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ABSTRACT

The rapid expansion of 5G use cases and dense IoT deployments has intensified pressure on scarce
spectrum, making reliable wideband sensing indispensable for dynamic spectrum access (DSA). This work
targets energy detector-based cooperative wideband spectrum sensing (CWSS) over multiple sub-bands in
complex AWGN channels, where noise uncertainty and very low SNR commonly affect performance. We
propose a CWSS architecture that applies maximal-ratio combining (MRC) at the pre-detection stage and
employs a k-out-of-N fusion rule at the decision center. MRC boosts the effective per-sub-band SNR before
thresholding, while the fusion mechanism aggregates local binary decisions to improve global reliability
with modest reporting overhead. Comparative evaluations indicate that the MRC-aided ED with k-out-of-N
consistently achieves higher detection probability for a given false-alarm rate across challenging low-SNR
conditions, outperforming non-cooperative sensing and conventional CSS baseline. The results
demonstrate that combining MRC with k-out-of-N fusion mitigates noise-uncertainty effects, strengthens
wideband hole detection, and provides a practical sensing frontend for policy-compliant DSA in 5G
environments.
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1. INTRODUCTION

The surge in wireless services and the massive rollout of Internet of Things (IoT) endpoints have
intensified pressure on the radio spectrum, a fundamentally limited resource with most bands
already assigned. Even so, measurements show that numerous licensed allocations are seldom
fully utilized, leaving temporal and spatial gaps that could be utilized by the unlicensed users
without harming incumbents [1]. Therefore, cognitive radio (CR) has emerged as a practical
mechanism for next-generation networks to alleviate scarcity and improve utilization efficiency

[2].

Reliable spectrum sensing is essential for safe coexistence. Therefore, secondary users must
detect incumbent activity with high confidence to avoid harmful interference [3]. In practice,
noise uncertainty can severely degrade sensing reliability of energy detection (ED), especially
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under adverse operating conditions [4]. Cooperative spectrum sensing (CSS), where multiple CRs
collaborate, was introduced to counter these limitations [5]. However, in low SNR regimes
wideband settings, CSS can still yield unreliable outcomes at the fusion center, mainly when
decisions are made from weak pre-detection statistics [6,8]. Hard-decision fusion using the k-out-
of-N rule may raise decision fidelity, yet its effectiveness lessens when the per-CR SNR is poor
before thresholding [7,8]. This motivates raising each node’s effective SNR before fusion.
Maximal-ratio combining (MRC) is a well-established diversity technique that improves post-
combining SNR [9,10]. It has been successfully applied in several communication contexts,
including multi-channel repetitions to mitigate potential channel congestion in safety-critical
V2V communications [11], and large-range underwater acoustic communication [12]. Selection
combining and MRC have been implemented as effective diversity reception strategies for
suppressing interference and improving reliability in resource allocation in massive MIMO
industrial automation [13].

This work analyzes ED strategies for cooperative wideband spectrum sensing across multiple
sub-bands under i.i.d. complex AWGN. We developed an architecture that applies MRC at the
pre-detection stage and then aggregates local hard decisions with a k-out-of-N rule at the fusion
center. The study uses K=8 cognitive radios and selects k=3 as the operating vote threshold,
yielding more reliable global decisions. Simulations show notable gains in detection accuracy and
faster decision formation compared with non-cooperative baselines and fusion-only designs.
Overall, integrating MRC with k-out-of-N fusion provides a practical path to robust 5G spectrum
sensing and supports future enhancements in dynamic spectrum access.

The remainder of the paper is organized as follows: Section II reviews key concepts for wideband
spectrum sensing. Section III presents the proposed design, including the design architecture and
the integration of MRC with k-out-of-N fusion rule. Section IV presents the performance
evaluation and discusses results demonstrating the reliability and gains of the MRC-aided
cooperative scheme. Section V concludes the paper and outlines directions for future work.

2. CONCEPTS IN WIDEBAND SPECTRUM SENSING

This section reviews the foundations for our 5G sensing pipeline: single-node energy detection
under complex AWGN, cooperative hard-decision fusion (k-out-of-K), and pre-detection
diversity combining via MRC. We also outline practical wideband considerations-subband
channelization (PFB/FFT), per-subband CFAR thresholding, and noise-uncertainty effects that
motivates the proposed design.

2.1. General Single Node Wideband Sensing Format

In a single nose wideband sensing, each CR inspects the spectrum independently and decides on
occupancy using only its own local measurements. This independence keeps overhead low and
the workflow straightforward. However, it also exposes two well-known weaknesses: (i) noise
uncertainty, which distorts the test statistic and undermines threshold reliability, and (ii) the
hidden-node effect, where blockage or distance prevents a CR from observing an active primary
user (PU), leading to missed detections and potential interference [14].

The received PU signal, corrupted by additive white Gaussian noise (AWGN), is captured at the
secondary user (SU) antenna and processed by an energy detector. With discrete-time sampling,
the n-th sample y(n) follows the binary hypothesis model:
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y() = { wn), Ho

s(n) + w(n), Hy (0

Where y(n) is the SU observation for n = 1,2, ..., w(.) denotes AWGN, and s(.) is the PU signal
as seen by the SU. The hypotheses HO and H1 corresponds to PU absence and presence,
respectively.

The energy-detector test statistic is:

E =% lyml® @)

Which is compared against a fixed threshold A to infer channel occupancy. Under complex
AWGN, the threshold is defined as:

A:Q—l(Pf).Jz(Ps +g2N) (3)

Where Q’!(.) is the inverse Q-function specifying A for a target false-alarm probability (PFA), N
is the number of samples, and Ps is the signal power employed for detection. Appropriately
setting A via (3) yields the desired false-alarm operating points for subsequent comparisons [7].

2.2. Cooperative Framework for Wideband Sensing

In cooperative wideband sensing, multiple CRs jointly infer the presence of primary activity
across the band. By pooling observations, cooperation reduces the risk of incumbent interference
and improves the utilization of spectral gaps. The trade-off is increased reporting and fusion
complexity as the number of nodes grows. Moreover, operation at low SNR, common in
wideband settings, amplifies missed detections and false alarms in AWGN and fading channels,
stressing conventional designs [15]. This work considers hard-decision cooperation with local
energy detectors and a fusion center.

Assume K CRs sense the primary user channel in a 5G environment under additive white
Gaussian noise (AWGN). The discrete-time sample at CR k is modelled as:

: w;(n), H
vl = { ) + Wy, H, )

Where wy () is AWGN and s, (.) is the received PU signal at CR k. Each CR applies energy
detection to form the local test statistic E}, , compares E}, to a threshold to produce a one-bit local
decision, and forwards this hard decision to the fusion center [7,8].

Ex =25, lye(D? (5)
2.3. MRC-Aided Pre-Detection Combining
In cooperative spectrum sensing, maximal-ratio combining (MRC) aggregates the measured
signal contributions from multiple diversity branches (e.g., antenna/paths per CR), weighting

each contribution by its reliability (instantaneous SNR) so that higher-quality observations
influence the decision more strongly [10].
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In the proposed cooperative design, MRC is applied before energy detection (ED) at each CR.
Each CR (or each diversity branch within a CR) observes complex, i.i.d. AWGN:

w;(n), Hy

v, () :{h;(n)-l— w,(n), H, 1=1,....,L,n=1,..,N (6)

Where h; is the complex gain branch 1, s(n) is the PU waveform, and w; (n) ~ CN (0, ) are
independent across 1 and n.

Signal-level MRC (pre-ED): The branch signals are coherently combined to form a single stream
zm) =Yt ay(n), a = {';) (a;: combining weight for each branchl) (7)

which maximizes the instantaneous post-combining SNR.
The per-branch SNR and the post combining SNR are given as:

' 2
= (In]? B5)

, Yyre = 2i=1 V) )

i
Energy detection operates on z(n) with the static, E and a CFAR threshold A.
E=XV. lzm)]? ©)

Under the Gaussian approximation for complex AWGN, the operating probabilities are:

A—N g
PFAwre = Q (a,%\.-ﬁ) (10)
FDure = € ({:a%wmc)»-ﬁ (1

Where Q(.) is the complementary CDF of a standard normal distribution, N is the samples per
decision, L is the number of diversity branches per CR, o 2 is the noise variance, E. is the signal
power, and A is the ED threshold.

2.4. k-out-of-N Decision Fusion

Each cognitive radio (CR) forms a local hard decision aggregated at a fusion center. Under the k-
out-of-N rule, the channel is declared occupied if at least k of the K CRs report detection [16].
This strategy improves robustness while keeping reporting and computation simple.

Local hard decision (per CR)

LE, = A
“’k = (12)
0, otherwise
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Global fusion rule:

D { 1, Xk, w 2K 13

B 0, otherwise

Assuming i.i.d local decisions with false-alarm Pra and detection Pp, the global operating points
are binomial tails [8,10].

K
Pfy = Z (f) (Pra) (1 — Ppy)*J (14)
j=k
K _ _
BE=>  (%)R(1—Bp)< (15)
j=k M
For the local ED under the Gaussian (CLT) approximation,
_ A-Ng? B A-N(g?4T)
Pra=0 (322). 5y = @ (Mo D)) (16)

Where [ is the effective SNR at the detector input (I' = "Ypge) for MRC-aided cooperation, or
the per-CR SNR in the non-cooperative case), N is the sample count, a2 is the noise variance,
and A is the detection threshold.

3. PROPOSED METHODOLOGY

3.1. Design Architecture

A wideband primary transmission (3.3-3.5 GHz) is received by K cooperative cognitive radios
(CRs). Each CR band-limits and samples the signal, channelizes it into M subbands via a
polyphase filter bank / fast Fourier transform (PFB/FFT), and for each subband m, applies
maximal-ratio combining (MRC) before detection to raise the effective SNR [7,8,10]. Energy
detection followed by constant- false- alarm- rate (CFAR) thresholding at A, yields a one-bit
decision; these bits form the local vector dy, = [dy , 1 ....d; ,M].

The fusion center collects the K local vectors and, on each subband, applies a hard k-out-of-N
rule (default K = 8, k=3) to produce the global decision vector, D = D, ... ... Dys. An optional
feedback link can refine A,,, (CFAR adaptation) or acknowledge results. This design strengthens
per-CR evidence in low-SNR conditions through MRC, while the k-out-of-N rule balances
sensitivity and false alarms at the network level. The reporting overhead is modest M-bits per CR
per sensing interval (e.g., K= 8, M =5 — 40 bits total), and latency is low because only hard
decisions are transmitted. The identical subband processing chain also makes the approach easy
to scale to wider bands or additional CRs. The block diagram of the design is shown in figure 1
below:
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Figure 1: Design Architecture
3.2. System Flow Chart

The flow chart condenses the evaluation into a single loop over SNR. After loading the inputs
(number of radios K, SNR range, target/maximum false-alarm level, MRC weights, and noise
power) and initializing the state, the procedure iterates across SNR points. At each SNR, a per
sub-band CFAR threshold % baseline is set; the non-cooperative energy-detector P is computed;

then MRC is applied at each CR/subband to obtain local operating points (PFAMRC , PFAMM).

The fusion center sweeps the k-out-of-K vote threshold, forming global pairs (Py, k, Pr4.k), and
selects the k that satisfies the false-alarm constraint while maximizing Pp, k. The selected k* is
recorded for that SNR, and the loop advances. Outputs are: (i) the non-cooperative Pp curve
versus SNR, (ii) the array of optimal k* values across SNR (minimum votes required to declare
detection), and (iii) the cooperative performance at the chosen operating point, highlighting the
gain of MRC + k-of-K over the baseline. The system flow chart is shown in figure 2:

Input: numCRs, SNR_range, Pd_i, Set optimal k= 1, maxPd=0,
Pfa_i. Weight MRC, Max-Pfa, Noise — Optk by SNR =[]
Power
Apply MRC -> Pd, Pfa Set Threhold via CFAR (Noise
Sweepk =1 ... numCRs . power, Pfa_i)
Fuse (k-of-N) -> Pd-k, Pfa-k 1 Compute Non-CoopPd
(Baseline)

Is pfa-k <
max-Pfa & > Max-Pf:
Update Optimalk = maxk, PFA-k > Max-Pfa
maxpd= Pd-k Pd-k > Reject this k; and try k+1
maxPd

Output: Non-coopPd curve, optk-
by-SNR; Best # CRs (k* )

Figure 2: Design Flow Chart
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3.3. MRC with k-out-of-N Integrated Fusion Design

This subsection explains how maximal-ratio combining (MRC) is paired with k-out-of-K fusion.
At each cognitive radio (CR), the per-branch energies are combined via MRC to form a single
local statistic; a binary report is then obtained by thresholding this statistic. The fusion center
aggregates the CR reports using the k-out-of-K rule to produce the global decision and operating
characteristics.

Local statistic and decision (per CR):

L

Emve = Zizl(WIEI) (17)
N _ {1, if Eyre = A (detection) (18)
MRC = 0, otherwise

Where L is the number of diversity branches and Zis the CFAR threshold. Let PFAMRC and

Py MRC denote the local false-alarm and detection probabilities after MRC and thresholding.

Fusion at the center using the MRC-based local operating points yield the global probabilities:

K
K—out—of—-KMRC i —i
PFI—(A out—of ) _ ijh’ (-;k') (PFAMRC )J (1 o PFAMRC)}( j (19)

K
K—out—of—KMRC MRC~ —i
prener e = b | (5) Y (1 = By (20)

Replacing raw energy with the MRC-combined statistic strenghtens each CR;s evidence
(effective SNR gain). The k-out-of-K fusion selects how many positive votes are required,
enabling a tunable trade-off between sensitivity and false alarms under a specified constraint.
Together, these steps improve robustness in low-SNR regimes while preserving a straightforward
detection workflow.

4. PERFORMANCE EVALUATION
4.1. Simulation Setup

All experiments were performed in MATLAB to assess ED performance for wideband sensing
under complex AWGN. We compared (i) a non-cooperative baseline, (ii) cooperative ED with
hard k-out-of-N fusion, and (iii) the proposed MRC-aided ED with k-out-of-N. The network uses
K=8 cognitive radios, and the fusion rule is set to k=3 at the fusion center (local nodes only
perform ED and thresholding). Detection probability Pp is evaluated as a function of SNR and
summarized against the false-alarm probability Pra ; thresholds are chosen via CFAR per
subband following [7,8].

4.2. Detection Performance of the Diversity Aided Cooperative Wideband Spectrum
Sensing Scheme

Figure 3 shows the probability of detection (Pp) versus the probability of false alarm (Pra) for a
representative subband, comparing a non-cooperative energy detector (solid lines) with the
proposed cooperative scheme that applies MRC (per-CR diversity LMRC=6) and k-out-of-N



Signal & Image Processing: An International Journal (SIP1J) Vol.16, No.3/4/5, October 2025

fusion with K= 8 CRs and k= 3 (dashed lines). With N = number of samples and SNRs of -25, -
20, and -15 dB (red, yellow, green), the cooperative ROCs lie markedly above the non-
cooperative curves across the full Pra range. The advantage is most pronounced at low-moderate
pra, Where the cooperative detector reaches Pp =1 quickly even at -25 dB. At the same time, the
non-cooperative baseline requires much higher Pga to approach similar reliability.

Relative to the results in [7.8], where the k-out-of-N rule was used without pre-combining, the
integration of MRC provides an effective SNR boost at each CR, mitigates noise uncertainty, and
yields consistently higher Pp at all tested SNRs. These plots confirm that MRC-aided cooperative
wideband sensing with k-out-of-N fusion delivers a clear and distinct detection improvement
over the non-cooperative approach.

Non-Cooperative vs Cooperative (MRC + k-of-8), N=700, k=3

Probability of Detection (PD)

03} Non-Cooperative ED (SNR = -25 dB)
== == Cooperative: MRC (L=3+0dB) + k-of-8 (k=3), SNR = -25 dB

02+ Non-Cooperative ED (SNR =-20 dB)
Cooperative: MRC (L=3+0dB) + k-of-8 (k=3), SNR = -20 dB

01F Non-Cooperative ED (SNR = -15 dB)
/ == == Cooperative: MRC (L=3+0dB) + k-of-8 (k=3), SNR = -15dB

L 1 L 1 1 ! J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of False Alarm (PFA)

Figure 3: Plot of Pp versus Pra with MRC and k-out-of-N Rule across varying SNR

Figure 4 plots Pp versus SNR (-25 to -5 dB) for K=8 CRs comparing the proposed MRC-aided
cooperative scheme with k=3 (dashed) against a non-cooperative ED baseline (solid) at two
operating points, Pra. The cooperative curves dominate across the entire SNR range in both
cases; with the separation most pronounced at low SNR. At Pra = 0.1, the cooperative detector
reaches Pp = 0.9 at about -19 dB, whereas the non-cooperative curve achieves this near -9 dB.
With Pra =0.01, cooperation attains Pp = 0.9 around -17dB, while the baseline requires roughly
-7 dB. This reflects an SNR saving of =10-15 dB at Pp = 0.9. The gains arise from MRC (per-CR
diversity boosting effective SNR before detection) combined with k-out-of-8 hard fusion, which
mitigates noise uncertainty and yields markedly more reliable wideband sensing for 5G cognitive
radio scenarios.
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Py vs SNR at PFA = 0.01 and 0.1, N=700
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Figure 4: Plot of Pp versus SNR with MRC and k-out-of-N Rule across varying Pra

5. CONCLUSIONS

We presented and validated a cooperative wideband sensing scheme for 5G in which maximal-
ratio combining (MRC) is applied at each cognitive radio (CR) before hard k-out-of-N fusion at
the fusion center. Under complex AWGN and per-subband CFAR thresholding, the proposed
pipeline, evaluated with K=8 CRs, k=3, and SNRs from -25 to -5 dB, consistently delivers
higher detection probability than both the non-cooperative baseline and a cooperative design that
relies on fusion alone. ROC and Pp -SNR results show significant gains at stringent false-alarm
constraints (Pra= 0.01) and in noise-limited regimes; at the same Pra , the MRC-aided system
reaches near-unit Pp at substantially lower SNR. These improvements stem from MRC’s pre-
detection SNR boost at each CR combined with a well-chosen k that balances sensitivity and
false alarms at the network level, while keeping reporting overhead low (one hard bit per
subband).

Compared with prior work where k-out-of-N was applied without pre-combining [7,8],
integrating MRC materially reduces the impact of noise uncertainty and strengthens performance
across all tested subbands. The architecture is lightweight, hard decisions only, and scales
naturally with additional CRs and wider bands.

This present study assumes independent branches for MRC, ideal reporting links, and i.i.d.
AWGN channels, which bounds the absolute gains.

In the future, we will (i) extend the channel model to include path loss, log-normal shadowing,
and small-scale fading (Rayleigh/Rician/Nakagami-m); (ii) investigate adaptive k-selection,
including ML-driven policies; and ((iii) prototype the pipeline on a low-cost SDR/FPGA
platform to evaluate latency, energy cost, and real-world reliability.
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