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ABSTRACT 
 
The rapid expansion of 5G use cases and dense IoT deployments has intensified pressure on scarce 

spectrum, making reliable wideband sensing indispensable for dynamic spectrum access (DSA). This work 

targets energy detector-based cooperative wideband spectrum sensing (CWSS) over multiple sub-bands in 

complex AWGN channels, where noise uncertainty and very low SNR commonly affect performance. We 

propose a CWSS architecture that applies maximal-ratio combining (MRC) at the pre-detection stage and 

employs a k-out-of-N fusion rule at the decision center. MRC boosts the effective per-sub-band SNR before 

thresholding, while the fusion mechanism aggregates local binary decisions to improve global reliability 

with modest reporting overhead. Comparative evaluations indicate that the MRC-aided ED with k-out-of-N 

consistently achieves higher detection probability for a given false-alarm rate across challenging low-SNR 

conditions, outperforming non-cooperative sensing and conventional CSS baseline. The results 

demonstrate that combining MRC with k-out-of-N fusion mitigates noise-uncertainty effects, strengthens 

wideband hole detection, and provides a practical sensing frontend for policy-compliant DSA in 5G 

environments. 
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1. INTRODUCTION 
 

The surge in wireless services and the massive rollout of Internet of Things (IoT) endpoints have 

intensified pressure on the radio spectrum, a fundamentally limited resource with most bands 

already assigned. Even so, measurements show that numerous licensed allocations are seldom 

fully utilized, leaving temporal and spatial gaps that could be utilized by the unlicensed users 

without harming incumbents [1]. Therefore, cognitive radio (CR) has emerged as a practical 

mechanism for next-generation networks to alleviate scarcity and improve utilization efficiency 

[2]. 

 

Reliable spectrum sensing is essential for safe coexistence. Therefore, secondary users must 

detect incumbent activity with high confidence to avoid harmful interference [3]. In practice, 

noise uncertainty can severely degrade sensing reliability of energy detection (ED), especially 
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under adverse operating conditions [4]. Cooperative spectrum sensing (CSS), where multiple CRs 

collaborate, was introduced to counter these limitations [5]. However, in low SNR regimes 

wideband settings, CSS can still yield unreliable outcomes at the fusion center, mainly when 

decisions are made from weak pre-detection statistics [6,8]. Hard-decision fusion using the k-out-

of-N rule may raise decision fidelity, yet its effectiveness lessens when the per-CR SNR is poor 

before thresholding [7,8]. This motivates raising each node’s effective SNR before fusion. 

Maximal-ratio combining (MRC) is a well-established diversity technique that improves post-

combining SNR [9,10]. It has been successfully applied in several communication contexts, 

including multi-channel repetitions to mitigate potential channel congestion in safety-critical 

V2V communications [11], and large-range underwater acoustic communication [12]. Selection 

combining and MRC have been implemented as effective diversity reception strategies for 

suppressing interference and improving reliability in resource allocation in massive MIMO 

industrial automation [13]. 

 

This work analyzes ED strategies for cooperative wideband spectrum sensing across multiple 

sub-bands under i.i.d. complex AWGN. We developed an architecture that applies MRC at the 

pre-detection stage and then aggregates local hard decisions with a k-out-of-N rule at the fusion 

center. The study uses K=8 cognitive radios and selects k=3 as the operating vote threshold, 

yielding more reliable global decisions. Simulations show notable gains in detection accuracy and 

faster decision formation compared with non-cooperative baselines and fusion-only designs. 

Overall, integrating MRC with k-out-of-N fusion provides a practical path to robust 5G spectrum 

sensing and supports future enhancements in dynamic spectrum access. 

 

The remainder of the paper is organized as follows: Section II reviews key concepts for wideband 

spectrum sensing. Section III presents the proposed design, including the design architecture and 

the integration of MRC with k-out-of-N fusion rule. Section IV presents the performance 

evaluation and discusses results demonstrating the reliability and gains of the MRC-aided 

cooperative scheme. Section V concludes the paper and outlines directions for future work.  

 

2. CONCEPTS IN WIDEBAND SPECTRUM SENSING 
 

This section reviews the foundations for our 5G sensing pipeline: single-node energy detection 

under complex AWGN, cooperative hard-decision fusion (k-out-of-K), and pre-detection 

diversity combining via MRC. We also outline practical wideband considerations-subband 

channelization (PFB/FFT), per-subband CFAR thresholding, and noise-uncertainty effects that 

motivates the proposed design. 

 
2.1. General Single Node Wideband Sensing Format 
 

In a single nose wideband sensing, each CR inspects the spectrum independently and decides on 

occupancy using only its own local measurements. This independence keeps overhead low and 

the workflow straightforward. However, it also exposes two well-known weaknesses: (i) noise 

uncertainty, which distorts the test statistic and undermines threshold reliability, and (ii) the 

hidden-node effect, where blockage or distance prevents a CR from observing an active primary 

user (PU), leading to missed detections and potential interference [14]. 

 

The received PU signal, corrupted by additive white Gaussian noise (AWGN), is captured at the 

secondary user (SU) antenna and processed by an energy detector. With discrete-time sampling, 

the n-th sample y(n) follows the binary hypothesis model: 
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                                                                                        (1)                                                                                                                                

 

Where y(n) is the SU observation for n = 1,2, …, w(.) denotes AWGN, and s(.) is the PU signal 

as seen by the SU. The hypotheses H0 and H1 corresponds to PU absence and presence, 

respectively. 

 

The energy-detector test statistic is: 

 

                                                                                                      (2) 

 

Which is compared against a fixed threshold λ to infer channel occupancy. Under complex 

AWGN, the threshold is defined as: 

                                                                                  (3) 

 

Where Q-1(.) is the inverse Q-function specifying λ for a target false-alarm probability (PFA), N 

is the number of samples, and Ps is the signal power employed for detection. Appropriately 

setting λ via (3) yields the desired false-alarm operating points for subsequent comparisons [7]. 

 

2.2. Cooperative Framework for Wideband Sensing  
 

In cooperative wideband sensing, multiple CRs jointly infer the presence of primary activity 

across the band. By pooling observations, cooperation reduces the risk of incumbent interference 

and improves the utilization of spectral gaps. The trade-off is increased reporting and fusion 

complexity as the number of nodes grows. Moreover, operation at low SNR, common in 

wideband settings, amplifies missed detections and false alarms in AWGN and fading channels, 

stressing conventional designs [15]. This work considers hard-decision cooperation with local 

energy detectors and a fusion center. 

 

Assume K CRs sense the primary user channel in a 5G environment under additive white  

 

Gaussian noise (AWGN). The discrete-time sample at CR k is modelled as: 

 

                                                                                       (4)        

 

Where   is AWGN and  is the received PU signal at CR k. Each CR applies energy 

detection to form the local test statistic  , compares  to a threshold to produce a one-bit local 

decision, and forwards this hard decision to the fusion center [7,8].   

                                                                                          

                                                                                                (5)     
                                                                                                                                     
2.3. MRC-Aided Pre-Detection Combining  
 

In cooperative spectrum sensing, maximal-ratio combining (MRC) aggregates the measured 

signal contributions from multiple diversity branches (e.g., antenna/paths per CR), weighting 

each contribution by its reliability (instantaneous SNR) so that higher-quality observations 

influence the decision more strongly [10]. 
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In the proposed cooperative design, MRC is applied before energy detection (ED) at each CR. 

Each CR (or each diversity branch within a CR) observes complex, i.i.d. AWGN: 

 

     l = 1, …, L, n = 1, …, N                                   (6)                                                                                                                                          

         

Where  is the complex gain branch l, s(n) is the PU waveform, and  ⁓ ℂℕ (0, ) are 

independent across l and n. 

 

Signal-level MRC (pre-ED): The branch signals are coherently combined to form a single stream 

z (n) = (n),                ( )      (7)                                     

 

which maximizes the instantaneous post-combining SNR.  

 

The per-branch SNR and the post combining SNR are given as: 

 

 ,                                                                                (8)                                                                                                                                                                            

 

Energy detection operates on z(n) with the static, E and a CFAR threshold λ. 

 

                                                                                                                    (9)                                                                                                                                        

 

Under the Gaussian approximation for complex AWGN, the operating probabilities are: 

 

                                                                                                           (10) 

                                                                                                                                    

                                                                                               (11) 

 

Where Q(.) is the complementary CDF of a standard normal distribution, N is the samples per 

decision, L is the number of diversity branches per CR,   is the noise variance,  is the signal 

power, and   is the ED threshold. 

 

2.4. k-out-of-N Decision Fusion 
 

Each cognitive radio (CR) forms a local hard decision aggregated at a fusion center. Under the k-

out-of-N rule, the channel is declared occupied if at least k of the K CRs report detection [16]. 

This strategy improves robustness while keeping reporting and computation simple. 

 

Local hard decision (per CR) 

 

                                                                                                   (12)                                                                                                               
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Global fusion rule: 

 

                                                                                          (13) 

 

Assuming i.i.d local decisions with false-alarm PFA and detection PD, the global operating points 

are binomial tails [8,10]. 

 

                                                                   (14)           

                                                                                                                                                                                                                                   

                                                                             (15)                                                                                                           

 

For the local ED under the Gaussian (CLT) approximation, 

 

 ,                                                            (16)                                                                                                  

 

Where   is the effective SNR at the detector input ( ) for MRC-aided cooperation, or 

the per-CR SNR in the non-cooperative case), N is the sample count,  is the noise variance, 

and  is the detection threshold. 

 

3. PROPOSED METHODOLOGY  
 

3.1. Design Architecture  
 

 A wideband primary transmission (3.3–3.5 GHz) is received by K cooperative cognitive radios 

(CRs). Each CR band-limits and samples the signal, channelizes it into M subbands via a 

polyphase filter bank / fast Fourier transform (PFB/FFT), and for each subband m, applies 

maximal-ratio combining (MRC) before detection to raise the effective SNR [7,8,10]. Energy 

detection followed by constant- false- alarm- rate (CFAR) thresholding at  yields a one-bit 

decision; these bits form the local vector  .  

 

The fusion center collects the K local vectors and, on each subband, applies a hard k-out-of-N 

rule (default K = 8, k=3) to produce the global decision vector, . An optional 

feedback link can refine  (CFAR adaptation) or acknowledge results. This design strengthens 

per-CR evidence in low-SNR conditions through MRC, while the k-out-of-N rule balances 

sensitivity and false alarms at the network level. The reporting overhead is modest M-bits per CR 

per sensing interval (e.g., K= 8, M =5 → 40 bits total), and latency is low because only hard 

decisions are transmitted. The identical subband processing chain also makes the approach easy 

to scale to wider bands or additional CRs. The block diagram of the design is shown in figure 1 

below:  
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Figure 1: Design Architecture 

   

3.2. System Flow Chart  
 

The flow chart condenses the evaluation into a single loop over SNR.  After loading the inputs 

(number of radios K, SNR range, target/maximum false-alarm level, MRC weights, and noise 

power) and initializing the state, the procedure iterates across SNR points. At each SNR, a per 

sub-band CFAR threshold ƛ baseline is set; the non-cooperative energy-detector  is computed; 

then MRC is applied at each CR/subband to obtain local operating points ( , ).  

 

The fusion center sweeps the k-out-of-K vote threshold, forming global pairs ( , ,k), and 

selects the k that satisfies the false-alarm constraint while maximizing . The selected k* is 

recorded for that SNR, and the loop advances. Outputs are: (i) the non-cooperative  curve 

versus SNR, (ii) the array of optimal k* values across SNR (minimum votes required to declare 

detection), and (iii) the cooperative performance at the chosen operating point, highlighting the 

gain of MRC + k-of-K over the baseline. The system flow chart is shown in figure 2: 

 

 
     

Figure 2: Design Flow Chart 
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3.3. MRC with k-out-of-N Integrated Fusion Design  
 

This subsection explains how maximal-ratio combining (MRC) is paired with k-out-of-K fusion. 

At each cognitive radio (CR), the per-branch energies are combined via MRC to form a single 

local statistic; a binary report is then obtained by thresholding this statistic. The fusion center 

aggregates the CR reports using the k-out-of-K rule to produce the global decision and operating 

characteristics. 

 

Local statistic and decision (per CR): 

 

                                                                                                 (17) 

 

                                                                  (18) 

 

Where L is the number of diversity branches and ƛis the CFAR threshold. Let    and 

 denote the local false-alarm and detection probabilities after MRC and thresholding. 

 

Fusion at the center using the MRC-based local operating points yield the global probabilities:   

 

                         (19) 

                               (20)                                                                     

 

Replacing raw energy with the MRC-combined statistic strenghtens each CR;s evidence 

(effective SNR gain). The k-out-of-K fusion selects how many positive votes are required, 

enabling a tunable trade-off between sensitivity and false alarms under a specified constraint. 

Together, these steps improve robustness in low-SNR regimes while preserving a straightforward 

detection workflow. 

 

4. PERFORMANCE EVALUATION 
 

4.1. Simulation Setup 
 

All experiments were performed in MATLAB to assess ED performance for wideband sensing 

under complex AWGN. We compared (i) a non-cooperative baseline, (ii) cooperative ED with 

hard k-out-of-N fusion, and (iii) the proposed MRC-aided ED with k-out-of-N. The network uses 

K=8 cognitive radios, and the fusion rule is set to k=3 at the fusion center (local nodes only 

perform ED and thresholding). Detection probability PD  is evaluated as a function of SNR and 

summarized against the false-alarm probability PFA ; thresholds are chosen via CFAR per 

subband following [7,8]. 

 

4.2. Detection Performance of the Diversity Aided Cooperative Wideband Spectrum 

Sensing Scheme  
 

Figure 3 shows the probability of detection (PD) versus the probability of false alarm (PFA) for a 

representative subband, comparing a non-cooperative energy detector (solid lines) with the 

proposed cooperative scheme that applies MRC (per-CR diversity LMRC=6) and k-out-of-N 
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fusion with K= 8 CRs and k= 3 (dashed lines). With N = number of samples and SNRs of -25, -

20, and -15 dB (red, yellow, green), the cooperative ROCs lie markedly above the non-

cooperative curves across the full PFA range. The advantage is most pronounced at low-moderate 

PFA, where the cooperative detector reaches PD ≈1 quickly even at -25 dB.  At the same time, the 

non-cooperative baseline requires much higher PFA to approach similar reliability. 

 

Relative to the results in [7.8], where the k-out-of-N rule was used without pre-combining, the 

integration of MRC provides an effective SNR boost at each CR, mitigates noise uncertainty, and 

yields consistently higher PD at all tested SNRs. These plots confirm that MRC-aided cooperative 

wideband sensing with k-out-of-N fusion delivers a clear and distinct detection improvement 

over the non-cooperative approach. 

 

 
                   

Figure 3: Plot of PD versus PFA with MRC and k-out-of-N Rule across varying SNR 

  

Figure 4 plots PD versus SNR (-25 to -5 dB) for K=8 CRs comparing the proposed MRC-aided 

cooperative scheme with k=3 (dashed) against a non-cooperative ED baseline (solid) at two 

operating points, PFA.  The cooperative curves dominate across the entire SNR range in both 

cases; with the separation most pronounced at low SNR. At PFA = 0.1, the cooperative detector 

reaches PD = 0.9 at about -19 dB, whereas the non-cooperative curve achieves this near  -9 dB. 

With  PFA = 0.01, cooperation attains PD = 0.9 around -17dB, while the baseline requires roughly 

-7 dB. This reflects an SNR saving of ≈10-15 dB at PD = 0.9. The gains arise from MRC (per-CR 

diversity boosting effective SNR before detection) combined with k-out-of-8 hard fusion, which 

mitigates noise uncertainty and yields markedly more reliable wideband sensing for 5G cognitive 

radio scenarios. 
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Figure 4: Plot of PD versus SNR with MRC and k-out-of-N Rule across varying PFA 

 

5. CONCLUSIONS 
 

We presented and validated a cooperative wideband sensing scheme for 5G in which maximal-

ratio combining (MRC) is applied at each cognitive radio (CR) before hard k-out-of-N fusion at 

the fusion center. Under complex AWGN and per-subband CFAR thresholding, the proposed 

pipeline,  evaluated with K=8 CRs, k=3, and SNRs from -25 to -5 dB, consistently delivers 

higher detection probability than both the non-cooperative baseline and a cooperative design that 

relies on fusion alone. ROC and PD -SNR results show significant gains at stringent false-alarm 

constraints (PFA= 0.01) and in noise-limited regimes; at the same PFA , the MRC-aided system 

reaches near-unit PD at substantially lower SNR. These improvements stem from MRC’s pre-

detection SNR boost at each CR combined with a well-chosen k that balances sensitivity and 

false alarms at the network level, while keeping reporting overhead low (one hard bit per 

subband). 

 

Compared with prior work where k-out-of-N was applied without pre-combining [7,8], 

integrating MRC  materially reduces the impact of noise uncertainty and strengthens performance 

across all tested subbands. The architecture is lightweight, hard decisions only, and scales 

naturally with additional CRs and wider bands. 

 

This present study assumes independent branches for MRC, ideal reporting links, and i.i.d. 

AWGN channels, which bounds the absolute gains. 

 

In the future, we will (i) extend the channel model to include path loss, log-normal shadowing, 

and small-scale fading (Rayleigh/Rician/Nakagami-m); (ii) investigate adaptive k-selection, 

including ML-driven policies; and ((iii) prototype the pipeline on a low-cost SDR/FPGA 

platform to evaluate latency, energy cost, and real-world reliability. 
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