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ABSTRACT 

 
Today, drone-based attacks represent serious threats to the security and safety of public infrastructures. 

For successfully detecting a malicious drone in a given zone, there are three phases: signal collection 

(sensing), features extraction and classifications. Signal collection can be performed using available 

sensing technologies such as radar, acoustics sensors and electro-optic technologies, among others. The 

classification phase is often achieved using general-purpose algorithms such as Naive Bayes and support 
vector machine (SVM). On the other hand, the features extraction phase is very problem-specific, and its 

performance depends on several factors such as the used sensory technology, environment, and the drone 

characteristics. Features engineering is a designing stage that aims at identifying the most distinctive 

information carriers which capture the drone's discriminative characteristics. In this paper, we present 

effective drones' features extraction techniques for the most popular sensory technologies available which 

are radar, RF analyzers, acoustic sensors, and electro-optic sensors. We focus on identifying the most 

distinctive features of drones and show how to extract them out of the collected signals. 
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1. INTRODUCTION 
 

The emergence of drones has created many useful applications in many fields such as rescue, 
security, communications, environmental, among others [1]–[3]. However, drones pose 

significant safety and security concerns, with a notable increase in terrorist drone-based attacks 

observed recently. Today’s drones are widely different and can be classified in many ways 

according to certain characteristics such as size, weight, flight range, application, aerodynamic 
technique, navigation and control method [3]. There are general classifications in the literature, 

for example, drones can be categorized as either low-flying, small, and slow (LSS) or low-flying, 

small and fast (LSF) [4]. Both types have their place in the airborne attacks, and both have the 
following capabilities: 

 

 Ability to accomplish its task autonomously.  

 Ability to form a swarm that can attack a target.  

 Recognizing a victim’s face among a crowd.  

 Possessing more remote channels, and control options.  

 Ability to paralyze civilian air traffic control.  

 
To secure a given zone, an anti-drone system which encompasses drone detection, tracking and 

neutralization capabilities must be in place. Developing a drone detection capability is evidently a 

complex task because of the significant resemblance between drones and the background clutter. 

https://airccse.org/journal/sipij/vol16.html
https://doi.org/10.5121/sipij.2025.16102
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Drones are similar to many natural objects such as birds in many aspects; physical size, flying 
altitude and velocity domain. This situation can even be worse when combined with the 

environmental, climatic and atmospheric abnormality. 

 

For simplification, the detection process can be divided into three phases: signal collection, 
features engineering and classification. Signal collection phase can be performed using existing 

sensing technologies, and the classification phase can be achieved using standard schemes such 

as support vector machine (SVM) classifier. However, features engineering is very problem 
specific. It extracts from the collected signals relevant and distinctive information which uniquely 

captures drone’s characteristics. 

 
The performance of features engineering depends on several factors such as drone type, 

environment, and the type of technology being used for signal collection. Extracting appropriate 

features, which carry rich and relevant information, ensures useful model and ultimately produces 

an efficient classifier [5].  
 

Nevertheless, there are cases where explicit features extraction is not required. When a deep 

learning (DL)-based classifier is selected, the algorithm implicitly learns the features from the 
input data/signal. However, this advantage of DL causes long delays, and requires more data and 

higher computation & memory resources.  

 

In this paper, we present various engineering methods for drones’ features extraction. We focus 
on the main sensory technologies including radar signal processing, acoustics signal processing, 

radio frequency (RF) analyzers, electro-optics (EO) technologies. We investigate various 

underlying signal processing techniques potentially employed in these technologies. The 

contributions of this paper can be summarized as follows: 
 

 An architecture framework for anti-drone system is introduced.  

 For each sensory technology, the signal processing required to prepare the received 

signal for features extraction, is demonstrated.  

 The most important features, which carry unique characteristics related to drones, are 

introduced and mathematically described.  
 

In Reference [3], we compared the aforementioned sensory technologies through a pros-and-cons 

analysis. Furthermore, we discussed the methodology for evaluating their detection performance. 
The rest of this paper is organized as follows. Section 2 briefly introduces the anti-drone system. 

Then, a thorough presentation of drone features engineering along with the underlying signal 

processing is placed in Section 3. Finally, Section 4 concludes this paper, summarizes the main 

challenges in this area and presents potential future directions. 
 

2. ARCHITECTURE OF ANTI-DRONE SYSTEM 
 

In general, offensive drones may perform two types of attacks: cyber-attack or physical attack. In 
the former type, the drone flies above a target zone and promotes itself as a free WiFi access 

point or a legitimate radio base station to be able to hack or infect the target network. In the latter 

type, the drone flies above a target zone to perform a physical task such as surveying or bombing. 

In both cases, drone detection, tracking and neutralization are the main functions of an effective 
anti-drone system (ADS). Figure 1 shows the basic mechanism of an anti- drone system. When a 

flying object is sensed by the ground apparatus, the received signal is processed, and the object 

features are extracted and sent to a well-trained classifier. If the features represent the 
characteristics of a drone with certain degree of confidence, the system declares a danger event 
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and hence invoke the threat mitigation measures. The neutralization functions aim at isolating the 
drone from its remote controller, taking control over, and capturing it or falling it down. This step 

is usually followed by comprehensive forensic investigations [6]. In the sequel, the detection 

technology, which is the first vital step in any ADS, is thoroughly discussed. 

 

 
 

Figure 1. Illustration of the main components in anti-drone systems. 

 

3. DRONE DETECTION 
 

An anti-drone system possesses a detection function when it is capable of classifying objects into 

desired and non-desired objects. Thus, distinguishing drones from other objects such as balloons 
and birds is the core task of detection function. Figure 2 shows the three phases of drones 

detection. There is a set of sensory technologies which can broadly be divided into passive or 

active. The contemporary detection techniques depend on either radar signals, acoustic signals, 

RF signals, electro-optic sensors or a fused combination of them. In the following subsections, 
we focus on drone features extraction methods when the above-mentioned sensory technologies 

are used.  

 

 
 

Figure 2. The three phases of drone’s detection. 

 

3.1. Features Extraction from Radar Signals 
 

Radio detection and ranging (Radar) is an active sensory technology which transmits a burst of 
electromagnetic waves of certain frequency and receives their echoes to detects surrounding 

objects and estimate their locations and speed. Most currently used radars operate on short range 

(S band) and long range (L band). These bands are relatively low frequency bands [7], and thus, 

the resulted sensing resolution is relatively low for detecting small drones which are 
characterized by small radar cross section (RCS). Therefore, anti-drone radar systems must 

operate on higher frequency bands such as X band (8-12 GHz) to effectively detect small size 

objects [8]. There are two important broad features for drones, shape and size, and pattern of 
movement. Conventional radar analyzes the reflected echo signal to create the detected object 

RCS profile as shown in Figure 3. RCS represents the signature of the drone shape and size. The 

RCS profile is passed to a classifier to evaluate whether the created RCS profile matches a drone 

sent features 

-Drone Detection 
-Drone localization 

Automated Jamming 

Sensory apparatus 

Drone neutralization 

Alarm 
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RCS predefined profile [4]. However, there are various objects that feature similar shape and size 
as the drones, and thus, false alarms may increase.  

 

 
 

Figure 3. RCS profile of a quadcopter drone [4]. 

 

Movement patterns of drones can be derived through Doppler signature (DS) analysis [9]–[12]. 
Radar systems process echo signals that exhibit frequency shifts caused by the target’s motion, 

forming what is termed the Doppler signature. Drones, with their distinct rotational and 

translational movements, generate unique Doppler signatures that enable their identification and 
classification. 

 

Special class of drone Doppler signature is the micro- Doppler signature (m-DS) which captures 

drone small parts movements such as the blades, wings and propellers [10]– [16]. In these 
references, the m-DS has been proven to be exceptionally functional for detecting drones, 

especially, the flapping-wing and rotary-wing drones. 

 
There are mainly two types of radars: continuous wave (CW) radar and pulse radar. The CW 

radar, which is more effective in terms of bandwidth, power and cost, can further be divided into 

two sub-categories, namely: unmodulated CW radar and frequency modulated CW (FMCW) 

radar. 
 

Considering FMCW, the transmitted RF signal out of the radar is of the following form: 

 

𝑠(𝑡) = 𝐴 cos (2𝜋 (𝑓𝑐 +
𝐵

2𝑇
𝑡) 𝑡) ,        (1) 

 

where 𝛢 is the signal amplitude, 𝛣 is the range of the chirp and 𝛵 is the duration of one chirp. 

While the carrier frequency is  𝑓𝑐, the operating frequency is 𝑓𝑐 + 
𝐵

2𝑇
𝑡 which is a linear function 

of time1. The reflected signal (the echo) due to the existence of some target in radar sight is: 

 

𝑟𝑟𝑓(𝑡) =  𝐴𝑅 cos (2𝜋 (𝑓𝑐  +  
𝐵

2𝑇
(𝑡 −  𝜏)) (𝑡 −  𝜏)) + 𝑛(𝑡)       (2) 

 

                                                
1

Hence, FMCW signal is also known as linear FMCW (LFMCW)  

 



Signal & Image Processing: An International Journal (SIPIJ) Vol.16, No.1, February 2025 

21 

where 𝐴𝑅 is the amplitude of the reflected RF signal, 𝜏 is the round-trip time and 𝑛(𝑡) is the noise 

component. The distance 𝑑 between the radar and the target can be found from the round-trip 

time: 𝑑 =  
𝑐𝜏

2
, where 𝑐 is the speed of light. For the signal to be digitally processed, and hence the 

features to be extracted, the reflected RF signal should be first converted into a complex 

baseband signal. This can be done by passing the RF signal through an I/Q demodulation and 

then a low pass filter ℒℱ{ . }. Thus, the complex baseband signal is characterized by equation (3). 

 

𝑟𝑏𝑏(𝑡) = ℒℱ{𝑟𝑟𝑓(𝑡) 𝑐𝑜𝑠(2𝜋(𝑓𝑐 +
𝐵

2𝑇
𝑡)𝑡)} + 𝑗ℒℱ{𝑟𝑟𝑓(𝑡) 𝑠𝑖𝑛(2𝜋(𝑓𝑐 +

𝐵

2𝑇
𝑡)𝑡)}.    (3) 

 

Converting the desired signal component in (3) from Cartesian coordinate to polar coordinate 
yields, 

 

𝑟𝑏𝑏(𝑡) = 𝐴𝑟𝑒𝑗𝜃(𝑡) + 𝑛𝐼(𝑡) + 𝑗𝑛𝑄(𝑡)  (4) 

 

where 𝐴𝑟  and 𝜃(𝑡) are the magnitude and phase of the complex baseband signal. 𝑛𝐼(𝑡) and 𝑛𝑄(𝑡) 

are the in-phase and quadrature components of the low frequency equivalent noise. 

 

A crucial part of the feature extraction is an efficient representation of the considered signal (i.e., 

𝑟𝑏𝑏(𝑡)). In the following, we list the most popular signal representation. 

 

 Short Time Fourier Transform (STFT) applies Fourier transform consecutively on short 

portions of 𝑟𝑏𝑏(𝑡). These short portions are defined by a sliding windowing function 𝜔(𝑡). 
Mathematically, STFT can be found by: 

 

𝑅𝑏𝑏(𝑓, 𝜉) =  ∫ 𝑟𝑏𝑏(𝑡)𝜔(𝑡 − 𝜉)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
        (5) 

 

where 𝑅𝑏𝑏(𝑓, 𝜉) is the complex valued STFT as a function of 𝑓 and 𝜉 which are Doppler 

frequency and time, respec- tively. Clearly, STFT is the traditional Fourier transform of the 

product 𝑟𝑏𝑏(𝑡)𝜔(𝑡 − 𝜉), and as the window function 𝜔(𝑡) slides by 𝜉 the Fourier transform 
changes. Hence, STFT is a complex function (magnitude and phase) of both Doppler 

frequency and time. It essentially describes the dynamic of the spectra of a signal. STFT is the 

most successful and popular radar signal analysis techniques [10]. Further, many other 

techniques are actually based on STFT as will be shown in the sequel. 
 

Note that the Doppler frequency directly defines the velocity 𝑣 of the target via: 𝑣 cos(𝜃) =
𝜆𝑓

2
, where 𝜆 is the wavelength of the radar signal, and 𝜃 is the aspect angle between the target 

direction and the radar line-of-sight [17]. Therefore, STFT can be displayed as a function of 𝑣 

and 𝜉. 

 

 Spectrogram (SG) is the squired magnitude of the STFT. In other words, Spectrogram is the 

power spectral density of 𝑟𝑏𝑏(𝑡) over time-frequency grid. Mathematically, 

 

𝑆𝐺𝑏𝑏(𝑓, 𝜉) = |𝑅𝑏𝑏(𝑓, 𝜉)|2   (6) 
 

Figure 4 shows an example of a quadcopter spectrogram. 
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Figure 4. Spectrogram of a quadcopter at 45 m range detected by a 94 GHz radar [13]. The fast repetitive 

spikes are due to drone blade flashing which is lacked by other flying objects such as birds. Hence, these 

spikes represents a distinctive characteristic for drones. 

 

 Cadence Velocity Diagram (CVD) is the magnitude of the Fourier transform of the STFT 

magnitude (|𝑅𝑏𝑏(𝑓, 𝜉)|), with respect to time 𝜉. Mathematically, 

 

𝐶𝑉𝐷𝑏𝑏(𝑓, 𝑓𝑘) = |ℱ{|𝑅𝑏𝑏(𝑓, 𝜉)|}|,  (7) 
 

where 𝑓𝑘 is called cadence frequency. 𝐶𝑉𝐷 describes the repetition rate of different 

velocities. In other words, It is a metric of how often different velocities repeat over time. 

Moreover, it characterizes the size and frequency of the STFT components which carry 
information about the moving parts of the target. It can even detect a swarm of drones [18]. 

 

 Cepstrogram (CG)applies cepstral analysis consecutively on short portions of 𝑟𝑏𝑏(𝑡) [19]. 

These short portions are defined by a sliding windowing function ω(𝑡). 

 
In the following few lines, we explain the cepstral analysis which is an important area of 

signal processing. Cepstral analysis (a variant of spectral analysis) of the signal 𝑟𝑏𝑏(𝑡) is 

defined as the inverse Fourier transform taken over the natural logarithm of the signal 

magnitude spectrum. Mathematically, the real cepstrum2C(𝑞) can be found by:  
 

𝐶(𝑞) = ℱ−1{ln(|𝑅𝑏𝑏(𝑓)|)},   (8) 

 

where the independent variable 𝑞 is called quefrency (lag time) measured in second. 𝑅𝑏𝑏(𝑓) 

is the complex spectrum of the signal 𝑟𝑏𝑏(𝑡), and ℱ−1{∙} is the inverse Fourier transform 

which can be computationally performed using inverse fast Fourier transform (iFFT). 

Cepstral is a tool used to identify periodic structures within a signal’s spectrum. Specifically, 
it isolates periodic patterns in the spectral magnitude, such as harmonic frequencies. For 

instance, while the spectrum 𝑅𝑏𝑏(𝑓)reveals peaks at harmonic frequencies of a fundamental 

frequency, the cepstrum transforms these harmonic spectral peaks into a single distinct peak 
at a corresponding quefrency. This property makes cepstral analysis particularly effective for 

                                                
2

In fact, there are three related cepstrums: real cepstrum which is shown in equation (8), power cepstrum 𝐶𝑝(𝑞) = 4𝐶2(𝑞), and 

complex cepstrum 𝐶𝑐(𝑞) = ℱ−1{ln(𝑅𝑏𝑏(𝑓))} [19].  
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detecting signal echoes and distinguishing multiple overlapping targets. Cepstral can be used 
to determine the micro-Doppler periodicity, which corresponds to the angular velocity of the 

propellers or rotors. In good conditions, it is proven to be valuable in estimating the number 

of rotors and their individual angular velocity [12]. 

 
Since CG is a result of applying cepstral analysis on short portions of the signal using 

widowing function, CG appears as a function of quefrency 𝑞 and time 𝜉 which are both 

measured in seconds. Mathematically, cepstrogram can be found by: 
 

𝐶𝐺𝑏𝑏(𝑞, 𝜉) = ℱ−1{ln(|𝑅𝑏𝑏(𝑓, 𝜉)|)},  (9) 

 

where 𝑅𝑏𝑏(𝑓, 𝜉) is the STFT, and the inverse Fourier transform is taken with respect to the 

Doppler frequency 𝑓. Figure 5 shows an example of a cepstrogram. 

 

 Wigner-Ville Distribution (WVD)is a quadratic time-frequency representation. WVD is 

used to analyse non-stationary signals to provide a high-resolution joint time-frequency 
energy density of a signalmaking it particularly useful for studying transient or rapidly 

varying signals. 

 
Unlike the previous signal analysis,WVD does not depend on STFT. In fact, WVD is 

exploited to resolve the problem of low resolution that STFT suffers from [18]. WVD of the 

signal 𝑟𝑏𝑏(𝑡) is defined as the Fourier transform of the product: 𝑟𝑏𝑏 (𝑡 +
𝑠

2
) ∙ 𝑟𝑏𝑏 (𝑡 −

𝑠

2
), with 

respect to the shifting variable 𝑠, that is: 

 

𝑊𝑟(𝑡, 𝑓) = ∫ 𝑟𝑏𝑏 (𝑡 +
𝑠

2
) ∙ 𝑟𝑏𝑏 (𝑡 −

𝑠

2
) 𝑒−𝑗2𝜋𝑓𝑠𝑑𝑠

∞

−∞
.           (10) 

 

WVD can be easily computed by applying the fast Fourier transform (FFT). WVD possesses 
several interesting properties and has a very close connection with the ambiguity function 

[20]. 

 

 
 

Figure 5. Cepstrogram of a MAV-size helicopter [12]. 
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 Empirical Mode Decomposition (EMD) decomposes a signal into intrinsic mode functions 

(IMF) and a residue [21]. Assuming 𝑟𝑏𝑏(𝑡) ∈ 𝐿𝑝[0, 𝑇]3, it can be decomposed using EMD 

such that 
 

𝑟𝑏𝑏(𝑡) = ∑ 𝑚𝑗(𝑡) +
𝐽
𝑗=1 𝑞(𝑡) ,  (11) 

where 𝑚𝑗(𝑡) ∈ 𝐿𝑝[0, 𝑇] is the 𝑗𝑡ℎ intrinsic mode function, and 𝑞𝑗(𝑡) ∈ 𝐿𝑝[0, 𝑇] is a residue. 

The basic idea of EMD is considering the signal as slow oscillations superimposed by fast 

oscillations. Clearly, EMD breaks down the signal without leaving the time domain. Figure 6 
shows the first four IMFs of a fixed-wing drone echo signal. The decomposition is according 

to the time-scale of the oscillations. The first IMFs contain the highest oscillating 

components while the last IMFs have the lowest frequency content. Every IMF must satisfy 

two conditions. First, the average of the envelop must be zero. Second, the number of zero-
crossings differs from the number of local extrema by at most one. Further, IMFs possess 

orthogonality feature, that’s, they are mutually orthogonal. 

 

 
 

Figure 6. A micro-Doppler radar echo and its first four IMFs due to a fixed- wing drone [15]. 

 
There are many other techniques for representing radar signals such as weighted spectrum [22], 

Malvar wavelets, the S-transform and various types of wavelet transform [23]. Once the 

considered signal is well represented, features such as height, max. height, radial velocity, 
spectrogram frequency profile (SFP), CVD frequency profile, Cepstrum coefficients, spectral 

correlation function and many others can be extracted and fed to a standard classifier such as 

SVM, Decision tree, K-nearest neighbour (KNN), naive Bayes (NB), linear discriminant analysis 

(LDA) and many others. 
 

3.2. Features Extraction from Radio Frequency (RF) Signals 
 

Remotely controlled drones usually perform a two-way RF communication with the ground 

station in order to exchange control and surveillance information. This wireless signalling occurs 

at least 30 times per second [24], and has special pattern called RF-signature (or RF-fingerprint). 

                                                
3𝐿𝑝[0, 𝑇] denotes the set of complex-valued signals defined on the interval 𝑡 ∈ [0, 𝑇]such that ∫ ‖𝑥(𝑡)‖𝑝𝑑𝑡 < ∞

𝑇

0
, and equipped 

with the metric 𝑑𝑝, where1 ≤ 𝑝 ≤ ∞.  
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RF analysers detect drones RF-signature by processing the electromagnetic (EM) emissions in 
the protected zone. In other words, they receive RF signals available in the surrounding space and 

process them aiming at detecting any suspicious signalling activity, which may represent a 

communication between a drone and its ground station [25]. 

 
The commercial drones have special signalling schemes (i.e., protocol signature) which is distinct 

from other types of communications over the same frequency band. Therefore, the RF analyser 

algorithms compare the captured signalling with a library of predefined signals. Once a certain 
level of matching is attained, the ADS declares danger. 

The most descriptive characteristics of drone communications which can be processed to 

generate useful features are as follows: 
 

 Packet sizestransmitted from the remote controller (RC) to the drone and from the drone to 

the RC [26] and their means. 

 

 Packets Inter-arrival timemeasured in both links. These two features require identifying 

with high precision the start and end points of packets. 
 

 Start points of drone transmissionsbased on calculated threshold 𝜏 using expectation 

maximization (EM) algorithm [27].  
 

 RF hash fingerprintis generated by extracting attributes of RF signal preamble waveforms 

[28]. The fundamental attributes are the distance between adjacent peaks of the preamble 

signal and their respective locations. By comparing the mean of the distances with each 
(weighted) distance, hash fingerprints are generated according to the following rule: 

 

ℎ𝑖 = {

1 𝑖𝑓�̅� < 𝑤𝑑𝑖

−1  𝑖𝑓�̅� > 𝑤𝑑𝑖

0  𝑓𝑜𝑟�̅� = 𝑤𝑑𝑖

   (12) 

 

where ℎ𝑖 denotes the RF hash fingerprint, �̅� is the average distances between the adjacent 

peaks and 𝑤 is some weight.  

 

 Magnitude Spectrum𝑋[𝑚] of the raw RF signal 𝑥[𝑛] which is calculated using the discrete 

Fourier transform: 𝑋[𝑚] = |∑ 𝑥[𝑛]𝑒−𝑗2𝜋
𝑚𝑛

𝑁𝑁−1
𝑛=0 |, where 𝑁 is the total number of time 

samples of 𝑥[𝑛], and 𝑀 is the total number of frequency bins in 𝑋[𝑚]. This kind of features 

should be taken in segments such that each segment consists of 𝑁 samples.  

 

The first four features of the above list are categorized as time-domain techniques which are 
mostly rely on the existence of an abrupt change at the start point of the signal. Below, we list 

several discriminative energy-time-frequency based features. In this category, the raw RF time-

domain signal is first transformed into the energy-time-frequency domain using spectrogram. 

Then, the energy trajectory, which is a function of time, is computed from the spectrogram4. 

After that, the energy transient5𝑓𝐸(𝑛) is estimated by searching for the most abrupt change in the 

mean or variance of the normalized energy trajectory. Finally, a set of statistical features are 

extracted from the energy transient [25]. 

                                                
4

Samples values of the energy trajectory function is computed by taking the maximum value across all frequencies in the 
spectrogram. 
5

The energy transient defines the transient characteristics of the signal in energy domain.  
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 Skewness𝛾 is a metric of the asymmetry of the energy distribution around the value of the 

mean 𝜇: 

𝛾 =
1

𝑁𝜎3
∑ (𝑓𝐸(𝑛) − 𝜇)3𝑁

𝑛=1   (13) 

 

 Variance𝜎2 is a metric of the spread of the energy distribution around the value of the mean 
value:  

𝜎2 =
1

𝑁
∑ (𝑓𝐸(𝑛) − 𝜇)2𝑁

𝑛=1   (14) 

 
 Entropy H is a metric of Shannon entropy which is a measure of uncertainty: 

 

𝐻 = ∑ 𝑓𝐸(𝑛) log2 𝑓𝐸(𝑛)𝑁
𝑛=1   (15) 

 

 Kurtosis𝑘 is a metric of the flatness or sharpness of the energy transient:  

 

𝑘 =
1

𝑁𝜎4
∑ (𝑓𝐸(𝑛) − 𝜇)4𝑁

𝑛=1   (16) 

 

Thus, the above RF fingerprint features can be used to train and test a machine learning classifier 

such as kNN, LDA, SVM which can be used to classify any new RF communication observed in 

the protected zone. 
 

3.3. Features Extraction from Acoustics Signals 
 

Drones often produce remarkable sound waves due to its oscillating objects such as propellers 

and engines. Acoustics sensing technology is a set of microphones that are installed in a carefully 

selected points to detect the sound waves produced by drones. Any captured sound is processed, 
then its features are extracted and compared to a library of drone acoustic signatures [29]–[33].  

 

 
 

Figure 7. A block diagram of detection by acoustics-based technology. 

 

Figure 7 illustrates the detection process using acoustics signals. The process starts with audio 

acquisition which includes picking the sounds from the surrounding environment followed by 
analogue to digital conversion. Then, the collected digitized signal is broken into a sequence of 

normalized frames6𝑥[𝑛] each of 5 seconds duration. Each frame 𝑥[𝑛] is further broken into sub-

frames 𝑢[𝑛] using a moving Hamming window 𝑤[𝑛] of length 𝐿 samples with overlapping shifts 

of 𝑠 samples (𝑠 < 𝐿). Thus, the 𝑙𝑡ℎ sub-frame is found by: 

 

𝑢𝑙[𝑛] = 𝑥[𝑛] ∙ 𝑤[𝑛 − 𝑙𝑠],  (17) 

 

where 

 

                                                
6

These frames are usually normalized in the range [−1, ,1]. 
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𝑤[𝑛] = 0.54 − 0.46 cos(
2𝜋𝑛

𝐿−1
),    0 ≤ 𝑛 < 𝐿 (18) 

 

In the sequel, we describe the most popular drone acoustic features, and how they are extracted 

from a typical sub-frame 𝑢[𝑛]. 

 

 Temporal Centroid is the balancing point of the signal amplitude over time. In other words, 
Temporal centroid is the weighted mean of the samples’ indices, with their samples values as 

the weights. Mathematically,  

 

𝐶𝑡 =
∑ 𝑘∙𝑢[𝑘]𝐿−1

𝑘=1

∑ 𝑢[𝑘]𝐿−1
𝑘=1

   (19) 

 

 Spectral Centroid (CS) is the balancing point of the signal’s spectrum U(f). CS enables to 

specify whether a given frequency is a higher or lower frequency with respect to 𝑢[𝑛]. Since 

CS is a good predictor of the brightness of a sound, it serves as an indicator of drone’s 

existence as most drones produce similar sound brightness. CS can mathematically be found 

by,  

𝐶𝑠 =
∑ 𝑓(𝑚)∙𝑈[𝑚]𝐿−1

𝑚=0

∑ 𝑈[𝑚]𝐿−1
𝑚=0

   (20) 

 

where 𝑓(𝑚) is the centre frequency of the 𝑚𝑡ℎ bin in the frequency domain, and 𝑈[𝑚] =

 |∑ 𝑢[𝑘] ∙ 𝑒−𝑗2𝜋𝑚
𝑘

𝐿𝐿−1
𝑘=0 |, that is the DFT magnitude of 𝑢[𝑛]. 

 

 Zero-Crossing rate (ZCR) is the average number of times where the signal changes sign 

within a given time window. Mathematically, 

 

𝑍𝐶𝑅 =
𝟏

(𝐿−1)
∑

|𝑠𝑔𝑛(𝑢[𝑘])−𝑠𝑔𝑛(𝑢[𝑘−1])|

2
𝐿−1
𝑘=1 ,, (21) 

 

where 

𝑠𝑔𝑛(𝑢[𝑛]) = {

−1                        𝑓𝑜𝑟𝑢[𝑛] < 0 
+1                        𝑓𝑜𝑟𝑢[𝑛] > 0

𝑠𝑔𝑛(𝑢[𝑛 − 1])𝑓𝑜𝑟𝑢[𝑛] = 0
. 

 

ZCR is a very useful feature in identifying voiced audio. 

 

 Short Time Energy measures the energy variations of the environmental sound over time. It 
is computed as follows. 

 

𝐸𝑢 =
1

𝐿
∑ |𝑢[𝑘]|2𝐿−1

𝑘=0    (22) 

 

 Spectral roll-off (SRO) is the highest frequency below which a certain fraction 𝛽 of the total 

energy resides. SRO can be found by solving the following equation, 

 

∑ |𝑈[𝑚]|2 = 𝛽 ∑ |𝑈[𝑚]|2𝐿−1
𝑚=0

𝑆𝑅𝑂
𝑚=0   (23) 

 

 Linear predictive coding (LPC) is a signal analysis which provides coefficients that carry 

the characteristics of the audio sub-frame 𝑢[𝑛]. The idea of LPC is that the current sample of 

the audio sub-frame can be estimated by a linear combination of 𝑝 previous samples. That is, 

 



Signal & Image Processing: An International Journal (SIPIJ) Vol.16, No.1, February 2025 

28 

𝑢[𝑛] ≈ ∑ 𝛼𝑖𝑢[𝑛 − 𝑖]
𝑝
𝑖=1    (24) 

 

where {𝛼𝑖}𝑖=1
𝑝

 is the set of LPC coefficients. The values of LPC coefficients can be 

determined by minimizing the mean-squired error (MMSE) over one sub-frame. In  

general, the result of MMSE7 is 

 

𝑅𝑎 = 𝑟 ⇒ 𝑎 = 𝑅−1𝑟  (25) 

where 𝑎 is a vector, whose elements are LPC coefficients. The vector 𝑟 =

 [𝑟(1) 𝑟(2) . . . 𝑟(𝑝)], where 𝑟(𝑖) = ∑ 𝑢[𝑘]𝑢[𝑘 +  𝑖]𝐿−1−𝑖
𝑘=0  is the sub-frame autocorrelation of 

delay 𝑖. In addition, 𝑅is a 𝑝 x 𝑝 Toeplitz and symmetric matrix8 which can be formed by the 

vector [𝑟(0) 𝑟(1) . . . 𝑟(𝑝 −  1)]. 
 

 Linear Predictive Cepstral Coefficients (LPCC) is a very useful techniques for estimating 

the parameters of a sound signal such as its pitch. LPCC are computed from the linear 

predictive coding coefficients {𝛼𝑖}𝑖=1
𝑝

 as follows: 

 

𝐶𝑞 = ∑ −𝐶𝑖𝛼𝑞−𝑖 + {
𝛼𝑞𝑓𝑜𝑟  1 ≤ 𝑞 ≤ 𝑝

0    𝑓𝑜𝑟𝑞 > 𝑝𝑞
𝑖𝑞−1

𝑖=1 , (26) 

 

where 𝐶𝑞  is the cepstral coefficients. LPCC is considered a time-domain approach for 

extracting the cepstral coefficients which describe the overall shape of the spectral envelop. 

 

 Mel-frequency Cepstrum Coefficients (MFCC) is the discrete cosine transform (DCT) of 

the logarithm of the Mel-scaled spectrum of the signal 𝑢[𝑛]. Unlike LPCC, MFCC is a 
frequency-domain approach for extracting the cepstral coefficients with a major difference 

that the frequency axis is converted into Mel-scale9, and the magnitude spectrum is converted 

into Mel-spectrum. Thus, converting the frequency axis into Mel-scale is performed by the 
following relation [36], 

 

𝑓𝑚𝑒𝑙 = 2595 log10(1 +
𝑓

700
)  (27) 

 

where 𝑓𝑚𝑒𝑙 is the frequency in Mel scale. Then, the Mel-spectrum is obtained by multiplying 

the magnitude spectrum by a bank of 𝛹 triangular Mel weighing filters whose outputs are 

𝑌(𝜓). Such a process is a spectrum smoothing where more perceptually meaningful 
frequencies are emphasized while the less meaningful frequencies are wrapped up into a 

small number of Melfrequency bins. The outputs of the bank of filters are then taken into 

logarithmic scale. Finally, The MFCC can be found via DCT as follows: 

 

𝑐𝑗 = ∑ log10(𝑌(𝜓)) cos (
𝜋𝑗(𝜓−0.5)

𝛹
)𝛹

𝜓=1 for  𝑗 = 1,2, ⋯ , 𝐽           (28) 

 

where 𝑐𝑗  represents the 𝑗𝑡ℎ MFCC coefficient. 

                                                
7

For solving this particular MMSE problem, there are two equivalent methods: the autocorrelation and covariance 
methods [34]. The result in (25) is based on the autocorrelation method. 
8

Due to this special structure of 𝑅, (25) can be solved with a complexity of 𝒪(𝑝2)using Levinson-Durbin’s recursive 
method instead of using the traditional Gaussian elimination method whose complexity is 𝒪(𝑝3). 
9

The relation of Mel-scale to Hz-scale is linear at a more perceptually meaningful bands and logarithmic at less  
perceptually important bands. For example, in modeling human auditory, mel-scale is linear at low frequencies (below 
1kHz) and logarithmic at higher frequencies (above 1kHz) because it has been found that for speech, the higher 
frequencies are perceptually less important than the lower frequencies [35].  
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There are many other acoustic features such as Gammtone Cepstral coefficients [37], slop of the 

frequency spectrum [30] and harmonic features [31] which can be extracted and fed to a suitable 

ML classifier to detect rogue drones. Further, time-frequency representations of the acoustic 

signal such as STFT can be used as well to train deep neural networks such as CNN or RNN [29], 
[38]. Authors in [32] investigated the effectiveness of different popular deep learning models. 

They compared the performance of CNN, RNN and Gaussian Mixture Model (GMM) when all 

are fed with MFCC and mel-spectrogram of drone’s sound as the input feature vector. They 
found that RNN model demonstrated the best performance with CNN and GMM where it 

recorded the best F-Score of 0.8009 and at a shortest processing time. 

 

3.4. Features Extraction from Electro-Optic (EO) Sensors 
 

EO technology employs terahertz frequencies in order to detect drones [7], [39]. Therefore, it 
requires line of sight link between the sensory element and the target. There are three categories 

of EO technology: visible light optics, infrared thermal imaging and laser detection and ranging 

(LADAR). The first category uses high-definition cameras to detect the visible light reflected 
from the rogue drones whereas the infrared thermal imaging uses the infrared band to gauge the 

heat differences in the protected sky (Figure 8). Then, specific algorithms run for spotting a drone 

image or heat differences caused by a drone. The LADAR, on the other hand, illuminates the 

protected space with a laser light, then collects the reflected light using optical sensors to produce 
an image of the protected zone. Unlike the first two technologies, LADAR is an active 

technology, thus, it can provide precise images and distance measurements over relatively long 

ranges. 
 

 
 

Figure 8. Quadcopter thermal image using Infrared technique [4]. 

 
It is noteworthy that the signals captured by EO technologies take a form of two- or three-

dimensional signals (i.e., images or videos). Accordingly, image processing, computer vision 

and/or pattern recognition techniques must be employed during the signal processing and feature 

extraction stage. Generally, there are two main approaches for extracting targets’ features out of 
the EO signals. 
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Figure 9.Image keypoint-based feature extraction approach [40] 

 

 Keypoint-based approach is a class of methods that produce object bounding boxes by 

detecting and grouping their keypoints. In this method, salient points (keypoints) are detected 

since they are likely to represent important content information (Figure 9). Examples of this 

approach are as follows: 
 

o Median Background Subtraction: 

 
Images are first gone through median background subtraction (MBS) specially if the 

cameras are static [40], [41]. In the design stage, images are taken for the zone to be 

protected. These images are called background images 𝐼𝑏𝑔(𝑥, 𝑦). During the system 

operation, the difference image between the captured image and the background 

image is computed which results in foreground image (flying objects). Thus, 

 

𝐼𝑓𝑔(𝑥, 𝑦) = |𝐼(𝑥, 𝑦) − 𝐼𝑏𝑔(𝑥, 𝑦)| (29) 

 

where 𝐼(𝑥, 𝑦) is the value of the pixel (𝑥, 𝑦) at the captured image, and 𝐼𝑓𝑔 is the 

resulted foreground image. Then, a threshold value is used to discriminate between 

pixels in the background image and foreground image. The threshold value must be 
chosen carefully since too high value results in miss detection while very low value 

results in a high false alarm rate. Finally, the foreground is gone through special 

image processing modules such as connected component analysis for pixels 

clustering and then sent to a ML algorithm for classification. The learning phase 
requires enough image data without drones to build up an appropriate background 

reference with which the images taken during the operational phase can be compared. 

 
o Region Proposal Network: 

 

In case of moving cameras, the regional proposal network (RPN) or some variant of 
it is used for detecting rogue drones. RPN was first proposed by Ren et al. in [42]. It 

produces a set of potential regions that are likely to contain a target. Then, a faster 

regional-based CNN deep learning algorithm is applied as described in [43].  

 

 Hierarchical and cascaded approach is based on the fact that images consist of levels of 
visual features such as edges, gradients, corners, colors...etc. In this approach, low-level 

features (such as edges) are computed at low level of processing hierarchy. As the process 

moves up to a higher level, features of lower levels are combined forming higher-order 



Signal & Image Processing: An International Journal (SIPIJ) Vol.16, No.1, February 2025 

31 

features such as corners. Gradually, this process will converge to correspond to small parts 
and to objects. Examples of this approach are Histogram of Gradient (HOG) [44] and Local 

Binary Pattern (LBP) [44].  

 

Nevertheless, images or video clips may be processed directly by computer vision and DL 
algorithms specially CNN where features are implicitly extracted by the neural network itself. 

However, this comes at the expense of more computational power and longer delay. 

 

4. CONCLUSIONS 
 

This paper investigates the detection of low-flying, small, and slow (LSS) drones using four key 

different modalities: radar, acoustic sensors, electromagnetic (EM) emissions, and electro-optical 

(EO) systems. For each modality, we presented recent advancements in signal processing 
techniques aimed at extracting distinctive features from drone-reflected or emitted signals. While 

each technology exhibits unique strengths and limitations, our analysis suggests that strategic 

integration of complementary detection systems could enhance detection performance. 
 

There are many fundamental challenges which ought to be addressed by the research community. 

For example, identifying the most information-carrying features and how much distinctive 
information each feature carries play a central role in the detection success. In addition, designers 

need to know the fundamental design limit. In other words, they need to know the minimum 

number of features required to achieve a certain detection performance level. Also, the features 

selection strategy is better to be studied. Given set of features, an analytical method that identify 
the best suited classifier is required. Furthermore, for a catalogue of features required by a given 

classifier, what is the best time-frequency representation of the collected signal (e.g., the m-DS) 

for extracting the required features? Finally, there must be some trade-off between the detection 
performance metrics such as the trade-off between the sensitivity and specificity. It’s important to 

identify a strategy for striking a balance between these metrics. This may depend on the type of 

the protected zone which may lead to establishing zones classification system.  
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