒𝑥𝑝 (
−𝑥2

2𝜎2
) , 𝑓𝑜𝑟 |𝑦| ≤ 𝐿/2            (24) 

 
Considerations should be made regarding the length (L) of the vessel's piecewise element and the 

spread (𝜎) of the kernel intensity profile. It is notable in the literature that blood vessels typically 

exhibit low curvatures. Therefore, it is crucial to search for rotations of anti-parallel pairs within 

estimated piecewise elements. Additionally, small blood vessels often lack significant local con-
trast. Despite previous homomorphic enhancement techniques, small vessels exhibit a low reflec-

tance component compared to other inner surfaces of the human eye. Their appearance is charac-

terized by lower illumination than the relative background, and their width decreases as they 
traverse the vascular tree. 

 

To address these factors, vessel orientation may vary, and it is assumed that the vessel direction 

aligns with the y-axis. For thin vessel segmentation, the kernel undergoes rotation at seven-
degree intervals, spanning angles from θ = 0, 7, 14 to 182 degrees, resulting in 26 different rota-

tions. Recommended parameters for this methodology include a 𝜎 value of 0.8 and a kernel size 

of 7 ×  7 pixels. This choice is informed by the common widths of retinal blood vessels, which 
typically range from 2 to 10 pixels (equivalent to 36 to 180μm). By employing this method, the 

likelihood of false detection of vasculature is reduced, consequently lowering the false positive 

rate. 

 

 
 

Figure 5: Vessels Segmentation: (a) Input RGB, (b) Green Component, (c) PSO Optimized, (d) Segmented 
Thick Vessels, (e) Segmented Thin Vessels, (f) Combined Vessels 

 

3.4. Post Processing 

 
The integration of thick and thin vessel segmentation in binary form involves applying a bitwise 

OR operation, followed by the generation of a final segmentation image illustrating the outcomes 

from both branches depicted in Figure 1. To eliminate small undesired components and noise 

generated in prior phases, a final post-processing step is executed. This step employs morpholog-
ical image techniques including dilation, erosion, and a connectivity assessment to eliminate bi-

nary elements smaller than a predetermined pixel size, resulting in a definitive binary image for 
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subsequent evaluation. The ultimate outcome of the segmentation procedure is depicted in Figure 
5(f). 

 

4. RESULTS AND DISCUSSION 
 

This section presents the performance outcomes of the PSO-HRVSO method applied to two eye 
fundus datasets for retinal vessel segmentation: DRIVE [51] and STARE [50], both publicly ac-

cessible. The DRIVE dataset comprises 40 images divided into two subsets of 20 elements each, 

designated as the training and test sets. All images were captured using a Canon CR5 nonmydri-

atic 3CCD camera with a 450field of view and a spatial resolution of 565 × 584 pixels [91]. Ad-

ditionally, the DRIVE image dataset includes manual segmentation conducted and validated by 

three trained human observers with medical expertise. The training subset involves the manual 

segmentation of one set by a single human observer, while the test subset underwent manual 
segmentation by two human observers, offering dual perspectives and establishing ground-truth 

images for performance analysis. 

 
On the other hand, the STARE dataset comprises 397 digitized eye fundus images acquired using 

a TopCon TVR-50 fundus camera with a 350field of view and a spatial resolution of 605×700 

pixels [50]. Among these images, manual segmentation was performed for only 25 by two ob-

servers. The first observer segmented 11.2% of the entire image pixels as vascular tree pixels, 
while the second observer segmented a total of 14.6%. Both datasets encompass healthy and dis-

eased fundus images, including various vascular abnormalities, diabetic retinopathy, choroidal 

neovascularization, arteriosclerotic retinopathy, among others. 
 

To conduct a mathematical analysis and determine the accuracy of segmentation, three perfor-

mance metrics are employed: Specificity (Spe), Sensitivity (Sen), and Accuracy (Acc). These 
metrics are defined mathematically as follows: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑒𝑛) =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑝𝑒) =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐𝑐) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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Table 1: Results of the PSO-HRVSO methodology applied to DRIVE dataset 

 

Images 
Observer 1 Observer 2 

Sen Spe Acc Sen Spe Acc 

01_test 0.8358 0.9742 0.9754 0.8437 0.9834 0.9715 

02_test 0.8159 0.9867 0.9823 0.8164 0.9847 0.9794 

03_test 0.8422 0.9831 0.9854 0.8519 0.9881 0.9837 

04_test 0.7891 0.9928 0.9745 0.7974 0.9943 0.9829 

05_test 0.7843 0.9936 0.9942 0.8036 0.9942 0.9918 

06_test 0.8251 0.9849 0.9937 0.8284 0.9837 0.9916 

07_test 0.8735 0.9874 0.9821 0.8734 0.9862 0.9864 

08_test 0.8715 0.9942 0.9825 0.8839 0.9911 0.9838 

09_test 0.8694 0.9837 0.9875 0.8734 0.9871 0.9827 

10_test 0.8846 0.9957 0.9943 0.8858 0.9958 0.9918 

11_test 0.8723 0.9943 0.9843 0.8868 0.9969 0.9837 

12_test 0.8264 0.9785 0.9826 0.8234 0.9741 0.9784 

13_test 0.8531 0.9938 0.9746 0.8519 0.9961 0.9721 

14_test 0.8591 0.9892 0.9853 0.8587 0.9873 0.9864 

15_test 0.8664 0.9875 0.9746 0.8738 0.9834 0.9766 

16_test 0.8697 0.9828 0.9748 0.8769 0.9845 0.9784 

17_test 0.8856 0.9914 0.9872 0.8821 0.9961 0.9867 

18_test 0.8946 0.9849 0.9836 0.8937 0.9837 0.9817 

19_test 0.8935 0.9932 0.9941 0.8981 0.9957 0.9969 

20_test 0.8816 0.9941 0.9843 0.8776 0.9971 0.9792 

21_test 0.8829 0.9852 0.9971 0.8872 0.9831 0.9944 

22_test 0.8426 0.9847 0.9876 0.8265 0.9881 0.9848 

23_test 0.8247 0.9911 0.9982 0.8319 0.9935 0.9971 

24_test 0.8167 0.9927 0.9934 0.8264 0.9938 0.9964 

25_test 0.8935 0.9857 0.9861 0.8897 0.9862 0.9908 

Mean 0.8542 0.9882 0.9856 0.8577 0.9891 0.9852 

 

True Positive (𝑇𝑃) denotes the number of pixels identified as vessels in both the ground-truth and 

the segmented image. True Negative (𝑇𝑁) indicates the count of pixels accurately classified as 

non-vessels in both the ground-truth and the segmented image. False Positive (𝐹𝑃) represents the 

number of pixels identified as vessels in the segmented image but are non-vessel pixels in the 

ground-truth. Finally, False Negative (𝐹𝑁) illustrates the number of pixels incorrectly classified 

as non-vessels in the segmented image when they correspond to vessels in the ground-truth. 
 

Table 1 displays the performance results of applying segmentation metrics from the PSO-

HRVSO methodology to the DRIVE dataset against observer 1 and observer 2. The method 
achieves a specificity of 0.9882, sensitivity of 0.8542, and average precision of 0.9856 compared 

to observer 1. 

 
Similarly, against observer 2, the method achieves averages of 0.9891, 0.8577, and 0.9852 for 

these metrics, respectively. The maximum specificity values against observers 1 and 2 occur in 

image 10_test, reaching 0.9957 and in image 20_test, reaching 0.9971, respectively. Conversely, 

the minimum specificity values against observers 1 and 2 are 0.9742 and 0.9741, observed in 
images 01_test and 12_test, respectively. 

 

Table 2 presents the metrics results of comparing the segmentation performed by the PSO-
HRVSO method with both observers for the STARE data-set. The average sensitivity, specificity, 
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and accuracy achieved when comparing the segmented image with the ground-truth of observer 1 
are 0.8577, 0.9868, and 0.9836, respectively. Similarly, when compared with the ground-truth of 

observer 2, these metrics are 0.8576, 0.9868, and 0.9831. The highest specificity values against 

observers 1 and 2 are 0.9974 in image im0038 and 0.9967 in image im0021, respectively. Con-

versely, the lowest specificity values against observers 1 and 2 are 0.9718 in image im0278 and 
0.9739 in image im0056. 

 
Table 2: Results of the PSO-HRVSO methodology applied to STARE dataset 

 

Images 
Observer 1 Observer 2 

Sen Spe Acc Sen Spe Acc 

im0001 0.7925 0.9921 0.9951 0.7895 0.9878 0.9955 

im0006 0.8244 0.9937 0.9927 0.8235 0.9938 0.9884 

im0008 0.8257 0.9841 0.9842 0.8284 0.9926 0.9824 

im0009 0.8317 0.9964 0.9934 0.8321 0.9897 0.9968 

im0012 0.8341 0.9859 0.9763 0.8364 0.9918 0.9719 

im0015 0.8347 0.9811 0.9748 0.8369 0.9792 0.9737 

im0017 0.8522 0.9842 0.9822 0.8581 0.9846 0.9818 

im0021 0.8761 0.9964 0.9851 0.8743 0.9967 0.9841 

im0024 0.8795 0.9937 0.9837 0.8784 0.9896 0.9862 

im0038 0.8628 0.9974 0.9942 0.8617 0.9933 0.9921 

im0047 0.8748 0.9833 0.9901 0.8788 0.9818 0.9912 

im0056 0.8691 0.9719 0.9871 0.8738 0.9739 0.9887 

im0081 0.8824 0.9848 0.9833 0.8654 0.9864 0.9837 

im0090 0.8857 0.9927 0.9858 0.8855 0.9899 0.9868 

im0102 0.8749 0.9967 0.9869 0.8765 0.9927 0.9829 

im0138 0.8869 0.9924 0.9925 0.8815 0.9964 0.9924 

im0154 0.8871 0.9817 0.9847 0.8911 0.9791 0.9843 

im0197 0.8215 0.9824 0.9723 0.8233 0.9867 0.9755 

im0243 0.8166 0.9861 0.9611 0.8167 0.9865 0.9581 

im0251 0.8546 0.9913 0.9637 0.8516 0.9922 0.9655 

im0274 0.8612 0.9743 0.9728 0.8644 0.9854 0.9737 

im0278 0.8927 0.9718 0.9738 0.8917 0.9739 0.9716 

im0289 0.8715 0.9738 0.9829 0.8719 0.9718 0.9867 

im0294 0.8657 0.9955 0.9954 0.8655 0.9897 0.9891 

im0305 0.8852 0.9862 0.9973 0.8837 0.9857 0.9944 

Mean 0.8577 0.9868 0.9836 0.8576 0.9868 0.9831 

 
In Table 3, the results obtained are numerically contrasted against contemporary supervised and 

unsupervised methods, showcasing the efficiency and computational time across both datasets. 

Notably, the table highlights the highest average values among the three metrics for both super-
vised and unsupervised methods, which are denoted in bold. Specifically, in terms of specificity 

and accuracy, PSO-HRVSO attains the highest values of 0.9846 and 0.9856, respectively, where-

as sensitivity peaks at 0.9230 with Liskowski et al. [64] for the DRIVE dataset. Similarly, for the 
STARE dataset, PSO-HRVSO achieves the highest specificity and accuracy scores of 0.9868 and 

0.9833, while Liskowski et al. [64] secures the highest sensitivity at 0.9207. Despite not yielding 

the optimal outcomes, it's noteworthy that the approach is closely comparable in numerical terms 
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to methods necessitating training processes and ground-truth data, such as supervised methods, 
albeit with higher computational expenses. 

 
Table 3: Comparative analysis of outcomes obtained from implementing the PSO-HRVSO methodology on 

both the DRIVE and STARE datasets, juxtaposed with state-of-the-art supervised and unsupervised meth-

ods. 

 

Method Year 
DRIVE Dataset STARE Dataset Processing  

Time Sen Spe Acc Sen Spe Acc 

Supervised methods 

Liskowski et al. [64] 2016 0.9230 0.9241 0.9160 0.9207 0.9304 0.9309 92.0s 

Zhang et al. [65] 2017 0.7861 0.9712 0.9466 0.7882 0.9729 0.9547 23.40s 

Orlando et al. [66] 2017 0.7897 0.9684 - 0.7680 0.9738 - - 

Dasgupta et al. [67] 2017 0.7691 0.9801 0.9533 - - - - 

Yan et al. [68] 2018 0.7653 0.9818 0.9542 0.7581 0.9846 0.9612 - 

Thangaraj et al. [69] 2018 0.8014 0.9753 0.9606 0.8339 0.9536 0.9435 180.86s 

Guo et al. [70] 2018 0.7046 0.9806 0.9613 0.5629 0.9816 0.9540 - 

Yang et al. [71] 2019 0.756 0.9696 0.9421 0.7202 0.9733 0.9477 - 

Jin et al. [72] 2019 0.7963 0.9800 0.9566 0.7595 0.9858 0.9641 17.65s 

Cheng et al. [73] 2020 0.7672 0.9834 0.9559 - - - - 

Adapa et al. [74] 2020 0.6994 0.9811 0.9450 0.6298 0.9839 0.9486 81.0s 

Wu et al. [75] 2020 0.7996 0.9813 0.9582 0.7963 0.9863 0.9672 88.0s 

Unsupervised methods 

Zhang et al. [76] 2016 0.7743 0.9725 0.9476 0.7791 0.9758 0.9554 20.0s 

Shahid et al. [77] 2017 0.7300 0.9790 0.9580 0.7900 0.9650 0.9510 - 

Fan et al. [78] 2018 0.7360 0.9810 0.9610 0.7910 0.9710 0.9570 13.23s 

Aguirre et al. [79] 2018 0.7854 - 0.9503 0.7116 0.9454 0.9231 - 

Abdallah et al. [80] 2018 0.6887 0.9765 0.9389 0.6801 0.9711 0.9388 - 

Pal et al. [81] 2018 0.6129 0.9744 0.9431 - - - - 

Yue et al. [82] 2018 0.7528 0.9731 0.9447 - - - 4.60s 

Biswal et al. [83] 2018 0.7100 0.9700 0.9500 0.7000 0.9700 0.9500 3.30s 

Diaz et al. [84] 2019 0.8464 0.9701 0.9619 0.8331 0.9619 0.9559 - 

Wang et al. [85] 2019 0.7287 0.9775 0.9446 0.7526 0.9733 0.9503 4.50s 

Roy et al. [86] 2019 0.4392 0.9622 0.9295 0.4317 0.9718 0.9488 0.10s 

Zhou et al. [87] 2020 0.7262 0.9803 0.9475 0.7865 0.9730 0.9535 63.2s 

Dos Santos et al. [88] 2020 0.7702 0.9695 0.9519 - - - - 

Shukla et al. [89] 2020 0.7015 0.9836 0.9476 0.7023 0.9863 0.9573 1.41s 

Pachade et al. [90] 2020 0.7738 0.9721 0.9552 0.7769 0.9688 0.9543 4.78s 

PSO-HRVSO 2024 0.8559 0.9846 0.9854 0.8577 0.9868 0.9833 24.0s 

 
The mean processing times derived for each method as detailed in Table 3 were sourced from 

existing literature. Analysis of Table 3 reveals that the PSO-HRVSO method demonstrates short-

er processing times compared to both supervised and unsupervised methods based on perfor-

mance data. Furthermore, the PSO-HRVSO algorithm demonstrates competitive processing times 
compared to both supervised and unsupervised methods. Moreover, it exhibits superior efficiency 

values across all three-performance metrics. 
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5. PSEUDOCODE 
 

Begin /* (Pseudocode) */ 

 

Begin  /* (Gaussian Flitering over RGB Image) */ 

rgbImage = imread(Input RGB image.jpg'); /* Read the input RGB image */ 

 greenImage = rgbImage(:, :, 2); /*RGB to Green Component conversion */ 
 gaussianKarnel = Gaussian kernel size = 3; 

 𝜎 = Standard Deviation 

/* Compute the size of the Gaussian kernel based on the standard deviation */ 

/* Calculate the Gaussian function for each pixel in the kernel */ 

𝐺(𝑥, 𝑦)  =  (1 / (2 ∗ 𝜋 ∗ 𝑠𝑖𝑔𝑚𝑎2)) ∗ 𝑒𝑥𝑝(−((𝑥 2 + 𝑦2)/(2 ∗ 𝑠𝑖𝑔𝑚𝑎2))) 

End  /* (Gaussian Flitering over RGB Image) */ 

 

Begin  /* (Image Enhancement using PSO) */ 

objectiveFunction = @(x) computeObjective(x, grayscaleImage); /* Define the objective function for 

image enhancement */ 

numParticles = 100; /* Set PSO parameters */ 

numIterations = 100; 

maxVelocity = 2; 
c1 = 2;  /* Cognitive component weight */ 

c2 = 2;  /* Social component weight */ 

/* Initialize particles and velocities */ 

particlePositions = initializeParticles(numParticles); 

particleVelocities = initializeVelocities(numParticles); 

/* Initialize the best positions and global best position */ 

particleBestPositions = particlePositions; 

globalBestPosition = particlePositions(1, :); 

/* Perform PSO iterations */ 

for iteration = 1:numIterations 

particleFitness = evaluateFitness(objectiveFunction, particlePositions); /* Evaluate the fitness of each 
particle */ 

for particle = 1:numParticles /* Update particle best positions */ 

if particleFitness(particle) < evaluateFitness(objectiveFunction, particleBestPositions(particle, :)) 

particleBestPositions(particle, :) = particlePositions(particle, :); 

   end 

   end 

   [~, globalBestIndex]=min(particleFitness); /*Update global best position */ 

   globalBestPosition = particlePositions(globalBestIndex, :); 

particleVelocities = updateVelocities(particleVelocities, particlePositions, particleBestPositions, 

globalBestPosition, c1, c2, maxVelocity); /* Update particle velocities and positions */ 

particlePositions = updatePositions(particlePositions, particleVelocities); 

end 

enhancedImage = performEnhancement(globalBestPosition, grayscaleImage); /* Perform image en-

hancement using the global best position */ 

End  /* (Image Enhancement using PSO) */ 

 

Begin /* (Homomorphic Filtering) */ 

𝐼(𝑥, 𝑦) = 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒(𝑥, 𝑦) ∗ 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦)   

𝑍(𝑥, 𝑦) = 𝑙𝑛(𝐼(𝑥, 𝑦)) = 𝑙𝑛(𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒(𝑥, 𝑦) ∗ 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦))

= 𝑙𝑛(𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒(𝑥, 𝑦)) + 𝑙𝑛(𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦)) 

 𝐹𝑛[𝑍(𝑥, 𝑦)] = 𝐹𝑛𝑧(𝑢, 𝑣) + 𝐹𝑛𝑟(𝑢, 𝑣) 

𝐻𝑓𝑛(𝑢, 𝑣) = 1 − 𝑒𝑥𝑝 (
−𝐷2(𝑢,𝑣)

2𝜎2
)  

𝐺𝑓𝑛(𝑢, 𝑣) = 𝐹𝑛𝑧(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣) = 𝐹𝑛𝑙(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣) + 𝐹𝑛𝑟(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣)  

𝐹𝑛−1[𝐺𝑓𝑛(𝑢, 𝑣)] = 𝐹𝑛−1[𝐹𝑛𝑙(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣)] + 𝐹𝑛−1[𝐹𝑛𝑟(𝑢, 𝑣)𝐻𝑓𝑛(𝑢, 𝑣)]  
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𝑔(𝑥, 𝑦) = 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒′(𝑥, 𝑦) + 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒′(𝑥, 𝑦)   

𝐼′(𝑥, 𝑦) = 𝑒𝑥𝑝[𝑔(𝑥, 𝑦)] = 𝑒𝑥𝑝[𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒′(𝑥, 𝑦)]𝑒𝑥𝑝[𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒′(𝑥, 𝑦)]  
End /* (Homomorphic Filtering) */ 

 

Begin /* (Optimized Top-Hat Algorithm) 

inputImage = enhancedImg;   /* Read the input image */ 

/* Apply morphological operations for noise removal or smoothing */ 

SE = strel('disk', size);  /* Define a disk-shaped structuring element with specified size */ 

morphImage = imopen(grayImage, SE);  /* Perform opening operation */ 

tophatImage = imtophat(morphImage, SE);  /* Perform TOP-HAT transform for image enhancement */ 

End /* (Optimized Top-Hat Algorithm) 

Thick_Threshold = median_filtering(tophatImage) 

Thin_Threshold = matched_filtering(tophatImage) 

Segmented_Vessels = Thick_Threshold + Thin_Threshold. 

 

End /* (Pseudocode) */ 

 

6. CONCLUSION & FUTURE WORK 
 

We introduce a novel approach aimed at enhancing the segmentation of the retinal vascular tree 
in human eye fundus images. The methodology hinges on a segmentation process divided into 

two branches: thin and thick vessel detection. Notably, our method achieves high specificity 

without necessitating manual segmentation or resource-intensive training techniques. Compara-
tive analysis of our method, applied to both the DRIVE and STARE datasets, reveals its superior-

ity over existing unsupervised methods in the literature. Particularly, it excels in extracting thin 

vessels with greater precision compared to current methodologies. 

 
Central to our framework is the parameter variation of optimized top-hat and homomorphic filter-

ing stages, tailored to the segmentation results of thin and thick vessels. This adaptive feature 

significantly enhances segmentation accuracy and specificity. However, a limitation of our pro-
posal is its relatively lower sensitivity compared to state-of-the-art values. To address this, we 

plan to explore reinforced learning algorithms to optimize the methodology's parameters and im-

prove sensitivity. 

 
Looking ahead, we aim to integrate this method as a preprocessing step in a robust computer-

aided diagnosis (CAD) system for classifying healthy and unhealthy fundus images based on 

retinal vessel segmentation. The crux lies in achieving high specificity segmentation, minimizing 
false positives, and ensuring accurate diagnostic interpretations—an aspect we prioritize in our 

proposal's development. 
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