
Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.1, February 2012 

DOI : 10.5121/sipij.2012.3101                                                                                                                         1 

 

Non-acoustic Communication with Speech 

Smoothing 
 

Yuet Ming Lam 

Faculty of Information Technology, 

Macau University of Science and Technology. 
ymlam@must.edu.mo 

 

Abstract This paper presents a technique to synthesize speech from SEMG signals using a frame-by-

frame basis. SEMG signals are firstly enframed and classified into a number of phonetic classes by a 

neural network, then the produced sequences of phonetic indices are translated to acoustic signals by 

concatenating their corresponding pre-recored speech segments. A significant advantage of the proposed 

synthesis based approach compared with previous recognition based approach is that, human is intelligent 

enough to recognition the synthesized speech although there is errors in it. Experimental evaluations based 

on the synthesis of eight words show that on average over 73.4% of the words can be synthesized correctly 

and the neural network can classify the SEMG frames of seven phonemes at a rate of 81.9%. The accuracy 

can be increased to 88.6% by using a glitch removal technique to smooth the produced sequence of 

phonetic indices. The results show that the phoneme-frame based speech synthesis technique can be 

applied to SEMG-based non-acoustic communication.  
 

Keywords Non-acoustic communication, surface electromyogram signals, neural network.  

 

1. Introduction 

Speech is the most natural way of self-expression and communication among humans. The 

speech production process involves the contraction of lungs to produce an air stream, the 

vibration of vocal cords to produce voiced excitation, and the resonance of the air stream in the 

vocal tract. However, there are situations in which communication via speech is impossible or 

inappropriate. For example, people suffering from the side effect of laryngectomy surgeries or 

vocal cord damage are not able to produce normal speech, because vocal cord vibration plays a 

vital role in the speech production process. A noisy environment may also degrade the quality of 

the produced speech and results in lower intelligibility. Moreover, using speech may be 

undesirable in some situations, e.g. in the military operations. 

 

To address some of these limitations of speech communication, non-acoustic communication 

systems that using surface electromyogram [1] signals to recognize speech have been proposed. 

Some proposed systems focus on recognizing words from isolated SEMG signals [2] [3] [4] [5] 

[6] [7]; these systems demonstrate the feasibility of using SEMG signals to improve the 

performance of conventional speech recognition systems in some noisy environments [2] [8]. The 

improvement is mainly due to the fact that SEMG signals are immune to acoustic noise. It has 

also been demonstrated that SEMG-based speech recognition is applicable to computer-human 
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interface [9] [10] [11]. SEMG-based phoneme recognition is presented in [12] [13] [14] [15] [16] 

[17], but the recognition is done by regarding each phoneme as an isolated word. 

 

The previously proposed SEMG-based speech recognition systems show the feasibility of 

recognizing speech based on SEMG signals. However, most of the proposed methodologies focus 

on classifying the SEMG signals into a limited set of words. These approaches share similarities 

with isolated-word speech recognition systems in that there must be sufficient silence intervals 

before and after the speech signals, i.e., the words must be labeled and isolated from each other. 

These word recognition systems have difficulties in recognizing continuous speech, and the 

recognition accuracy depends largely on the word duration. To overcome this limitation, Sugie et 

al. [18] proposed to recognize phonemes in a frame-by-frame basis. Where SEMG signals are 

blocked into frames and each frame is classified into one of the five vowels or silence. Using this 

approach, labeling and isolation are not required. However, the recognition accuracy is low 

because the recognition is based on the active/inactive states of the SEMG channels. Moreover, 

the feasibility of applying this methodology to word recognition is not addressed. 

 

This paper proposes to synthesize speech, including phonemes, words or even sentences, directly 

from SEMG signals using a phoneme-frame based feature extraction and conversion approach. In 

particular, the training data set consist of phonemes only, words are synthesized to evaluate the 

performance. To synthesize a word, features are extracted from frame blocked SEMG signals and 

classified into a number of phonetic classes, the classification is done by a neural network which 

is trained using features extracted from parallel recorded SEMG and speech signals when 

pronounce phonemes, the produced sequence of phonetic class number are mapped to acoustic 

signals by concatenating corresponding pre-recorded speech. Because the features are extracted 

from phonemes and conversion is done at the frame level, the proposed method is potentially 

applicable to continuous speech synthesis. Moreover, a significant advantage of the proposed 

synthesis based approach compared with previous recognition based approach is that, human is 

intelligent enough to recognition the synthesized speech although there is errors in it. The 

contributions of this paper are as follows: 

 

• A phoneme-frame based technique to synthesize speech from SEMG signals which can 

potentially achieve unlimited vocabulary. 

• An analysis of the SEMG features and a feature reduction scheme. 

• A glitch removal technique to improve the classification accuracy of phoneme frames.  
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Figure 1: Electrode placement: One channel is from the cheek, the other is from the chin, an 

additional electrode is attached to the forehead as a reference point. 

2  Methodology 

2.1  Data Acquisition 

Two channels of SEMG signals are collected as shown in Figure 1. The first channel is obtained 

from the cheek, which is about 2.5cm from the nose. The second channel is obtained from the 

chin. An additional electrode is attached to the forehead as a reference point. The SEMG signal is 

amplified with a gain of 1000. Both the amplified SEMG signal and speech are recorded 

concurrently using a PCI data acquisition card [19] at a sampling rate of 8000Hz. 

 

The training data set consists of data samples of seven phonemes: ae, iy, ao, uw, sh, f and s. Each 

data sample is recorded in a twenty-second period, during which the speaker repeatedly 

pronounces one of the seven phonemes. The training data set for each phoneme is comprised of 

the SEMG and speech signals of four such data samples. Since SEMG signals from each channel 

were blocked into frames every 22.5ms, 24864 SEMG frames of each channel are involved in 

training. 

 

Both phonemes and words are used for testing. The words are shaw, she, ash, shoe, see, saw, fee 

and off, whose phonetic transcriptions are formed by concatenating the seven phonemes. The 

testing data set consists of one data sample of each phoneme (6216 frames) and one data sample 

of each word (64 words). The phoneme and word samples are used to evaluate the performance 

of the neural network classification and the accuracy of speech synthesis respectively. The 

recorded speech is used as a reference for performance evaluation. 

 

2.2  Speech Feature Selection 

The input speech is blocked into 22.5ms frames, and there is no overlapping between frames. 

This scheme has been used in speech coding standard [20]. For each speech frame, ten linear 

predictive (LP) coefficients, pitch and root mean square value are extracted and concatenated as 

speech feature vector. 
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Table I: STFTC number and corresponding frequency region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3  SEMG Feature Selection 
 

The SEMG signals for each channel are blocked into frames, and for each SEMG frame, the 

short-time Fourier transform [21] coefficients (STFTCs), root mean square value (RMSV), and 

zero-crossing rate (ZCR) are extracted and used as SEMG features. 

 

• STFTC: The frequency spectra from 1Hz to 450Hz are calculated from each SEMG 

frame and divided into ten equal frequency sections; the bandwidth of each section is 45Hz. 

The frequency components in each section are summed to give one STFTC corresponding 

to that section, which result in ten STFTCs. The STFTC numbers and their corresponding 

frequency regions are shown in Table I. Totally, twenty STFTCs are extracted from the 

two SEMG channels. 

 

• RMSV: The root mean square value is calculated for each SEMG frame according to the 

following equation: 

                      ∑
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where x(i) is the ith SEMG sample within the frame and N is the frame length. Two 

RMSVs are extracted from the two SEMG channels. 

 

• ZCR: The zero-crossing rate is known as the number of time-domain zero-crossing 

within a particular duration of signal, divided by the length of that duration. Two ZCRs are 

extracted from the two SEMG channels.  

 

 

 

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.1, February 2012 

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Phoneme-based feature extraction and neural network training: Concurrently recorded 

speech and SEMG signals are blocked into frames. Speech feature vectors extracted from speech 

frames are quantized using a speech-feature-vector codebook to give one speech-feature index for 

each speech frame. The SEMG feature vectors extracted from SEMG frames are paired with 

corresponding speech feature indices to form input-target training pairs. The neural network is 

trained using these input-target pairs. 

This SEMG feature selection scheme leads to twenty-four features, including twenty STFTCs, 

two RMSVs and two ZCRs. To analysis the effect of different frequency regions on recognition 

performance, the symmetric divergences [22] between different STFTCs are calculated. 

Symmetric divergence is a separability measure of two distributions, and the divergence between 

two classes, ω1 and ω2, is calculated as follows: 
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where µ1 and ∑1
are the mean and covariance of class ω1, and µ2 and ∑2

 are the mean and 

covariance of class ω2. The average divergence is calculated as follows: 
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where N is the number of classes. In this paper, N is equal to 8, which includes silence and 7 

phonemes. 

 

The SEMG frame size should be chosen carefully, because it affects the frequency resolution [23]. 

If a small frame size is used, better time resolution can be obtained, but this results in poor 

frequency resolution. On the other hand, using larger frame size can improve the frequency 

resolution, but results in a loss of information between adjacent frames. In this paper, correlation 

between frame size and performance is analyzed. 

 

2.4  Neural Network Training 

 
As shown in Figure 2, the speech signals for the training phonemes are blocked into frames, and 

the LP coefficients, pitch, and root mean square value are extracted and concatenated to form 

speech feature vectors. As shown by the dash line in the figure, unsupervised clustering, based on 

the K-means algorithm, is used to extract the representative feature vectors for the phonemes and 

silence. The extracted feature vectors form a speech-feature-vector codebook. 

 

After forming the speech-feature-vector codebook, the training vectors for the neural network can 

be constructed as shown in Figure 2. It is noted that only phonemes are involved in training. The 

speech signals of the training phonemes are blocked into frames and the extracted speech feature 

vectors are quantized using the speech-feature-vector codebook. Thus, each speech frame is 

represented by a codebook index. Because the codebook is formed by the representative speech 

feature vectors, the speech feature index indicates to which phoneme a speech frame belongs. The 

SEMG signals of training phonemes are also blocked into frames, and the STFTCs, RMSVs, and 

ZCRs are extracted from two SEMG channels and concatenated to form an SEMG feature vector. 

Each of the concatenated SEMG feature vectors is paired with the corresponding speech feature 

index to form an input-target training pair. A three-layer MLP (Multilayer Perceptrons) [24], 

which take an SEMG feature vector as input and produces one of eight possible speech codebook 

indices (silence and seven phonemes) as output, is trained using the input-target pairs. 
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Figure 3: Speech synthesis process: SEMG signals recorded from both channels are blocked into 

frames, and SEMG feature vectors are extracted. The trained neural network is then used to 

classify these vectors into a sequence of speech feature indices. A concatenation synthesis method 

is applied to reconstruct the target speech 

2.5  Speech Synthesis and Glitch Removal 

In addition to synthesizing phonemes, the SEMG-based synthesis method proposed in this paper 

can also be applied to synthesize words as shown in Figure 3. To this end, SEMG signals 

recorded are blocked into frames, the features from the cheek and chin channels are concatenated 

to form SEMG feature vectors. Then the neural network is used to classify the concatenated 

SEMG feature vector into one of the seven phonemes or silence, which results in a sequence of 

speech feature indices for each word to be synthesized. 
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Figure 4: The glitch removal technique used to smooth the sequence of phonetic indices, where os 

is the sequence produced by the neural network, ns is the smoothed sequence, n is the sequence 

length of os. The threshold used in this work is 7. 

 
The error rate of the produced sequence of speech feature indices can be improved by using a 

majority-filtering glitch removal technique. The idea is based on the observation that voiced 

speech signals are fairly stationary over a short period of time; in contrast, characteristics of the 

signal change over long periods of time, i.e. on the order of 200ms or more [25]. This technique 

scans the produced sequence of speech feature indices over a window of 9 indices (i.e. 202.5ms) 

with step 1, the index with the highest frequency within the window is found, and a new index 

equals the index found is produced if the frequency exceeds a threshold (Figure 4). In this work, a 

threshold of 7 is used. 

 

After performing glitch removal on the sequence of speech feature indices, a concatenation 

synthesis method [26] is applied to reconstruct the target speech in a frame-by-frame basis. Based 

on the speech feature indices, target phoneme frames are loaded from the pre-recorded set and 

concatenated to form the complete speech. The transition between phonemes is smoothed using 

overlap and add method. 

  

  

 

 

 

 

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.1, February 2012 

9 

 

 

 

 

 

 

 

 

 

 

Figure 5: Average classification rate for SEMG feature vectors (20 STFTCs, 2 RMSVs, 2 ZCRs) 

for different SEMG frame sizes 

Table II: Confusion matrix showing the classification performance based on 10 STFTCs, RMSV, 

and ZCR extracted from the cheek channel. The SEMG frame size is 112.5ms. 
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Table III: Confusion matrix showing the classification performance based on 10 STFTCs, RMSV, 

and ZCR extracted from the chin channel. The SEMG frame size is 112.5ms. 

 

 

 

 

 

  

 

 

Table IV: Confusion matrix showing the classification performance based on 20 STFTCs, 2 

RMSVs, and 2 ZCRs extracted from both channels. The SEMG frame size is 112.5ms. 

 

  

 

 

 

 

Table V: Confusion matrix showing the classification performance after feature reduction, which 

uses 10 STFTCs, RMSV, and ZCR extracted from the cheek channel and STFTC 1 to 5, RMSV, 

and ZCR extracted from the chin channel.  
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3.Experiments and Results 

3.1  SEMG Frame Size 

To find the SEMG frame size that balances the trade-off between the time and frequency 

resolution, classification performance of the neural network for SEMG frames of different sizes is 

analyzed. Classification is done using SEMG feature vectors contains 20 STFTCs, 2 RMSVs, and 

2 ZCRs, the neural network is trained using the training data set and performance is evaluated 

using the phonemes in the testing data set. The average classification rates for SEMG frame sizes 

from 22.5ms to 202.5ms are shown in Figure 5. A clear trend can be seen in this figure: the 

classification rate is higher for larger SEMG frame sizes and becomes saturated for frame sizes 

larger than 112.5ms. Because smaller frame size gives better time resolution, frame size of 

112.5ms is chosen for further experiments despite larger frame size gives slightly higher 

classification rate. 

  

 3.2  Sensor Positioning 

To further analyze the correlation between sensor position and performance, the neural network is 

trained using SEMG feature vectors extracted from a single channel, and classification 

performance is evaluated using single-channel SEMG signals of the testing phoneme set. Table II 

shows the confusion matrix for classification using 10 STFTCs, RMSV, and ZCR extracted from 

the cheek, and the results obtained for chin channel are shown in Table III. In these tables, the 

rows show the classified labels found by the neural network and the columns represent the true 

labels. The average classification rates of the cheek and chin channels are 67.7% and 45.0% 

respectively. Some phonemes, such as s and silence have similar characteristics, as we can see 

that nearly 30% SEMG frames of s are misclassified as silence in both tables. And 35.2% of sh 

are misclassified as uw when using the cheek channel; but it is only 6.0% when the chin channel 

is used. On average, using cheek channel is better. therefore, we can conclude that the cheek 

channel provides more discriminative information for phoneme classification. 

 

The classification results based on 20 STFTCs, 2 RMSVs, and 2 ZCRs extracted from both 

channels are shown in Table IV. The average classification rate is 82.1%, which is better than 

using a single channel. 

 

3.3  Assessment of STFTCs and Feature Reduction 
Figure 6 shows the amplitude distribution of STFTCs obtained from the cheek and chin channels. 

One can see from Figure 6 that some phonemes such as s and silence, sh and uw have similar 

characteristics. On the other hand, some phonemes are more separable, e.g. ae and iy, uw and 

silence. 

 

To measure the separability of phonemes, divergence test is employed. Figure 7 shows the scaled 

average divergence scores for STFTCs obtained from the cheek and chin channels. The average 

divergence scores are calculated using Equation 3. We can see from Figure 7 that STFTCs are 

more distinguishable in low frequency regions, and using the cheek channel is better than the chin 

channel in distinguishing these STFTCs. This explains the classification results obtained in 

Section 3.2. Similar characteristic can also be observed in Figure 8, where the scaled average 

divergence score for sub-STFTC vectors obtained from the cheek and chin channels is shown. 

The sub-STFTC vectors are formed by selecting STFTCs in Table I. This figure shows that the 

divergence scores saturate when the number of STFTCs increase, this phenomenon is especially 
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noticeable for the chin channel, which becomes saturated when number of STFTCs is larger than 

5. This analysis suggests that STFTC 6 (226-270Hz) to STFTC 10 (406-450Hz) of the chin 

channel can be removed. 

 

Classification is done using the reduced features consisting of all STFTCs of the cheek channel, 

STFTCs 1 to 5 of the chin channel, and all RMSVs and ZCRs from both channels. The results are 

show in Table V, and the average classification rate is 81.9%. It is almost the same as the average 

classification rate using all SEMG features extracted from both channels, which is 82.1%. 

 

Figure 6: Distribution of STFTCs obtained from cheek and chin channels. The horizontal axis is 

the scaled STFTC amplitude, and the vertical axis is the number of occurrences. Red solid line: 

ae; green solid line: iy; blue solid line: ao; cyan solid line: uw; magenta solid line: sh; yellow 

solid line: f; black solid line: s; blue dash line: silence. 

 

 

 

 

 

 

 

Figure 7: Scaled average divergence scores for STFTCs 1 to 10. 
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Figure 8: Scaled average divergence scores for sub-STFTC vectors obtained from the cheek and 

chin channels. The vertical axis is the average divergence score. The horizontal axis is the 

number of STFTCs involved to obtain a sub-STFTC vector, e.g. STFTC 1 - 3 means that the sub-

STFTC vector consists of STFTC 1 (1-45Hz) to STFTC 3 (91-135Hz). 

Table VI: Confusion matrix after applying the glitch removal technique to the produced speech 

feature indices based on reduced SEMG features. 

 

 

 

 

 

 

 

 

3.4  Glitch removal 

The average classification accuracy based on reduced SEMG feature is 81.9% (Table V). The 

glitch removal process is then applied to correct misclassification errors. The results after 

applying the glitch removal are shown in Table VI. Although more voiced SEMG feature vectors 

are misclassified as silence vectors in some phonemes, e.g. uw and sh, the overall classification 

rates for all phonemes are improved and the average classification rate is improved to 88.6%. A  

summary of average classification rates from Table II to VI is shown in Table VII. 
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Table VII: A summary of average classification rates. 

 

 

 

 

 

 

 

 

  

Table VIII: Synthesis result for words. 

 

 

 

 

 

 

 

 

 

 

3.5  Speech synthesis 

Words are synthesized using the reduced features obtained from both channels and the glitch 

removal technique. In particular, SEMG feature vectors formed by concatenating 10 STFTCs, 

RMSV, ZCR from the cheek channel and STFTC 1 to STFTC 5, RMSV, ZCR from the chin 

channel, and presented to the neural network to produce the speech feature indices. Error 

correction is applied to the resulting sequence of indices and words are synthesized by the 

concatenation method. One  twenty-second  sample  of each word is used in the experiment. 

Table VIII is the results obtained, which shows that the percentage of words correctly synthesized 

is 73.4%. A word is regarded as synthesized correctly if the phonetic transcriptions of the 

synthesized word match the reference word, e.g. a synthesized word she is regarded as   

synthesized correctly if  its phonetic  

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.1, February 2012 

15 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Spectrograms of four synthesized instances: (a) - (d) are the reference speech of saw, 

ash, off and shaw, respectively, and (e) - (h) are the corresponding synthesized speech. 

transcriptions is a phoneme sh followed by a phoneme iy. Figure 9 shows the spectrograms of 

four synthesized instances. One can see that the synthesized instances and the reference speech 

have similar characteristics despite the words are not involved in the training process. Although 

the synthesized instances and the reference speech may not align perfectly, e.g. some silence 

frames before the reference word off are synthesized as phoneme ao as shown in sub-figures (c) 

and (g) of Figure 9, it looks like the synthesized word off is left shifted with several frames, the 

intelligibility of the synthesized instances is not affected. Currently, a simple speech synthesis 

model is used, and this paper is focusing on how to produce correct phonetic transcriptions, 

because it is directly correlated to the quality and intelligibility of the resulting speech. It is 

believed that the quality can be improved if a more sophisticated synthesis model is used.  

4  Conclusions 

A frame based speech synthesis technique using SEMG signals is presented. It is found that a 

frame size of 112.5ms can provide a good balance between time and frequency resolution. The 

quantitative assessment shows that the spectral features of SEMG signals are more 

distinguishable in the low frequency regions. It is also found that cheek channel provides more 

useful information for classifying SEMG signals and the features can be reduced with slight 

performance degration. The performance can be further improved by removing glitches in the 

produced index sequences. Experimental results show that words can be synthesized from SEMG 

signals using the proposed frame-based feature extraction and conversion methodology. 
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