
Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

DOI : 10.5121/sipij.2011.2312 137

A SMART CAMERA PROCESSING PIPELINE FOR

IMAGE APPLICATIONS UTILIZING MARCHING

PIXELS

Michael Schmidt
1
, Marc Reichenbach

1
, Andreas Loos

2
, Dietmar Fey

1

1
Chair of Computer Architecture, Department Computer Science,

Friedrich-Alexander University, Erlangen-Nuremberg, Germany
{michael.schmidt, marc.reichenbach, dietmar.fey}@informatik.uni-

erlangen.de
2
TES Electronic Solutions GmbH, Munich, Germany

andreas.loos@tesbv.com

ABSTRACT

Image processing in machine vision is a challenging task because often real-time requirements have to be

met in these systems. To accelerate the processing tasks in machine vision and to reduce data transfer

latencies, new architectures for embedded systems in intelligent cameras are required. Furthermore,

innovative processing approaches are necessary to realize these architectures efficiently. Marching Pixels

are such a processing scheme, based on Organic Computing principles, and can be applied for example to

determine object centroids in binary or gray-scale images. In this paper, we present a processing pipeline

for smart camera systems utilizing such Marching Pixel algorithms. It consists of a buffering template for

image pre-processing tasks in a FPGA to enhance captured images and an ASIC for the efficient

realization of Marching Pixel approaches. The ASIC achieves a speedup of eight for the realization of

Marching Pixel algorithms, compared to a common medium performance DSP platform.

KEYWORDS

Marching Pixels, Full Buffering, Machine Vision, Sliding Window Operation, FPGA

1. INTRODUCTION

Marching Pixels (MPs) are an alternative design paradigm, e.g. to analyze global image attributes

like the zeroth and first moments of objects with an arbitrary form and dimension. Subsequently,

the centroid of these objects can be determined. This method is biologically inspired, e.g. by an

ant colony, where each artificial ant has a strongly limited complexity but the local interaction of

all individuals together results in a more complex system behavior. Using the biological inspired

MPs in a two-dimensional SIMD-structure an artificial computer architecture provides emergent

and self-organizing behavior. The resulting ASIC presented here can be a part of an embedded

stand alone machine vision system.

A problem which basically occurs is that the input images from an image sensor, which should be

processed by the MP architecture, are often noisy or need to be converted or enhanced.

Commonly, some image pre-processing operations are required [1], before the input image can be

processed efficiently by the ASIC. Image pre-processing operations are data and computationally

intensive task. Commonly, they are realized with Sliding Window Operations (SWOs), a form of

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

138

2D stencil codes [2]. Stencil codes operate on regular matrices. They update the values using

neighboring array elements in a fixed pattern. This pattern is called the stencil. For the processing

of a pixel with a SWO, a certain number of neighboring pixels and optionally a number of

coefficients are required, e.g. for convolution operations. Examples for such SWO based image

pre-processing operations are morphological operations like Erosion, Dilatation, Open, Close and

Thinning for binary images and digital filters like Median filter or feature detectors like the Sobel

Edge Detector for grayscale images. There exist a lot of more image pre-processing operations

based on SWOs. FPGAs are well suited for the implementation of such SWOs. They are very

flexible and allow a parallel processing on both, a fine-grained and a coarse-grained level. Hence,

the image pre-processing operations can be implemented efficiently relating to the application of

the machine vision system.

Figure 1 - Data Processing Flow

We will present an image processing pipeline for Marching Pixel approaches which consists of an

FPGA with a special buffering architecture for the realization of image pre-processing operations

and an ASIC for the efficient processing of MP algorithms. MP algorithms require a lot of

resources and, hence, are difficult to implement in FPGAs, especially in low-power FPGAs.

Therefore, we favor the realization of an optimized ASIC for the MP approaches and the

implementation of required image pre-processing operations should be realized in a low-power

FPGA to allow a flexible adaption to the underlying application of the vision system. Figure 1

shows an overview of the image data flow in our proposed architecture. First, an image is

captured by an image sensor and converted to digital values. Commonly, gray-scale images are

sufficient for a lot of applications in machine vision and some of them require only a binary

representation of a scene. Therefore, different processing steps are possible. The gray-scale image

can pre-processed by the FPGA and transferred directly to the MP architecture (gray dashed

arrow). It is also possible that the image is binarized in the FPGA before or after the image pre-

processing and the binarized image is transferred to the MP architecture. The object centroids can

then be calculated with the pre-processed binary or gray-scale image. The data is reduced to the

center points of the objects and further systems, for example robots, can be controlled with the

output.

In this paper we propose two architectures. The first architecture is a special buffering template

for FPGAs, for the realization of image pre-processing operations on gray-scale or binary images.

The other one is an ASIC for Marching Pixel approaches, to calculate the centroid points of

objects for example. The ASIC architecture we have already introduced in [3]. The focus in this

Paper is the interaction with an image sensor and an FPGA as image pre-processing unit to build

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

139

up an image processing pipeline for a stand-alone machine vision system.

To realize image pre-processing operations based on SWOs efficiently, it is necessary to

implement sufficient buffering strategies within the FPGA, for the data to be processed. The most

common buffering concepts are the Full Buffering (FB) and the Partial Buffering (PB) strategy

[4], [5]. We favor the FB scheme since it allows a streaming of the data from the sensor to the

Marching Pixel architecture, without a buffering of the complete image. This is not possible with

a PB strategy, because a pixel has to be loaded several times during the processing. Therefore, the

image or at least a part of the image has to be stored in an external memory, before the processed

data can be transferred to the Marching Pixel architecture.

We have adapted the standard FB approach to realize a parallel processing of SWOs, if more than

one pixel is available from the image sensor per system clock cycle. An example for the

processing of two sliding windows with the help of the FB scheme was presented in [3]. We

concretized this idea and developed an adapted FB scheme for a parallel processing with an

arbitrary degree of parallelization, depending on the available pixels per system clock cycle from

the image sensor. The new approach, realized by us, is the pipelining of several of our adapted FB

instances, to allow the consecutively processing of several SWOs before the image data is

transferred to the Marching Pixel architecture. Hence, several image pre-processing operations

can be performed simultaneously while streaming the data from the image sensor to the Marching

Pixel architecture. Thus, the overall processing time for the image pre-processing operations and

also the latency between image capturing and processing in the Marching Pixel architecture can

be reduced significantly.

The ASIC for Marching Pixel algorithms is realized as SIMD architecture. We present a short

mathematical derivation of the system and address a hierarchical three-step design strategy to

generate a full ASIC layout. For prototyping purposes only a SIMD architecture with a small

resolution of 64x64 pixels was designed. The focus in this paper is the realization of object

centroid determination with Marching Pixels. The latencies of this determination are compared

with those of a software solution running on a common medium performance DSP platform.

This paper is divided into six sections. In the next section we present former work and projects

which are related to our architectures. Afterwards, in section three, the mathematical basis for our

image processing tasks, especially for the Marching Pixel algorithms, will be explained. In

section four our generic image pre-processing architecture will be presented together with some

simulation and synthesis results. Afterwards, in section five, our Marching Pixel chip architecture

for the determination of object centroids will be discussed. At last, we want to conclude the most

important points of our paper.

2. RELATED WORK

In the following, we assume images with a resolution of m × n pixels, where n is the height and m

is the width of the image. Each pixel stores d bits of information, which is d = 1 for binary and d

= 8 for gray-scale images. We assume that for the image pre-processing operations, the image is

processed with a sliding window from the upper left to the lower right corner. We also assume a

Moore neighborhood, which means a stencil size of 3 × 3 pixels, where the center pixel is

processed by the SWO.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

140

 Figure 2 - Partial Buffering

Figure 3 - Full Buffering

The PB scheme is illustrated in Figure 2. In the PB scheme, only pixels required for the SWO at

the current position are buffered in the FPGA internally, enclosed with bold black lines. For the

processing of the next window, three pixels have to be read in which are highlighted with a gray

background in Figure 2. Because the image sensor transfers the image pixels consecutively, the

image has to be buffered in an external memory. Therefore, a streaming and processing of the

data is not possible with this buffering scheme. The advantage of PB is that only a small amount

of pixels has to be buffered internally. The FB scheme is shown in Figure 3. The pixels enclosed

by the bold black lines are buffered in the internal memory of the FPGA. Two complete image

rows and some additional pixels, depending on the stencil, have to be stored internally. In our

case, for 3x3 SWOs, this is (2·m+3) pixels. Hence, the FB scheme requires more resources than

PB. After the processing of the actual pixel value, the sliding window is moved to the next

position which is indicated by gray arrows and the window with bold gray lines in Figure 3. For

the processing of the next window, only one pixel has to be read in which is highlighted with a

gray background. Therefore, the pixels from an image sensor can be fetched directly by an FB

architecture in the FPGA and streamed to the Marching Pixel architecture after processing.

There are a lot of applications where the PB scheme is favored because of the lower resource

consumption. Several architectures for shifting a window over an image in 2D shift-variant

convolvers are presented in [6]. A PB scheme combined with parallel memory access is used

in [7]. Therefore, several external memory modules together with a memory management unit are

used. In [8] an efficient multi window PB scheme is proposed for 2D convolution. The goal was

to optimize the memory access compared to a standard PB implementation. There are also some

approaches which use different buffering schemes for a parallel processing to increase the

throughput rate. Yu and Leeser [9] presented an automated tool which allows the adjustment of

the parallelism and buffering strategy depending on the application, the on-chip memory and the

external memory bandwidth. They propose a so called block buffering, which is based on a PB

scheme. A block of pixels is loaded which is greater than the sliding window. Hence, more

windows could be processed in parallel and redundant memory accesses can be eliminated.

In [10] a parallel processing scheme based on a 2D systolic architecture is presented which can

also be classified as a PB scheme. Several windows are processed in parallel and pixels read from

external memory are reused efficiently. However, all of these approaches, based on PB, require a

storage of the image data in an external memory. A streaming and processing of the data from the

image sensor is not possible, because not all redundant memory accesses are eliminated in this

buffering scheme. Therefore, we favor the FB approach. It reduces the latency for the image pre-

processing operations, because the data can be streamed efficiently during the processing of the

SWOs from the image sensor to the Marching Pixel architecture. Considering the capacities of

state of the art FPGAs, the increased resource consumption of the FB scheme appears to be

acceptable. Furthermore, we favor the FB scheme, because it allows an efficient pipelining of FB

instances in order to process several SWOs simultaneously. This is not possible with the PB

approach.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

141

Hard-to-solve classes of image operators are those to determine global image information. An

example is the computation of centroids and orientations of large sized image objects with an

arbitrary form factor (convex as well as concave). In order to introduce the problems to extract

these object attributes, some related work for the Marching Pixel architecture is given in the

following. Integrated image processing circuits to obtain zeroth, first and second moments of

image objects are presented for the first time in the early 90's of the 20th century. An earlier

photosensitive analog circuit with these capabilities is already presented in [11]. The single photo

currents generating by the photo diodes are summed up by a two-dimensional resistor network.

The centroid and the orientation can be determined by measuring the voltages (which correspond

to the moments) at the network boundaries. A further method introduced in [12] describes, how

moments of zeroth to second order of numerous small objects (particles) can be determined in a

massively parallel fashion within an FPGA. The computation bases on image projections, while a

binary tree of full-adders performs a fast accumulation of the moments. A fully-embedded,

heterogeneous approach is addressed by [13]. The architecture presented in that paper is based on

a reduced behavioral description of a Xilinx PicoBlaze processor. Only the required operators to

compute binary images are realized. At all 34x26 processing elements have been connected to an

SIMD-processor to compute a tenth of the pixel resolution of an QVGA-image (320x240). The

calculation of the bounding boxes of the image objects as well as the zeroth, first and second

moments of each of these partitions is performed in parallel. The object centroids and orientations

are calculated by a Xilinx MicroBlaze processor. Subsequently, a Xilinx Spartan3-1000 FPGA

implementation could be realized to apply the architecture at binary images with VGA-resolution

(640x480). Another approach to extract global image information are CNNs (Cellular Neuronal

Networks). In [14] a CNN network calculates symmetry axis and centroids of exclusively axial

symmetric objects. To apply this method, an object has to be extracted by a preprocessor from a

given image. Afterwards, the coordinates of each object pixel has to be transformed into its polar

form.

In [15] it was shown by Dudek and Geese, that it is possible to rotate and mirror images in a fast

way due to the swapping of neighbored pixels and the use of only local communication

mechanisms by Marching Pixels. The present paper affects the analysis of distributed algorithms

to extract global image attributes by a two-dimensional field of calculation units (CUs). Each CU

has a Von Neumann connectivity to its immediate neighbors. The main difference to the CNNs is

the capability of these CUs to store states and to change them in dependence of the states of the

CUs in the local neighborhood. The interactions between the CUs cause a information flow

beyond the local neighborhoods, which has lead to the concept of Marching Pixels (MP) [16].

In [17] and [18] the finding of object centroids is carried out due the evolving of a horizontal line,

where MPs begin to run from the upper and lower edge of each object. During passing through

the object vertically the MPs increments the column sums within the object. When opposing MPs

meet each other, the upper column sum is added to its lower counterpart and a so called reduction

line emerges. The two points of the reduction line, adjacent to the object edge, are defined as left

side and right side. Then the evaluation process is described as follows:

- At the left side one MP starts and adds up the left sums located on the reduction line.

- When the MP reaches the right side on the opposite object edge it returns and adds up the

right sums in the same way.

- During the MP returns it calculates the difference between the actual right with the stored

left sum. When an underflow is detected the object center is found.

This algorithm is useful in the case of convex objects with a adequate form factor. Otherwise, it is

possible that the algorithm does not converge in the object centroid. Some theoretical work to the

present paper had been done by [19] and [20], especially for the Flooding and the Opposite

Flooding algorithm which converge correctly in all cases in contrast to the method mentioned

before. Key parts to implement these algorithms in FPGA hardware are presented in [21], but it is

difficult to implement more complex MP algorithms, e.g. gray-scale based approaches, for

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

142

sufficient image resolutions in low-power FPGAs. Therefore, we propose the realization of these

algorithms in an optimized ASIC architecture and to combine this ASIC with a low-power FPGA

for the flexible realization of image pre-processing operations.

3. MATHEMATICAL BASIS

3.1 Image Segmentation

To understand the image processing algorithms for the Marching Pixel architecture, it is

important to define a mathematical basis. Let I be an image with a resolution of m x n pixels (Pi,j)

in the following way:

































=

+

−

+

+

−

+

−

−

nmnin

jm

jm

jm

ji

jiji

ji

j

jij

j

mi

PPP

P

P

P

P

PP

P

P

PP

P

PPP

I

,,,0

1,

,

1,

1,

,1,

1,

1,0

,1,0

1,0

0,0,0,0

LLLL

MM

L

M

L

MM

LL

M

LL

whereas a pixel is defined as:

Pi,j = (i , j, xi,j),

where xi,j is the gray value for that pixel. To assign a pixel it's gray value υ at the coordinates (i,j),

we define the function:

υ(Pi,j) = xi,j.

The segmentation of gray-scale images can be carried out in different ways depending on the

image processing application. The easiest way to create a binary image from a given gray-scale

image is to compare the actual gray value υ(Pi,j) of each pixel with an adjustable threshold S:



 <

=
.,1

;)(,0
)(

,

,
else

SPif
Pg

ji

ji

υ
 (1)

To get feasible results while executing MP algorithms on gray-scaled images, the following

method is recommended:



 <

=
.),(

;)(,0
)(*

,

,

,
elseP

SPif
Pg

ji

ji

ji υ

υ
 (2)

All pixels below the threshold are assigned with 0 (image background) whereas all object pixels

keep their gray value.

3.2 Bounding Box Computation

The Flooding algorithm is characterized by the generation of a bounding box for each

image object. The pixels of the Von Neumann neighborhood of a pixel Pi,j are denoted as

{ Pi,j-1 , Pi-1,j , Pi+1,j , Pi,j+1 }. In the case of a binary image, all pixels { }1,0∈OP have the

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

143

attribute to be located within the bounding box of an object O. Denoted as wave, all

pixels Pw are a starting point of any MP. Due to binary operations between Pi,j and the

pixels Pi,j-1 , Pi-1,j , Pi+1,j , resp. Pi,j+1, the binary value of wO can be determined as follows:

()
()

() ()() () ()()



∨∧∨

=
=

+−+−
.,

;1,1

,1,11,1,

,

,
elsePgPgPgPg

Pgif
Pw

jijijiji

ji

jiO (3)

In the case of gray-scale images the segmentation should be carried out by (2).

Afterwards, one possibility to compute the bounding box is the following:

()
()

()() ()()() ()() ()()()





>∨>∧>∨>

>
=

+−+−
.,0000

;0,1

,1

*

,1

*

1,

*

1,

*

,

*

,

*

elsePgPgPgPg

Pgif
Pw

jijijiji

ji

jiO

(4)

The edges of the bounding box span a local cartesian coordinate system separately for

each object which is also called the Local Calculation Area of the object (see Figure 4).

The rightmost x-coordinate (ri) resp. the bottommost y-coordinate (bj) of the calculation

area of an object O is then defined by:

(){ }()

(){ }().1max

,1max

,

,

==

==

jiO
j

O

jiO
i

O

Pwjbj

Pwiri

 (5)

ErO and EbO are sets of all right edge pixels jriO
P , respectively of all bottom edge pixels

ObjiP , , which have to be computed by local 3x3 edge filters applying to the object's

bounding box:

(){ }

(){ }1:

,1:

,,

,,

=∀=

=∀=

OO

OO

bjiObjiO

jriOjriO

PwiPEb

PwjPEr
 (6)

Figure 4 - Gray-scaled image object (O) enclosed by an object-related

coordinate system denoted as local calculation area

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

144

For gray-scaled images ri*O, bj*O, Er*O, Eb*O are defined in the same way using the

g* function (2). The subsequent integer arithmetic computation steps are subdivided into forward

and backward calculation. The forward calculation provides the zeroth and the first moments in x

and y direction. During the backward calculation the centroid pixel emerges by evaluating the

zeroth and the first moments.

3.3 Forward Calculation

Figure 5 - Distributed computation of the zeroth moment

The mathematical derivation of the forward calculation in the case of binary images, including

the distributed computation of the zeroth (m00) and the first moments in horizontal (m01) and

vertical direction (m10), is already described in [21] and [19]. For gray-scale images the binary

pixel value g(P) has to be replaced with g*(P). Figure 5 shows the scheme to cumulate the zeroth

moment sum (object mass) beginning from the upper left towards the bottom right edge.

3.4 Backward Calculation

To avoid area consuming division operators, the backward computation process is distributed in a

similar way as shown in Figure 5. The two-dimensional topology can be easily used to substitute

the division by successive subtractions. For this purpose, the backward calculation process (here

only shown for the y-coordinate) starts with the initialization of two CU-registers in the bottom

right pixel
mnOP

,
 of the local calculation area. The registers are denoted as n (numerator) and d

(denominator):

().),(),(,
),(),(

),(),(

00

10

OO

y
EbjiPErjiPif

mnmmnd

mnmmnn
∈∧∈





=

=
 (7)

Furthermore, all edge state registers ey(i,j) receive a logical 1, if j = n.

Note 1. The content of register d is equal for both, the x- and y-coordinate. Therefore, no index is

required.

Finally, the pixel
mnOP

,
is left and has to be successively shifted into the object's center. In fact it

virtually "marches" into the centroid, while carrying the registers ny (resp. nx) and d. The values

of these registers are changed in the following way, depending on their actual position (i,j):

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

145









+<++−+

=+

=

.,0

);1,()1,(2),1,()1,(

;1),(),,1(

),(

else

jinjidifjidjin

jieifjin

jin yy

yy

y (8)





+

=+
=

.),1,(

;1),(),,1(
),(

elsejid

jieifjid
jid

y
 (9)

3.5 Centroid Detection

The CU-register midy(i,j) is set to a logical 1 or 0, if the following conditions occur:













<

=+

=

=

.,0

);,(),(2,1

;0)1,(,0

;0),(,0

),(

else

jidjinif

jinif

jidif

jimid
y

y

y (10)

In the case of a logical 1, midy(i,j) respectively the corresponding pixel P(i,j) is located at the y-

coordinate of the center of mass axis.

Note 2. The backward calculation in x-direction is carried out on exactly the same way, only the

coordinate label has to be changed. The centroid is determined by a logical AND of midy(i,j) and

midx(i,j):

),(),(),(jimidjimidjimid xy ∧= (11)

In fact, the centroids mid(i,j) are binary result pixels located in a cartesian coordinate system

(denoted as "centroid image") as well as the origin data. A step-by-step computation example of

an object with a calculation area of 4x4 pixels can be found in [20].

4. IMAGE PRE-PROCESSING

4.1 Parallel Full Buffering Scheme

The FB approach is frequently rejected because of its higher resource consumption. The problem

is that several complete rows have to be buffered internally in queues (shift registers). For a

comparison with a PB scheme often the Flip-Flops (FFs) and Look-up-tables (LUTs) of the

FPGA are used for the implementation of the shift registers. But this is not an efficient

implementation. In contrast, we recommend an implementation of the queues with the help of the

FPGAs internal BRAMs (Block RAM). In today’s FPGAs, there are up to several hundred of

these small memory blocks which can be efficiently concatenated to arbitrary sizes of data and

address ports. By the use of BRAMs for the queue implementation, the overall resource

consumption of a FB architecture can be greatly reduced.

As mentioned before, we have adapted the standard FB scheme to realize also a parallel

processing of SWOs, if required, because often the image sensor frequency is higher than the

system clock of the FPGA. There are also some image sensors which transfer the image data via

more than one channel. Therefore, the degree of parallelization for the FB architecture in our

system depends on the available pixels per system clock and can be adapted optimally.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

146

Figure 6 - Full Buffering for parallel

processing with p=2
Figure 7 - Full Buffering for parallel

processing with p=4

Our proposed architecture for a parallel processing with FB is outlined in Figure 6 for p = 2 and

in Figure 7 for p = 4. As mentioned before, we used a fixed mask size of 3 × 3 pixels for the

sliding window in our approach because it is sufficient for our field of applications. Every pixel,

illustrated with small squares in the figures, contains a register for the storage of d bits. Some

FIFO components can be integrated to compensate variations in the streaming process of the

image data. In contrast to a standard FB approach, the shift width in our approach was adapted in

order to realize a parallel processing. The shift width of the queues depends on the degree of

parallelization p. This case is illustrated with gray boxes and gray arrows in the figures. Every

gray box contains p pixels which are shifted within one clock cycle and there are p Processing

Elements (PE) integrated for a parallel processing. Furthermore, the address and data ports of the

BRAM components also depend on p. The black dashed box in the figures encloses all pixels

required for the parallel SWO. The small squares on the left side of the dashed box are additional

registers. Such a register preserves a right most pixel of a pixel block for the processing of the

next pixel block. Every clock cycle, p new pixels are loaded from the image sensor, are processed

and streamed to the Marching Pixel architecture, while shifting all buffered pixels with a shift

width of p to the next pixel block location.

With this parallel FB processing approach a speedup of p compared to a standard FB

implementation can be achieved with nearly the same resource consumption. The speedup is only

constrained by the available pixels per system clock cycle. How this adapted FB scheme for a

parallel processing can be used also for a pipelined processing of SWOs, will be presented in the

following section.

4.2 Pipelining of FB Stages

Because SWOs can be performed in a streaming fashion with an FB scheme, the result pixels of

an FB stage can be directly fetched by further FB stages for the processing of further SWOs,

before the image is sent to the Marching Pixel architecture. Hence, with our processing approach,

a pipelining of FB stages is possible to process different image pre-processing operations based

on SWOs simultaneously, with a marginal latency overhead per stage. In the following, we use

the parameter it for the designation of the number of pipelined instances of our FB architecture

for parallel processing and, hence, the number of simultaneously processed SWOs. The

pipelining is illustrated for p = 2 and it = 3 in Figure 8.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

147

Figure 8 - Pipelining of FB Stages

Because every FB stage has to be initialized, an overhead of (mp + 2) clock cycles is required for

every instance, where mp = m/p, before the first image pixels can be processed by the PEs. The

greater the degree of parallelization is, the smaller is the number of clock cycles required for

initialization. Therefore, a speedup of almost (p·it) is feasible for all performed image pre-

processing operations.

4.3 FPGA Implementation

For the realization of this new parallel and pipelined FB scheme, we implemented a generic

VHDL template for FPGAs and tested it on Spartan3E-1200 from the Xilinx. When using our

template, the parameters m and n for the image resolution, d for the bits per pixel, p for the degree

of parallelization and it for the pipeline depth have to be adapted. Furthermore, the PEs have to be

specified in VHDL to realize the SWOs which should be performed. A problem which has to be

solved in conjunction with SWOs, is the handling of the border pixels of the image. We made the

handling of border pixels selectable for our VHDL template. The border pixels can be set to fixed

values, but also an overlapping for the realization of a torus topology is possible. Therefore, the

interface of a PE contains, beside the pixel information of the sliding window, also a signal which

notifies if the current processing position is in the border region or not. In the current version of

the VHDL template, the mask size for the SWOs is fixed to 3x3 pixels which is sufficient for the

applications here. Currently, we improve the template to allow SWOs with arbitrary sizes.

As mentioned before, we implemented and tested the VHDL template for a Spartan3E-1200

FPGA. To show the flexibility of our architecture, we implemented some binary and also some

gray-scale operations for the input object image of Figure 1 which is shown in more detail in

Figure 9. For testing purposes, we used here only a small resolution of 128x128 pixels. In

Figure 10, the binarized version of this image can be found which can be realized with

Equation (1). A problem which is shown in Figure 10 are distortions and noise in the binarized

version of the input image. This can lead to failures in the Marching Pixel processing, e.g. in the

object centroid determination. Especially noise pixels at the image background can lead to

failures by the object centroid determination with Marching Pixels. With the help of our template,

the image content can be enhanced in the FPGA by remove noise or distortions with image pre-

processing operations based on SWOs. It is also possible to transform gray-scale images if

required.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

148

Figure 9 - Gray-scale image from sensor

Figure 10 - Binarized version of the input

image

Figure 11 - Noise reduction by Open/Close

Operations on the binarized input image

Figure 12 - Image transformation by applying

a Median filter followed by a Sobel filter

The reduction of noise of the objects in a binarized image with our template is illustrated in

Figure 11. We used a 6-stage pipeline to perform Dilatation and Erosion operations for the

realization of Open (Erosion followed by a Dilatation operation) und Close (Dilatation followed

by a Erosion) operations. The result shown in Figure 11 was calculated by a Close operation to

reduce object distortions, followed by a two times Open operation to reduce noise at the image

background. Figure 12 shows an example of an gray-scale image transformation on the input

image with the help of our template. We used a 2-stage pipeline where in the first FB stage a

Median filter is applied on the gray-scale input image to reduce noise. The second FB stage

realizes a Sobel filter which can be used for edge detection in gray-scale images.

We implemented and tested these two examples on a Nexys2 board from Digilent which contains

a Spartan3E-1200 FPGA from Xilinx. The FPGA contains 8672 Slices, 17344 FFs and 28 18Kb-

BRAMs (Block RAM). For testing purposes, we can transfer images via a serial interface to the

FPGA and after the processing of the image with our FB pipeline it is displayed on a external

monitor which is connected to the VGA interface of the board. In the following, we will present

some synthesis results of our VHDL template which consists of the FB pipeline and a control

unit. We used a significiant image resolution of n = m = 1024 pixels. In Table 1 the synthesis

results of the template pipeline for the Open/Close operations are shown. For these operations

only binary images are required, this means d = 1 and we used a 6-stage pipeline which means it

= 6 for this example. In Table 2 the synthesis results of the template pipeline for the

Median/Sobel filter on gray-scale input images are shown. For this example d = 8 and a 2-stage

pipeline was used which means it = 2 for this example.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

149

Table 1 - Synthesis results for 6-stage Open/Close pipeline

Degree of

parallelization p

System

frequency fmax

Slices FFs BRAMs

1 138 857 609 12

2 138 887 735 12

4 138 910 795 12

8 138 1067 1053 12

Table 2 - Synthesis results of a 2-stage Median/Sobel filter pipeline

Degree of

parallelization p

System

frequency fmax

Slices FFs BRAMs

1 56 948 673 4

2 56 1177 831 4

4 55 1619 1149 4

8 55 2569 1787 8

Both examples show the flexibility of our special buffering pipeline for image pre-processing

operations. A lot of other SWOs could be implemented easily with the help of our VHDL

template. As mentioned before, the input images are processed in a streaming fashion. The

latency of this pre-processing depends mainly on the possible degree of parallelization and the

pipeline depth and can be estimated with (mp+2)*it system clock cycles of the FPGA.

The synthesis results show that only a small amount of FPGA resources will be required for these

image pre-processing operations. Hence, the FPGA could be used also for controlling purposes

which are required in a stand-alone vision system, e.g. for controlling the image sensor or the

Marching Pixel ASIC. After the enhancement or transformation of gray-scale or binarized input

images, the Marching Pixel architecture can be used to perform MP algorithms like the Flooding

algorithm for object centroid determination.

5. MARCHING PIXEL CHIP ARCHITECTURE

5.1 Global Data Path

5.1.1 Binary image processing

The low pixel resolution (64x64) of the initial test chip design allows to read in the image data

din in a line parallel fashion (see Figure 13). The local communication logic of CU cell enabled

for binary pixel computation is attached at the right side of the figure. The chip operates in two

global modes: either data input/output or data computation. The activity of the shift signal

switches the chip to the input mode, where external image data is transferred and stored in the

internal CU pixel registers.

Each CU-ALU cell contains one 1-bit register (denoted as DFF), in which the previously upper

data value qpix/qmiddle state or the internal middle_state_i signal value can be stored, depending on

the global mode state. In the case of an input image and a resulting centroid image identical in

size, the read in / write out procedure can be carried out simultaneously. Therefore, one data

register can be saved which leads to only one shared input/output DFF. During the read in phase,

the signal shift is active, where each rising edge of the clock signal (clk) leads to a synchronous

capturing of image data through the module Data_In_Control. The pixel registers are

concatenated to a register chain leading to a vertical data transport from the upper to the lower

edge of the CU array.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

150

Figure 13 - Global datapath within CU-array, IO modules (gray)

When the image capturing process is done, the signal run enables all CUs to read out the internal

stored pix-value and to carry out the centroids (computation phase). After the computation latency

has expired, the centroid image data are established at the AU's outputs. When releasing the

global data communication path to its active state, the DFFs are chained again and the

synchronous data output can occur via the Data_Out_Control unit by enabling the dout signal. At

the same time new image data can be read in into the CU array.

5.1.2 Gray-scale image processing

To realize an easier global data communication, the gray-scale computation CU has separate data

paths for the image and centroid data transport (see Figure 14). The single bit CU has to be

replaced with the module, shown in Figure 14 which is able to process n-bit pixel values. The

read in phase is characterized due to the storage of the n-bit image data into the pix-register.

During the computation phase the stored bits rotate in counter-clockwise direction within the pix-

register. The internal ALU operands have deeper bit widths as the pixel operand. Therefore, a

constant number of serial zero-bits have to be preceded, before the pixel's LSB can be computed.

The number of the inserted bits depends on the pixel gray scale depth and the image resolution. If

the computation of the centroids has be done, the procedure to output the centroid image is

organized as explained above.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

151

Figure 14 - Local datapath within a gray-scale pixel computing CU

5.2 Local data path

The local data path of the MP architecture is characterized by orthogonal serial data connections

between the CUs. In Figure 15 a CU black box representation is shown. The figure depicts all

neighboured input data to compute the y-coordinate of the object's centroid. For more details

about the local datapath we refer to [3].

Figure 15 - Data Inputs for Flooding-CU

5.3 Prototype Chip

The physical implementation of the MP-Chip had been done for the binary image processing flow

as described in subsection 5.1.1. The bit-serial working CU was designed only once, because after

designing a CU chip layout it is reusable for any image resolution. The behavioral description of

the entire chip is designed in a consistently generic way for both the vertical and the horizontal

MP array resolutions n and m. Table 3 summarizes the layout results for one CU, one CU-line

and the entire 64x64 MP chip design driven by a 50 MHz clock.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

152

Table 3 - Layout parameters of the chip modules using a 90 nm CMOS technology

Parameter CU CU-line Chip

Ports

 Inputs

 Data

 Control

 Outputs

 Data

 Control

18

6

12

640

6

768

64

4

64

1

Used metal layers

Standard cells/marco blocks

Gates

3

172

536

6

25/64

34413

 7

767/64

2207516

Physical dimensions

 Height/µm

 Width/µm

41.22

41.60

45.14

2755.00

3636

3424

Critical Path latency/ns 1.48 2.59 9.67

In Figure 16 the resulting prototype chip is shown as a GDSII database representation. The

squared chip core is formed by 64x64 MP calculation units. The pad ring consists of the data in-

and output pads (64 pads each) located at the top and bottom chip edge. The left and right pad

ring segments contain eight pairs of core power supply pads (four each).

Figure 16 - Chip prototype layout (without bonding pads)

5.4 Benchmark comparison

To demonstrate the performance of chip architectures derived from our MP design strategy, a

comparison with simulation results of two different TMS320 DSP platforms had been carried out.

The older C6416 as well as the actual DaVinci platform (DM6446) had been simulated at a virtual

CPU clock of 500 MHz. Therefore, a software benchmark running on the DSP cores models has

been created by manually optimized C code programming. The computation of centroids bases on

projections of binary and gray-scale image objects (with a bit-width of eight), where the

algorithmic approach is similarly to [13]. In addition to the absolute worst case latencies shown in

Figure 17, the achieved speedups (Figure 18) are plotted as a function of squared worst case

object resolutions N2. The MP-algorithm's worst case is the largest possible L-shaped image

object with a width of exactly one pixel. As shown in the figures, a speedup of up to eight can be

achieved with the MP ASIC compared to the used medium DSP platforms.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

153

Figure 17 - MP-latencies vs. DSP-benchmarks for squared worst case objects

Figure 18 - Speedups for squared worst case objects

6. CONCLUSION

This paper depicts an processing pipeline for embedded image processing systems based on

Marching pixels. An efficient buffering strategy for the realization of image pre-processing

operations in a low-power FPGA, to enhance the captured images for the Marching Pixel

architectures, was presented. We illustrated, how several image pre-processing operations can be

realized with an adapted full buffering scheme in a parallel and pipelined fashion. Furthermore,

we explained the Marching Pixel architecture as well as the design strategy to realize a Marching

Pixels prototype chip in detail. The Marching Pixels concept is an alternative design paradigm to

determine global image information, like centroids of objects, in an elegant fashion using a

dedicated hardware platform. We showed, that an array of simple structured hardware modules is

able to extract centroids of image objects of any shape and size faster than commonly used DSP

platforms. We denote that the benchmark comparison results are based on a serial data input and

the largest possible worst case object, depending on the MP array resolution. The computation

latencies decrease dramatically using the line-parallel data input scheme supported by our chip

architecture and several image objects with smaller form factors than the worst case object.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

154

Together, both presented architectures can be used to build up a processing pipeline for stand-

alone machine vision systems utilizing Marching Pixel approaches.

ACKNOWLEDGEMENTS

The work was partially supported by funding from the Application Centre from the Embedded

Systems Initiative, a common institution of the Fraunhofer-Institute for integrated circuits and the

Interdisciplinary centre for Embbeded Systems (ESI) at Friedrich-Alexander-University Erlangen-

Nuremberg supported by the Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr

und Technologie.

REFERENCES

[1] T. Bräunl, Parallel Image Processing. Berlin, Germany: Springer-Verlag, 2000.

[2] L. T. Yang and M. Guo, High-performance computing:paradigm and infrastructure, ser. Wiley Series

on Parallel an Distributed Computing, A. Y. Zomaya, Ed. Wiley-Interscience, 2005.

[3] A. Loos, M. Reichenbach and D. Fey, “ASIC Architecture to Determine Object Centroids from Gray-

Scale Images Using Marching Pixels,” Advances in Wireless, Mobile Networks and Applications, vol.

154, pp. 234–249, 2011.

[4] X. Liang, J. Jean, and K. Tomko, “Data buffering and allocation in mapping generalized template

matching on reconfigurable systems,” The Journal of Supercomputing, vol. 19, no. 1, pp. 77–91,

2001.

[5] X. Liang and J. S.-N. Jean, “Mapping of generalized template matching onto reconfigurable

computers,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, pp. 485–

498, 2003.

[6] F. Cardells-Tormo and P.-L. Molinet, “Area-efficient 2-d shift-variant convolvers for fpga-based

digital image processing,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no.

2, pp. 105–109, 2006.

[7] M. Javadi, H. Rafi, S. Tabatabaei, and A. Haghighat, “An area-efficient hardware implementation for

real-time window-based image filtering,” in Third International IEEE Conference on Signal-Image

Technologies and Internet-Based System, 2007, pp. 515–519.

[8] H. Zhang, M. Xia, and G. Hu, “A multiwindow partial buffering scheme for fpga-based 2-d

convolvers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, pp. 200–204,

2007.

[9] H. Yu and M. Leeser, “Automatic sliding window operation optimization for fpga-based computing

boards,” Annual IEEE Symposium on Field-Programmable Custom Computing Machines, vol. 0, pp.

76–88, 2006.

[10] C. Torres-Huitzil and M. Arias-Estrada, “Fpga-based configurable systolic architecture for window-

based image processing,” EURASIP Journal on Applied Signal Processing, vol. 7, pp. 1024–1034,

2005.

[11] D.L. Standley, “An object position and orientation ic with embedded imager,” IEEE Journal of Solid-

State Circuits, vol. 26, pp. 1853–1859, 1991.

[12] Y. Watanabe, T. Komuro, S. Kagami and M. Ishikawa, “Parallel extraction architecture for

information of numerous particles in real-time image measurement,” Journal of Robotics and

Mechatronics, vol. 17, no. 4, pp. 420–427, 2005.

[13] F. Schurz and D. Fey, “A programmable parallel processor architecture in fpgas for image processing

sensors,” Integrated Desgin & Technology, Society for Design and Process Science, 2007

[14] G. Costantini, D. Casali and R. Perfetti, “A new cnn-based method for detection of symmetry axis,”

10th International Workshop on Cellular Neural Networks and Their Applications, pp. 1–4, 2006.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

155

[15] P. Dudek and M. Geese, “Autonomous long distance transfer on simd cellular processor arrays, ” 12th

IEEE International Workshop on Cellular Nanoscale Networks and Their Applications, pp. 1–6,

2010.

[16] D. Fey and D. Schmidt, “Marching pixels: a new organic computing paradigm for smart sensor

processor arrays,” Second Conference on Computing Frontiers, pp. 1–9, 2005.

[17] M. Komann and D. Fey, “Marching pixels - using organic computing principles in embedded parallel

hardware,” International Symposium on Parallel Computing in Electrical Engineering, pp. 369–373,

2006.

[18] D. Fey, M. Komann, F. Schurz and A. Loos, “An organic computing architecture for visual

microprocessors based on marching pixels,” IEEE International Symposium on Circuits and Systems,

pp. 2686–2689, 2007.

[19] M. Komann, A. Kröller, C. Schmidt, D. Fey and S.P. Fekete, “Emergent algorithms for centroid and

orientation detection in high-performance embedded cameras,” Conference on Computing Frontiers,

pp. 221–230, 2008.

[20] D. Fey, C. Gaede, A. Loos and M. Komann, “A new marching pixels algorithm for application-

specific vision chips for fast detection of objects' centroids,” Parallel and Distributed Computing and

Systems, 631-805, 2008.

[21] C. Gaede, “Vergleich verteilter algorithmen für die industrielle bildvorverarbeitung in fpgas,”

Master's thesis, Friedrich-Schiller University Jena, Germany, 2007.

Authors

Michael Schmidt received his diploma degree in computer

science in 2005 from the University of Jena, Germany.

From 2005 to 2009 he was a member of the research staff at

the Chair of Computer Architecture at University of Jena.

Since 2009 he is working at the Unversity of Erlangen-

Nuremberg, Germany. His main research interests are

embedded systems and FPGAs. He is currently working on

efficient FPGA hardware architectures for image processing

and robotics.

Marc Reichenbach studied Computer Science at

University Jena, Germany. Since 2010 he is working at

University Erlangen-Nuremberg, Germany, as a member of

the research staff at the Chair of Computer Architecture.

His main research interests are image processing in

embedded systems, FPGA- and ASIC architectures and

heterogeneous multi- and many-core architectures.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

156

Dr.-Ing. Andreas Loos, born in 1972 in Germany, studied

Electrical Engineering at the University of Applied

Sciences Jena. He graduated as Dipl.-Ing. (FH) in 2000.

During a postgraduate course in technical computer science

at Friedrich Schiller University Jena he worked on projects

to develop and to integrate highly parallel digital image

processing algorithms in ASIC hardware. His later research

work focused on the integration of biological inspired

algorithms to extract global object features in images. In

2011 he received his PhD in Computer Science from the

Friedrich Schiller University Jena. Since Spring 2011 he

works at TES Electronic Solutions GmbH in Munich,

Germany.

Prof. Dr.-Ing. Dietmar Fey studied computer science at

the University Erlangen-Nuremberg. The topic of his PhD

thesis in 1992 was about Optical Computing Architectures.

From 1999 to 2001 he was researcher and lecturer at the

Universities Jena and Siegen in Germany. In 2001 he

became a professor for Computer Engineering at the

University of Jena. Since 2009 he has the Chair of

Computer Architecture at the University of Erlangen-

Nuremberg, Germany. His research interests are in the areas

of parallel embedded processor architectures,

heterogeneous parallel architectures, Cluster and Grid

computing and Nanocomputing.

