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Abstract 

 
In this paper, we present a simultaneous detection and estimation approach for speech enhancement in 

nonstationary noise environments. A detector for speech presence in the short-time Fourier transform 

domain is combined with an estimator, which jointly minimizes a cost function that takes into account both 

detection and estimation errors. Under speech-presence, the cost is proportional to a quadratic spectral 

amplitude error, while under speech-absence, the distortion depends on a certain attenuation factor. 

Experimental results demonstrate the advantage of using the proposed simultaneous detection and 

estimation approach which facilitate suppression of nonstationary noise with a controlled level of speech 

distortion.  
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1. Introduction 

 
A practical speech enhancement system generally consists of two major components: the 

estimation of noise power spectrum, and the estimation of speech. The estimation of noise, when 

only one microphone source is provided, is based on the assumption of a slowly varying noise 

environment. In particular, the noise spectrum remains virtually stationary during speech activity. 

The estimation of speech is based on the assumed statistical model, distortion measure, and the 

estimated noise. A commonly used approach for estimating the noise power spectrum is to 

average the noisy signal over sections which do not contain speech. Existing algorithms often 

focus on estimating the spectral coefficients rather than detecting their existence. The spectral-

subtraction algorithm [1] [2] contains an elementary detector for speech activity in the time–

frequency domain, but it generates musical noise caused by falsely detecting noise peaks as bins 

that contain speech, which are randomly scattered in the STFT domain. Subspace approaches for 

speech enhancement [3] [4] decompose the vector of the noisy signal into a signal-plus-noise 

subspace and a noise subspace, and the speech spectral coefficients are estimated after removing 

the noise subspace. Accordingly, these algorithms are aimed at detecting the speech coefficients 

and subsequently estimating their values. McAulay and Malpass [5] were the first to propose a 

speech spectral estimator under a two-state model. They derived a maximum-likelihood (ML) 
estimator for the speech spectral amplitude under speech-presence uncertainty. Ephraim and 

Malah followed this approach of signal estimation under speech presence uncertainty and derived 

an estimator which minimizes the mean-square error (MSE) of the short-term spectral amplitude 

(STSA) [6]. In [7], speech presence probability is evaluated to improve the minimum MSE 

(MMSE) of the log-spectral amplitude (LSA) estimator, and in [8] a further improvement of the 
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MMSE-LSA estimator is achieved based on a two-state model. Under speech absence hypothesis, 

Cohen and Berdugo [8] considered a constant attenuation factor to enable a more natural residual 

noise, characterized by reduced musicality. Under slowly time-varying noise conditions, an 

estimator which minimizes theMSE of the STSA or the LSA under speech presence uncertainty 

may yield reasonable results [11].However, under quickly time-varying noise conditions, abrupt 

transients may not be sufficiently attenuated, since speech is falsely detected with some positive 

probability. Reliable detectors for speech activity and noise transients are necessary to further 

attenuate noise transients without much degrading the speech components. Despite the sparsity of 

speech coefficients in the time–frequency domain and the importance of signal detection for noise 

suppression performance, common speech enhancement algorithms deal with speech detection 

independently of speech estimation. Even when a voice activity detector is available in the STFT 

domain ,it is not straightforward to consider the detection errors when designing the optimal 

speech estimator. 

 

High attenuation of speech spectral coefficients due to missed detection errors may significantly 

degrade speech quality and intelligibility, while falsely detecting noise transients as speech-

contained bins, may produce annoying musical noise. In this paper, we present a simultaneous 

detection and estimation approach for speech enhancement in nonstationary noise environments. 

A detector for speech presence in the short-time Fourier transform domain is combined with an 

estimator, which jointly minimizes a cost function that takes into account both detection and 
estimation errors. Cost parameters control the tradeoff between speech distortion, caused by 

missed detection of speech components and residual musical noise resulting from false-detection. 

Under speech-presence, the cost is proportional to quadratic spectral amplitude (QSA) error [6], 

while under speech-absence, the distortion depends on a certain attenuation factor [2], [8], [9]. 

The noise spectrum is estimated by recursively averaging past spectral power values, using a 

smoothing parameter that is adjusted by the speech presence probability in subbands [13].  

 

This paper is organized as follows. In Section 2 review of classical speech enhancement. In 

Section 3, proposed approach for speech enhancement. In Section 4 we compare the performance 

of the proposed approach to existing algorithms, both under stationary and nonstationary 

environments. In section 5, we conclude the advantages of simultaneous detection & estimation 

approach with modified speech absence estimate. 

 

2. Classical Speech Enhancement  

 
Let ( )x n and ( )d n  denote speech and uncorrelated additive noise signals, and let 

( ) ( ) ( )y n x n d n= += += += + be the observed signal. 

Applying the STFT to the observed signal, we have, 

lk lk lkY X D= += += += +          (1) 

where 0 1, , ...l ==== is the time frame index and 0 1 1, , ...,k K= −= −= −= −  is the frequency-bin index. 

Let
1

lkH  and
0

lkH  denote, respectively, speech presence and absence hypotheses in the time–

frequency bin(l, k) , i.e., 

1
:

lk

lk lk lk
H Y X D= += += += +  

(2) 

0
:lk

lk lk
H Y D====  

Assume that the noise expansion coefficients can be represented as the sum of two uncorrelated 

noise components: s t

lk lk lkD D D= += += += +   where s

lkD  denotes a quasi-stationary noise component, 

and
t

lk
D denotes a highly nonstationary transient component. The transient components are 
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generally rare, but they may be of high energy and thus cause significant degradation to speech 

quality and intelligibility. But in many applications, a reliable indicator for the transient noise 

activity may be available in the system. For example, in an emergency vehicle (e.g., police or 

ambulance) the engine noise may be considered as quasi-stationary, but activating a siren results 

in a highly nonstationary noise which is perceptually very annoying. Given that a transient noise 

source is active, a detector for the transient noise in the STFT domain may be designed and its 

spectrum can be estimated based on training data.  

 

The objective of a speech enhancement system is to reconstruct the spectral coefficients of the 

speech signal such that under speech-presence a certain distortion measure between the spectral 

coefficient and its estimate, ˆ( , )
ij

d X X  , is minimized, and under speech-absence a constant 

attenuation of the noisy coefficient would be desired to maintain a natural background noise [6], 

[9]. Most classical speech enhancement algorithms try to estimate the spectral coefficients rather 

than detecting their existence, or try to independently design detectors and estimators. The well-

known spectral subtraction algorithm estimates the speech spectrum by subtracting the estimated 

noise spectrum from the noisy squared absolute coefficients [1], [2], and thresholding the result 

by some desired residual noise level. Thresholding the spectral coefficients is in fact a detection 

operation in the time–frequency domain, in the sense that speech coefficients are assumed to be 

absent in the low-energy time–frequency bins and present in noisy coefficients whose energy is 

above the threshold. McAulay and Malpass were the first to propose a two-state model for the 

speech signal in the time–frequency domain [5].The resulting estimator does not detect speech 

components, but rather, a soft-decision is performed to further attenuate the signal estimate by the 

a posteriori speech presence probability. 

 

If an indicator for the presence of transient noise components is available in a highly 

nonstationary noise environment, then high-energy transients may be attenuated by using OM-

LSA estimator [8] and setting the a priori speech presence probability to a sufficiently small 
value. Unfortunately, an estimation-only approach under signal presence uncertainty produces 

larger speech degradation, since the optimal estimate is attenuated by the a posteriori speech 

presence probability. On the other hand, increasing a priori speech presence probability prevents 

the estimator from sufficiently attenuating noise components. Integrating a jointly detector and 

estimator into the speech enhancement system may significantly improve the speech 

enhancement performance under nonstationary noise environments and allow further reduction of 

transient components without much degradation of the desired signal. 

 

3. Proposed Approach for Speech Enhancement 

 

Let (((( )))) 0ˆ,
j

C X X ≥≥≥≥  denote the cost of making a decision 
j

ηηηη  and choosing an estimator ˆ
j

X   

where X  is the desired signal. Then, the Bayes risk of the two operations associated with 

simultaneous detection and estimation is defined by [11] and [12] 

(((( )))) (((( )))) (((( )))) (((( ))))
1

0

ˆ, | |

y x

j j

j

R C X X p Y p Y X p X d X d Yηηηη
==== Ω ΩΩ ΩΩ ΩΩ Ω

==== ∑∑∑∑ ∫ ∫∫ ∫∫ ∫∫ ∫
    (3) 

where 
x

ΩΩΩΩ and 
y

ΩΩΩΩ  are the spaces of the speech and noisy signals, respectively. The simultaneous 

detection and estimation approach is aimed at jointly minimizing the Bayes risk over both the 

decision rule and the corresponding signal estimate. Let 
1( )q p H���� denote the a priori speech 

presence probability and let
R

X  and 
IX denote the real and imaginary parts of the expansion 

coefficient X . Then, the a priori distribution of the speech expansion coefficient follows:  

1 0
( ) ( | ) (1 ) ( | )p X q p X H q p X H= + −= + −= + −= + −       (4) 
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where 
0

( | ) ( )p X H Xδδδδ==== and ( ) ( , )R IX X Xδ δδ δδ δδ δ����  denotes the Dirac-delta function.  

The cost function ˆ( , )
j

C X X  may be defined differently whether
1

H  or
0

H  is true. Therefore, we 

let ˆ ˆ( , ) ( , | )
ij j i

C X X C X X H���� denote the cost which is conditioned on the true hypothesis.1 

The cost function depends on both the true signal value and its estimate under the decision and 

therefore couples the operations of detection and estimation. 

 

The cost function associated with the pair {{{{ }}}},
j j

H ηηηη  is generally defined by, 

ˆ ˆ( , ) ( , )
ij ij ij

C X X b d X X====         (5) 

where ˆ( , )
ij

d X X   is an appropriate distortion measure and the cost parameters 
i j

b  control the 

tradeoff between the costs associated with the pairs {{{{ }}}},
j j

H ηηηη .That is, a high-valued 
01

b  raises 

the cost of a false alarm, (i.e., decision of speech presence when speech is actually absent) which 

may result in residual musical noise. Similarly,
10

b  is associated with the cost of missed detection 

of a signal component, which may cause perceptual signal distortion. Under a correct 

classification, 
00 11

1b b= == == == =  normalized cost parameters are generally used. However (., .)
ij

d is 

not necessarily zero since estimation errors are still possible even when there is no detection 

error. When speech is indeed absent, the distortion function is defined to allow some natural 

background noise level such that under
0

H , the attenuation factor will be lower bounded by a 

constant gain floor 1
f

G ����  as proposed in [2], [8], [9]. 

The distortion measure of the QSA cost function is defined by, 

2

2

ˆ(| | |) , 1
ˆ( , )

ˆ( | | |) , 0

j

ij

f j

X X i
d X X

G Y X i

 − =− =− =− =
==== 

− =− =− =− =

       (6) 

and is related to the STSA suppression rule of Ephraim and Malah [6].Assume that both X and 

D  are statistically independent, zero-mean, complex-valued Gaussian random variables with 

variances
x

λλλλ  and
d

λλλλ  , respectively. Let /
x d

ξ λ λξ λ λξ λ λξ λ λ���� , denote the a priori SNR under hypothesis 

1
H  , let 

2| | /
d

Yγ λγ λγ λγ λ���� ,denote the a posteriori SNR and let / (1 )υ γξ ξυ γξ ξυ γξ ξυ γξ ξ++++����  . For evaluating the 

optimal detector and estimator under the QSA cost function we denote by jX ae αααα
����  

and Re jY θθθθ
����  the clean and noisy spectral coefficients, respectively, where | |a X====  

and | |R Y==== .Accordingly, the pdf of the speech expansion coefficient under
1

H  satisfies, 

2

1( , | ) exp( )
x x

a a
p a Hαααα

πλ λπλ λπλ λπλ λ
= −= −= −= −         (7) 

As proposed in [14], the optimal estimation under the decision 0 1, { , }
j

jηηηη ∈∈∈∈   

1

1 0
ˆ ( , ) ( , ) ( , )

j j STSA j f j
X b G b G Yξ γ ξ γ φ ξ γξ γ ξ γ φ ξ γξ γ ξ γ φ ξ γξ γ ξ γ φ ξ γ −−−−    = Λ += Λ += Λ += Λ +          (8) 

( , )
j

G Yξ γξ γξ γξ γ����  

The optimal estimator under decision 
0

ηηηη  is modified with certain attenuation factor based on 

noise variance 
lkd

λλλλ and Noisy speech power
lk

S , 
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0 0
X̂ G Y= ×= ×= ×= ×                           (9) 

Where 
10 1/2

0
( / )

lkf d lk
G G S eλλλλ −−−−= × += × += × += × +  and  

To obtain 
lk

S  recursive averaging is employed such that 

2

1,
(1 ) | |

lk s l k s lk
S S Yξ ξξ ξξ ξξ ξ−−−−

= + −= + −= + −= + −  

where ζs (0 < ζs < 1) is a smoothing parameter. 

This modification reduces greatly the nonstationary noise from Noisy speech as it considers noisy 

speech power along with its variance.  

The decision rule [14] under the QSA cost function is, 

1

2 2

10 0 1 10 2 2

0 1 1 0

1 10 0

0

(1 )( 1)
(1 )( , ) ( ) ( )

2( )

f f

S T SA

b G G b
b G G G G

G b G G

ηηηη
ξξξξ

υυυυ
ξ γξ γξ γξ γξ γξ γξ γξ γ

ηηηη

    
− + + − +− + + − +− + + − +− + + − + >>>>    

++++Λ − − −Λ − − −Λ − − −Λ − − −    
<<<<    −−−−    

  (10) 

Fig.1. shows a block diagram of the simultaneous detection and estimation system, the estimator 

is obtained by (8) and (9) and the interrelated decision rule (10) chooses the appropriate estimator 

for minimizing the combined Bayes risk.  

 

Fig.1. Simultaneous Detection and Estimation System. 

 

4. Experimental Results 
 

In our experimental study we consider the problem of hands free communication in an emergency 

vehicle and demonstrate the advantage of the simultaneous detection and estimation approach 

under stationary & nonstationary noise environments. Speech signals are recorded with sampling 

frequency at 8 kHz and degraded by different stationary & nonstationary additive noise. 

Nonstationary noise like siren noise is added with car noise for different levels of input SNR. The 

test signals include 12 speech utterances from 12 different speakers, half male and half female. 
The noisy signals are transformed into the STFT domain using half-overlapping Hamming 

windows of 32-ms length, and the background-noise spectrum is estimated by using the IMCRA 

algorithm[13] .The performance evaluation includes objective quality measure- SNR defined, in 

dB, a subjective study of spectrograms, and informal listening tests.  

 

The proposed approach is compared with the OM-LSA algorithm [8]. The speech presence 

probability required for the OM-LSA estimator as well as for the simultaneous detection and 

estimation approach is estimated as proposed in [8]. For the OM-LSA algorithm, the decision-

directed estimator with 0.92αααα ====  is implemented as specified in [8], and the gain floor 
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is 20
f

G dB= −= −= −= − . Fig. 2 shows waveforms and spectrograms of a clean signal, noisy signal, and 

enhanced signals for Speech degraded by car and siren noise with SNR of 5 dB.  The speech 

enhanced by using the OM-LSA algorithm & the simultaneous detection and estimation approach 

are shown in Fig. 2.(c) and 2.(d), respectively. However, the simultaneous detection and 

estimation approach with modified speech absence estimate yields greater reduction of transient 

noise without affecting the quality of the enhanced speech signal. 

 

Fig. 2. Speech waveforms and spectrograms. (a) Clean speech signal: “kamal naman kar.” in Marathi 

uttered by a male subject (b) Speech degraded by car noise and siren noise with SNR of 5dB. (c) Speech 

enhanced by using the OM-LSA estimator. (d) Speech enhanced by using the simultaneous detection and 

estimation approach with modified speech absence estimate using, b01 = b10 = 2.5 as proposed by authors. 

Quality measures for the different input SNRs are shown in Table 1 & Table 2.The results from 

Table 1 demonstrate improved speech quality obtained by the simultaneous detection and 

estimation approach for stationary noise environments.  
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TABLE 1 

 

Output SNR (in dB) By Using The OM-LSA Estimator & Simultaneous Detection And 

Estimation Approach for Different Stationary Noise Environments with Varying Input SNR 

Between 15dB to -5dB. 

 

Noise Input SNR OM-LSA 

Estimator 

Proposed 

Simultaneous 

Detection & 

Estimation approach 

White Gaussian Noise 15 18.0290 21.1937 

10    15.0292 18.7496 

5 11.9830 9.7287 

0 8.5279 7.7648 

-5 5.9435 7.3687 

Car 15 15.5912 20.8507 

10 12.9320 16.3415 

5 10.5166 13.8647 

0 8.3231 10.3499 

-5 6.0857 7.6548 

The results from Table 2 demonstrate improved speech quality obtained by the simultaneous 

detection and estimation approach with modified speech absence estimate for nonstationary noise 

environments (car with siren noise).  

TABLE 2 

Output SNR (in dB) By Using The OM-LSA Estimator & Simultaneous Detection And 

Estimation Approach for Different Nonstationary Noise Environments with Varying Input SNR 

Between 15dB to -5dB. 

 

Noise Input SNR OM-LSA 

Estimator 

Proposed 

Simultaneous 

Detection & 

Estimation approach 

Car(with siren noise) 15 16.1622 19.7296  

10   12.8231   16.0058 

5 12.3619 12.4352 

0 3.0348 4.9814 

-5 -3.9558 -2.3462 

Train 15 17.6705 21.6112 

10 15.5157 17.0405 

5   14.9869   16.2158 

0 12.2862 13.4268 

-5 6.8280 7.7332 

Subjective listening tests confirm that the speech quality improvement achieved by using the 

proposed method. 

5. Conclusion 

 
We have presented a single-channel speech enhancement approach in the time–frequency domain 
for nonstationary noise environments. A detector for the speech coefficients and a corresponding 
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estimator with modified speech absence estimate for their values is jointly designed to minimize a 

combined Bayes risk. In addition, cost parameters enable to control the tradeoff between speech 

quality, noise reduction, and residual musical noise. Experimental results show greater noise 

reduction with improved speech quality when compared with the OM-LSA suppression rules 

under stationary and nonstationary noise. It is demonstrated that under nonstationary noise 

environment, greater reduction of nonstationary noise components may be achieved by exploiting 

reliable information with simultaneous detection and estimation approach. 
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