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ABSTRACT

Accurate recognition of sound patterns in spectamgs is important step for further recognition
applications. However, background noise forms funelatal problem regardless the species under study.
In this paper, crest factor feature was extractednf the limited dynamic range spectrogram. The
developed crest factor image behaved as smoothesibreof the spectrogram, at which edges of the
involved sound patterns were detected without teednof prior smoothing filters and their scaling
constraints. Attached noise — surrounds the deteedges — was removed, to form the enhanced
spectrogram. The method was compared to other examaent approaches such like spectral Subtraction
and wavelet packet decomposition. Comparison weaemeed on different structure patterns of bats and
birds. Results indicate how the method is promidioig efficiently enhancing the spectrogram while
preserving its temporal and spectral accuracy. Tiethod correctly classified three bioacoustics sggec
with an accuracy of 94.59%, using few 2D featuretheir enhanced spectrograms
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1. Introduction
1.1. Problem formulation

Bioacoustics calls have been efficiently employed & long time for species detection,
classification, and recognition. These calls hatigdesound patterns which are almost unique and
oriented for the investigated bio-source. Seveesmhporal and spectral sound features are
extracted from these patterns in time and frequadtayains; respectively. These features are
used to train and develop a learning system, usiathods such as Artificial Neural Network,
which afterwards is able to successfully recognthe test bioacoustics calls to their
corresponding groups or species, according to tiesitures values. The approach have been
widely used in many life science problems, suctih@sbioacoustics detection of hidden grain
weevils for early treatment [1], and detection af bltrasound echolocation calls in the windmills
region to avoid their expected collision with tHades|[2].

In general, collection of time domain and frequedoynain features are used to develop more
accurate detection system, revealing the importasfcbaving a reliable spectrogram (time-

frequency intensity 2D image) of the specified sh&®pectrogram is an important representation
of sound data looks like the human hearing whicbased on a kind of real-time spectrogram
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encoded by the cochlea of the inner ear [3], tesifp and recognize patterns of sound samples.
However, spectrogram is usually attached by diffeferms of noise; including those formed
during sound recording[4],and those produced dutim transformation to frequency domain
result in spectral leakage, and up to 10% erroid)equency and/or power spectrum
computations [5]. These noises directly degrade ghality of the waveform, deteriorate the
worth of the extracted features and thus lead &odaracy in recognition of the sound patterns
[6].Further difficulty is added to the problem digevariability of patterns structure, which can
vary greatly including vertical straight, slopedagght, sinusoidal type and relatively random
patterns. However, filtering noisy signals throufk spectrogram is considered more effective
than separate filtrations in time and/or frequedoynain, since sound patterns do not cover the
whole spectrogram image, and therefore easieltéo &ff the noise.

A spectrogram enhancement approach which is indkgmeron the noise type, level, and structure
is required. Once established, the pattern redognialgorithms can operate efficiently and
smoothly on the clear “only patterns” spectrograbherefore, the problem of spectrogram
enhancement and accurate detection of the soutetsmbhas attracted researchers’ interest from
a variety of backgrounds ranging among signal ambe processing, and statistical models [7,8].

1.2. Related work

Common and recent techniques for spectrogram eeh@mt include basic band pass

filtering[9], spectral subtraction[10], Wiener 8if11], and wavelet packet decomposition[12,
13].Simple methods, such as the band pass filteanginally employed the use of time-domain

filtering of the corrupted signal, however, thisasly successful when removing low or high

frequency noise and does not provide satisfactsuylts for many species which have frequency
range overlaps with their attached noises [14].

Although the base spectral subtraction methodng sinple and efficient, it assumes the noise to
be additive and uncorrelated with the signal [18loreover, the enhancement by spectral
subtraction tends to produce sounds with music¢dhets that are often more objectionable than
the original noise [16]. Later, the multi-band dpalcsubtraction method was proposed, at which
the corrupted sound is initially divided into seslefrequency bands, and then the spectral
subtraction method is applied to each band[17]sThethod outperforms the standard power
spectral subtraction method resulting in supen@ctogram quality and largely reduced musical
noise. Meanwhile, the Wiener filter technique ballycconsiders the beginning of a signal is
noise, and its adaptive type removes noise based toaining data [18]. However, during the
operation on data with unknown noise, the noiseellesan be underestimated and the
enhancement can be slightly milder [19]. The methbdsed on wavelet packet decomposition
are effective in removing background noise in ghectrogram. But they cannot suppress much of
the noise generated during the Fourier transfoomabecause the former noise is usually random
Gaussian distribution while the latter may be medddy Rayleigh distribution [7,20].

Image analysis techniques applied to this area tineaspectrogram as an image, provides a wide
range of methods which could be beneficial to gizblem. One of these developed methods is
the noise suppression using spectrogram morphalbgiittering [21,22], applying two
subsequent operations of erosion and dilation.erbsion was responsible to remove noise from
the noisy spectrogram while dilation used to restany erroneously removed sound patterns.
However, it improves the enhancement accuracy Hy ©6% when combined by nonlinear
spectral subtraction with a suitable selectiorhefthreshold. The author in [23] proposed an edge
detection method which initially smoothes the spmgiam using a Gaussian filter, followed by
thresholding each point by comparison to the bamkgd measurement. This allows for time
invariant noise conditions and computing indepetigefior each frequency bin, which
successfully detected (90%) of whale calls. If sheoothing kernel is quite large, the detrimental
effect is reduction in the detection accuracy, ey at low SNR. Meanwhile, the authors in
[24] passed the spectrogram through 2D bilatehar fto reduce noise and preserve its patterns
2
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edges. The filtered spectrogram is sent to twolleanarocessing paths, at which the first path
extracts significant patterns from background nol$e second path performs the edge detection
and restructures the rough patterns that can libassa mask. The processed image from the first
path passes through a mask generated from the dsgath. However, pattern recognition still
severely depends on image processing skills andtrsgeam resolutions which lead to
concealment of very short patterns. Apartial déferal equation technique was used in [25] for
edge enhancement and noise reduction based orulanizgtion of the mean curvature motion
equation. However, the comparisons indicate thatniethod gives almost similar results as the
wavelet based methods.

In this paper, an improved spectrogram enhancemetitod has been developed based on the
last advances in the edge detection techniquesdyhamic power range of the spectrogram is
limited to avoid the problem of low level portion$ the spectrogram expanding and thereby
obscuring the detail of the energetic portionseAftards, the crest factor image is calculated as a
smoothed version of the original spectrogram imagece escaping the application of smoothing
Gaussian filters and their drawbacks [26].Basedtmnedge detection algorithm presented in
[28], the sound patterns in the crest factor image detected. Afterwards, the original power
values of the patterns edges and their interiorrecenstructed, while the power values of the
patterns surrounding are eliminated, as they reptebe attached noises whether attached to the
sound or generated during the frequency domainsfivamation. The proposed method was
applied to several bioacoustics calls of differBNIR values, and compared to the results given
by band pass, multi-band spectral subtraction, fidter, and wavelet packet decomposition
methods, with respect to subjective and objectieasares. Finally, possible implementations of
the proposed method in obtaining the enhanced éreguand power contours, reconstruction of
the enhanced waveform, and simplified pattern reitmgn operation are presented.

2. Material and method

2.1.Signal processing

Audio sound streams are sampled in time domain sdttable sampling frequencies, selected to
be higher than the double of maximum frequencyhie sound stream, satisfying the Nyquist
sampling theorem [5] and avoid antialiasing in #ignal reconstruction. Figure (1) shows an
example for the call of Sitta canadensis bird whigds sampled at 11025 Hz. The signal is
divided into segments with length of 1% of the tosggnal length and 90% overlapping
percentage. Each segment is then multiplied byl&anvindow function and transformed to
frequency domain through Fast Fourier TransformT{FFThe frequency domain representation
of the signal (i.e., spectrogram) is the power spet distribution with frequency, at each time
instant, as plotted in figure (2).The implementataf the Bartlett window function is to have
better frequency resolution while keeping acceptadpectral leakage and amplitude accuracy
[27].

The resultant spectrogram contains important sqaitérns of the signal immersed in attached
noise. These noises are not only due to the base attached to the sound, but also generated
during FFT, therefore, cleaning the signal in tideenain, will not ensure clean spectrogram.
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Figure 1. A sound stream for Sitta canadensisihitome domain revealing its contents of
two long pulses and one long inter-interval.
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Figure 2. The spectrogram for the time domain sighéigure (1), after being divided into
segments of length equal to 1% of the total sitgraith, multiplied by Bartlett window
function and transformed to frequency domain usiRg.

2.2.Limiting the dynamic range

The attached noise to the spectrogram may be asstorfeve almost same power value, which
can be removed from the whole spectrogram. Howekier will eliminate as well the non-noisy
patterns which have this power value.Therefores thiresholding scheme should be carefully
applied through the physical fact of the limitechdsgnic range. Althoughthe whisper cannot be
heard in loud surroundings, the spectrogram wititam all details about whisper and loud sound
powers. Thus, the spectrogram powers have to htetnto avoid much of the attached whisper
(i.e., noise).The range is limited to 40 dB beltw maximum value for all tested sounds, because
most bioacoustics signals are expanded/slowededtiman speech range, which is normally
perceived over this range [29]. Therefore, any paiith power value outside this range,
including those of noise as well as very weak pasteare eliminated from the spectrogram, as
shown in figure (3).
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Figure 3. The limited spectrogram after the povaues were limited to a dynamic range of
40 dB, clarifying how most of the noise and veryakwsound patterns were eliminated.

2.3.Detection of the pattern edges

The algorithm starts by sliding &% matrix (mask) over the limited dynamic range spmgiam
image inx direction and then iy direction, with step of one pixel. The represemec! of the
mask is its centroid which is calculated by equa{ib). The intensities of the pixels (i.e., power
values) enclosed by the mask are used to caldliaterest factor feature, given in equation (2),
which is a ratio of the maximum value to the roatam square value, indicating how much
impacting is occurring inside the mask, as scharalyyi explained in figure (4).

Wheref; is the gray level intensity value of pixgl and the back slash means that only the
qguotient of the division is considered. and are the peak and root mean square of the
pixels intensities; respectively, afds the crest factor of the mask.
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Figure 4. The crest factor for some basic cureswing how much impacting occurs.

As a result, the crest factor image is obtained,ghthering the local crest factors calculated
during the sliding of the mask. Although this edfggection algorithm follows the one presented
in [28], it is applied to the crest factor imagetead of combination of energy and skewness
images, because this combination presents bothgstdges (output of the energy feature) and
weak edges (output of the skewness feature). Heheenoises are also detected as patterns,
displayed in figure (5a)with a signal to noise sa(SNR) - given in equation (3) - of1.95.
Alternatively, the crest factor feature of an imggesents the edges that have impact to their
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surrounding (i.e., non-weak edges), as displaydigjime (5b) with SNR 0f2.82. Furthermore, the
limited dynamic range makes the crest factor moeammngful since it is a measure of relative
spatial intensity change.
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Figure5. Two features from the limited dynamic ramsgectrogram of figure (3), () combination
of energy and skewness images, following the algaripresented in [28], and (b) the crest
factor image.

Afterwards, the Sobel operators given in equatidnafe employed on the crest factor image,
through equation (5),to get its gradient images(dG). And with the aid of equations (6) and
(7), the edges strength (E) and the edges direc{®)rare calculated; respectively.
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Wherelsanddgare the derivative operators in x and y directiorspectively. 5 and 4 are the

intensities of the gradient images in x and y dioet, respectively. E is the edge strength ans
the edge direction with the x-axis.

Finally, the edges image is formed by the valuesdgfes strength (E), and executed by the non-
maximum suppression algorithm and flux equilibrigheck [28], to suppress thick edges to one
pixel width and fill the missing pixels in the eddieection. Consequently, the final edges image,
given in figure (6) is produced, which separates ghtterns from surrounding noise. However,

the edges do not provide information about wheeety are the inner of the patterns and where
are their surroundings.
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Figure 6. The edges image of the limited dynamigeaspectrogram using 5*5 mask and a
flux check matrix of size 3*3

2.4. Reconstructing the spectrogram

A classification condition is applied to each romdafterwards each column of the edges image.
This condition compares the average power spectiuall pixels among two subsequent edges
in one row (column), with respect to the averagegrospectrum of these two edges, as clarified
in the algorithm given in figure (7).

! col I= {i1: 12 e in}v] = {f1'j2r ---njm}
: (0 fork=1:n—1
Emo. L Pixels (iy: ig1s) = {sound pattern ;mean(Power (iy: ix+1)) = mean(Power(iy, ix+1))
k= e+ = 1surrounding noise ; mean(Power (iy: ix41)) < mean(Power (i, ix+1))
- end
ln
ot fork=1m-1
, L. sound pattern ;mean(Power(ji: jx+1)) = mean(Power(ji, jr+1))
Pixels (it ji+1) = : ica + P P
/ surrounding noise ;mean(Power(ji: jr+1)) < mean(Power (i, jr+1))
i)
iom end

Figure 7. Schematic diagram and algorithm for thssification condition which classifies sound
patterns from their surrounding noise.

Thus, the patterns are defined and their poweregadue restored, and the surrounding noises are
also defined and their power values are eliminatesylts in the enhanced spectrogram shown in
figure (8).
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Figure 8. The enhanced spectrogram by the propasébd revealing sound patterns and
eliminating their surrounding noise.
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3. Experimental results and discussion

The results obtained by the proposed method [PMEvievestigated and compared to those
obtained by conventional and modern spectrogramaresément methods. The designing
parameters of these methods were carefully seldotgilve best enhanced spectrogram for the
first application (Rhinolophus blasii bat), and wédixed over the following applications to have

leading results and trustful comparisons. The fitethod is the widely used band pass filter [BP]
with a band width enclosing the sound patterns, rapdsured at half-power points (i.e., gain -3
dB relative to peak). The second method is multiebapectral subtraction [MBSS]using 4

linearly-spaced frequency bands, over subtractamtof of 4 and power factor of 1.5 [7]. The

third method employs the Wiener filter [WF]with pestral distance threshold of 3 and the initial
0.03 seconds considered as noise[11]. The fourthodds wavelet packet decomposition [WPD]

with soft thresholding and 5 level decompositiosgg symlet 8 wavelet [14, 16]. The number of
tested sound samples are 42 (each with 23-25 s&hfaolophus blasii bat), 37 (each with 23-25

sec for Barbastella barbastellus bat), 48 (each @/5-0.9 sec for Vanellus vanellus bird), and
45 (each with 0.55-0.9 sec for Parus major bird)h & frame length 0f0.025 sec multiplied by

Bartlett window function, and 90% overlapping pertege.

The analysis was applied by both subjective anéatlje measures of enhancement accuracy.
The subjective measure is borrowed from the fidlghsychology and the human judgment of
evaluation. One of the commonly used subjective stnes is the Mean Opinion Score
(MOS),which gives a numerical estimation of thegeéred quality of the media received [30].
After enhancing the spectrogram, its time domagmai was reconstructed and played back to 10
listeners. These listeners (5 females, and 5 males asked to give a score [1 = bad, 2 = poor, 3
= fair, 4 = good, and 5 = excellent] to estimate émhanced spectrogram quality. Afterwards, the
MOS was calculated by averaging the given scoras, igs confidence interval (Cl) was
computed for 95% confidence level, as describdijure (9).

A2=0.025
z

Probability density

standard deviation
Figure 9. Normal distribution curve with 95% corgitte level. A=P (z>2z*)=(1-0.95)/2
=0.025, P (z<=2z*) =1-0.025 = 0.975, resultz® = 1.96 (from normal distribution table).
The confidence interval iIEGH . 1%JK@ M FGH ?1%JK@ M! Wherd.N 8 NMencloses Cl
on the standard deviation axis (z) @i the standard deviation of the opinion score.

On the other hand, objective measures are borrofk@uh digital signal processing and
information theory, providing equations that caruled to measure the enhancement accuracy of
the enhanced spectrogram in comparison to the ob#em Four widely used and easy to
implement objective measures were employed, havingh correlation with diagnostic
acceptability [11,30,31]. These measures are tleeathSignal to Noise Ratio (SNR), Segmental
Signal to Noise Ratio (SSNR), Log Spectral DistaficeD), and Itakura Saito (IS), given by
equations (3, 8, 9, and 10; respectively).SSNReindd as the average of SNR values over
segments with sound activity, LSD is the spectrstiatice or distortion measure, expressed in dB,
between the enhanced and clean spectrograms, hdemeasure of the perceptual difference
between these two spectrograms. Furthermore, temg® eccentricity (AE) was calculated by
equation (11), to simply check if the shape of sbpatterns in the enhanced spectrogram was
changed from those in the original spectrogramyltgsn indication of whether the enhanced
spectrogram is augmented for further pattern reitiogntask. Eccentricity is the aspect ratio of
length to width of the minimum rectangle boundihg sound pattern.

8
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Where FS is the sampling rate of the signal.fand Bup.: are the clean and enhanced power
spectrum respectively. M is the number of spectogsegments (set to 20), N is the number of
samples on a segment. L and W are the length adfithwiespectively, for the minimum rectangle
bounding the sound pattern, and K is the numbepohd patterns in the spectrogram.
The applications were selected to cover differgmcogram shapes, including those with
narrow band, wide band, constant frequency, frequemodulated, short pulses, and long pulses
patterns. The original bioacoustics calls in eapblieation were corrupted by several white
Gaussian noises, as descriptively shown in thepkaft of figure (10) for a saw tooth wave, result
in several time domain SNRs (30, 20, 10, 5, andB), &nd in correspondence several
spectrogram SNRs as demonstrated in the rightgbdigure (10), with average values of (3.66,
2.89, 2, 1.73, 1.52 dB; respectively).For eachiapfbn and for each SNR, the five enhancement
methods (BP, MBSS, WF, WPD, and PM) were applied, the results were subjectively and
objectively compared. It is worthy to mention thia silent regions were being removed, because
they can considerably influence the output objectheasures.

Clean Saw Tooth Signal In Time Domain SNR=1dB
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Figure 10. (top) A description for how the additimindifferent white Gaussian noise changes
the structure and SNR of the time domain signaltt{fm) The corresponding changes in the
spectrogram SNR averaged for the five applications.

3.1. Bioacoustics call of Rhinolophus blasii bat

The echolocation call of the Rhinolophus blasii kdiich was investigated in this section

includes medium duration strong sound pulses stgghtay short intervals. These pulses cover
short Frequency Modulated (FM) band around 5 Kldaghly estimated as Constant Frequency
(CF) band, which were slowed down by a time expmang&ctor of 10 to be in the audible range,
as shown in figure (11a).BP approach was ablertmve most of the added noise, by rejecting
the spectrogram values outside the small band wudothe frequency of 5 KHz, as graphically
shown in figure (11b) and numerically in the secaotimn(s) of Table 1. Instead, the MBSS

and WF approaches were not successful to remowemable amount of noise, especially for
input SNRs less than 20 dB. The spectrograms geknaith MBSS approach tended to

temporally spread out the sound pulses, while thgeeerated by WF approach tended to
temporally cut from the duration of the pulsesd&played in figure (11c, 11d) and the third and
fourth column(s) of Table 1; respectively.
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Figure 11. (a) One of Rhinolophus Blasii bat echatimon calls at SNR = 1 dB (with expansion
factor of 10), and its enhanced spectrogram bym)(c) MBSS, (d) WF, (e) WPD, and (f)

PM.
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For higher values of input SNRs, the WF presenteiteb enhancement. The WPD approach
removed reasonable amount of noise and presented getimation for the time domain

resolution of the sound pulses. However, the figeel decompositions produced repeated
patterns along the frequency axis, as shown irrdiglile) and the fifth column(s) of Table 1. The
PM dealt with the noisy spectrogram as an imaged, was able to preserve the sound pulses
while removing most of the attached noise, as esgare in figure (11f) and the sixth column(s) of

Table 1.

Table 1. The subjective and objective measurethiospectrogram of Rhinolophus Blasii call
enhanced by BP, MBSS, WF, WPD, and PM

(A) MOS
'gﬁg noisy BP MBSS WF WPD PM
1 111 28253 1(LL 11(09.1.2 | 1.7(L42 | 1.6(1.3.1.8
5 11(09.1.3)| 29(2.7,3.1) 111 12(0.9.1]5)1.8 (1.52) | 2 (16, 2.4)
10 13(L,16) | 28(253) 11(091B) 13(DLp18(L422)| 26(2.3.29
20 13(09,1.7)] 31(2933) 13(091]7) 18@3)| 19(1.522) 49 (4.751)
30 16(1.3,19 | 33(3.36 | 15(L11¢| 252228 | 2(1.7.23 5(5.5)
(B) SNR
input SNR noisy BP MBSS WF WPD PM
1 2.238 15.399 2.1390 2.565 7.734 6.903
5 2.579 15.711 2.505 3.227 8.695 8.936
10 3.097 16.207 3.017 3.983 8.912 13.504
20 4.344 17.322 4.200 7.786 9.319 31.798
30 5.982 18.700 5.696 13.142 10.118 31.930
(C) SSNR
input SNR noisy BP MBSS WF WPD PM
1 1.755 3.278 1.744 1.793 2.472 2.292
5 1.794 3.312 1.786 1.869 2.667 2.526
10 1.854 3.369 1.845 1.956 2.765 3.063
20 1.098 3.495 1.981 2.395 2.859 6.47Q
30 2.187 3.651 2.155 3.057 3.004 5.187
(D) LSD
input SNR noisy BP MBSS WF WPD PM
1 1.260 0537 1.834 2.125 1.011 0.767
5 1.002 0.352 1.826 2.020 0.655 0.620
10 1.050 0.501 1.708 1.743 0.520 0.56(
20 0.697 0.312 1.500 1.267 0.218 0.311
30 0.528 0.279 1.256 1.044 0.144 0.279
E)1S
input SNR noisy BP MBSS WF WPD PM
1 1.281 0.186 3.455 5.296 0.833 0.392
5 0.731 0.076 3.410 4.559 0.334 0.242
10 0.815 0.155 2.828 2.997 0.216 0.191
20 0.313 0.056 1.994 1.294 0.049 0.054
30 0.169 0.043 1.266 0.803 0.023 0.043
(F) AE
input SNR noisy BP MBSS WF WPD PM
1 3.51 351 421 2.75 5.16 3.52
5 3.51 351 421 2.79 515 3.52
10 3.51 351 3.97 3.06 4.99 3.52
20 3.51 351 3.84 3.11 4.64 3.52
30 3.51 351 3.7E 3.14 4.3z 3.52
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3.2. Bioacoustics call of Barbastellabarbastellusdb

As an alternative, the echolocation call of thelBatella barbastellus bat includes very short
duration sound pulses separated by non-fixed iatervThe pulses cover long Frequency
Modulated (FM) band over the region [25-100] KHzigh were also slowed down by a time
expansion factor of 10 to be in the audible raragedemonstrated in figure (12a). Since the
frequency band covered by the sound pulses is,|l®&8epproach was not able to remove most
of the noise into this band, as graphically showrigure (12b) and numerically in the second
column(s) of Table 2. Meanwhile, the pulses weraperally spread out by MBSS approach;
however, it removed reasonable amount of noisediggayed in figure (12c) and the third
column(s) of Table 2. The WF approach removed high®unt of noise except those exist in the
beginning of the signal. There are also spectrafram the pulses along the frequency axis and
the temporal resolution is degraded, as givenguré (12d) and the fourth column(s) of Table 2.
Although the spectral resolution of the spectrogrgenerated by the WPD approach still corrupt
and low frequency noise was not removed, there wer@ossibility for the repetition of the
pulses along the frequency axis because the co¥ebland is considerably high, as clarified in
figure (12e) and the fifth column(s) of Table 2.eTPM has the same performance as in
application 1, by keeping the temporal and spegiraperties of the pulses while removed most
of the attached noise, as shown in figure (12f) thiedsixth column(s) of Table 2.

Figure 12. (a) One of Barbastella Barbastellusbhblocation calls at SNR = 5 dB (with
expansion factor of 10), and its enhanced spe@nodpy (b) BP, (c) MBSS, (d) WF, (e) WPD,
and (f) PM.
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Table 2. The subjective and objective measurethiospectrogram of Barbastella barbastellus call

enhanced by BP, MBSS, WF, WPD, and PM
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(A) MOS
'g%”é noisy BP MBSS WF WPD PM
1 1(L1 | 1.2(09,1.5 | 1.3(L,16 | 21(1.9.2.2 | 2.7 (243 | 2(1.7,23
5 11(0.91.3) 13(L16) L14(LLLl[) 2.4@1%) | 2.8(2531)| 2.4(2.1,2.7
10 | 1.3(0.9,1.7) 1.4(1,18)| 1.5(1.2,18) 26@9 | 2.9 (2.7,3.1) 3.4 (3.1,3.1
20 14(117 | 16(13,18 | 1.9(L.7.21 | 28(2.4,32 | 3.1(2.9,3.2 555
30 17142 | 19(L.7.21 | 23226 | 29(2.7,31 | 3.2(2.9,3E 5 (5,5
(B) SNR
input SNR noisy BP MBSS WF WPD PM
1 2.303 3.379 3.757 7.918 10.93d 7.140
5 2.662 3.760 4.307 9.272 11.595 9.500
10 3.181 4.273 5.023 10.456 12.149 14.280
20 4.393 5.454 6.937 11.691 13.089 22.826
30 5.745 6.732 9.236 11.917 13.182 2287
(C) SSNR
input SNR noisy BP MBSS WF WPD PM
1 1.763 1.886 1.931 2510 2.843 2.320
5 1.804 1.930 1.995 2.782 2.961 2.592
10 1.864 1.989 2.078 3.182 3.077 3.158
20 2.004 2.126 2.312 5.017 3.376 6.814
30 2.163 2.278 2.659 4.233 3.628 3.386
(D) LSD
input SNR noisy BP MBSS WF WPD PM
1 0.942 1.015 0.600 0.194 0.278 0.610
5 0.943 0.888 0.466 0.140 0.191 0.485
10 0.859 0.715 0.417 0.209 0.171 0.360
20 0571 0.535 0.244 0.201 0.124 0.121
30 0.407 0.367 0.135 0.392 0.173 0.195
(E) 1S
input SNR noisy BP MBSS WF WPD PM
1 0.630 0.777 0.228 0.036 0.059 0.234
5 0.631 0.564 0.133 0.021 0.032 0.141]
10 0.506 0.341 0.107 0.025 0.020 0.074
20 0.203 0.179 0.042 0.024 0.015 0.008
30 0.100 0.082 0.022 0.071 0.018 0.021
(F) AE
input SNR noisy BP MBSS WF WPD PM
1 57 57 56.6 6 16.27 57
5 57 57 56.8 9.31 19 57
10 57 57 56.8 14.54 34.52 57
20 57 57 56.85 21.13 47.33 57
30 57 57 56.85 30.46 54.18 57

3.3. Bioacoustics call of Vanellus vanellus bird

As an example for a multi harmonic sound strearthenhuman hearing range, the bioacoustics
call of Vanellus vanellus bird was investigatedtle region bounded by 6 KHz. The sound
stream contains three FM long pulses with domirieequencies around (1, 2.2, and 4) KHz;
respectively, followed by three downstream CF slpaitses of fundamental frequencies around
(2, 3, and 4) KHz; respectively, as given in figt8a). Enhancement by the BP approach did not
produce clear spectrogram, since the pulses cowethnof the frequency axis, given high
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constraint to the rejected band by this approashst@own in figure (13b) and the second
column(s) of Table 3. The enhanced spectrogram rgeste by the MBSS approach has
reasonable temporal resolution and degraded spees@lution of the sound pulses, especially
for the downstream pulses which corrupted by higlactal distortion, as displayed in figure
(13c) and the third column(s) of Table 3.0n thesothand, the temporal and spectral resolutions
of the spectrogram generated by WF approach areptadde, although there is little spectral
leakage for the downstream pulses and initial soumide (< 0.03 sec) were not removed, as
plotted in figure (13d) and the fourth column(s)Table 3.Whereas the low frequency noise was
not enhanced by the WPD approach, many temporatisbaf noises were removed. The
decomposition of the sound stream presented spedimars of the weak harmonic patterns and
almost eliminated the downstream pulses, as demapedtin figure (13e) and the fifth column(s)
of Table 3. Meanwhile, the enhanced spectrogramPMyre established high temporal and
spectral resolutions of the sound pulses, as itetichy the obtained LSD, with high distinction
from the attached noise, as designated by thermatssNR and shown in figure (13f) and the
sixth column(s) of Table 3.

Figure 13. (a) One of Vanellus vanellus bird catlSNR = 10 dB, and its enhanced spectrogram by
(b) BP, (c) MBSS, (d) WF, (e) WPD, and (f) PM.

Table 3. The subjective and objective measurethéospectrogram of Vanellus vanellus bird call
enhanced by BP, MBSS, WF, WPD, and PM

(A) MOS
IQK;JF: noisy BP MBSS WF WPD PM
1 111 15(1218 | L4(L1,17 | 2(L.7.23 | L7(L42 |24 (2127
5 | 141117 | 1.6(13.1€| 15(L.218 |22 (L92E| 1.8(1.422 | 2.9 (2.7.3.1
10 13(L,16) | 18(1422) 17(13 21 24@27)]| 19(17.21)| 3.7 (344
20 | 15(1.2,1.8)| 19(1524) 18(L42p) 28@9)| 19(1L7.21)| 47 (445
30 | 16(1.3,18 | 2(1.624 | 1.8(L422 | 27243 | 1L9(L7.21 5 (5,5
(B) SNR
input SNR noisy BP MBSS WF WPD PM
1 1.651 2.63¢ 2.48¢ 3.501 2.89¢ 2.371
5 1.941 2.847 2.68¢ 2.04¢ 3.18( 5.41¢
10 2.207 3.15: 2.917 24.45; 3.31% 6.807
20 2.66. 3.53; 3.10¢ 2771 3.42; 9.07¢
30 2.817 3.60¢ 3.16¢ 4.88¢ 3.33¢ 9.48(
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(C) SSNR
input SNR noisy BP MBSS WF WPD PM
1 1.68¢ 1.801 1.78¢ 1.92¢ 1.89¢ 2.001
5 1.721 1.82¢ 1.807 1.99¢ 1.98¢ 2.121]
10 1.75:Z 1.861 1.83:¢ 2.05¢ 2.03¢ 2.28:
20 1.80¢ 1.904 1.85¢ 2.11¢ 2.12( 2.56¢4
30 1.82:2 1.91% 1.86: 2.16z 1.991 2.621]
(D) LSD
input SNR noisy BP MBSS WF WPD PM
1 1.17: 1.08: 0.98:2 1.22( 1.00¢ 0.79(
5 1.04: 0.93¢ 0.87¢ 1.14] 0.907 0.50¢
10 0.98¢ 0.88¢ 0.53i 1.02¢ 0.78: 0.537
20 0.81¢ 0.78: 0.75: 1.012 0.58i 0.267
30 0.71¢ 0.71¢ 0.51¢ 0.96¢ 0.57¢ 0.267
(E) IS
input SNR noisy BP MBSS WF WPD PM
1 0.63( 0.927 0.70¢ 1.221] 0.85¢ 0.42:
5 0.80: 0.64¢ 0.53¢ 1.031 0.65i 0.15¢
10 0.707 0.56¢ 0.182 0.804 0.46¢ 0.177
20 0.451 0.42¢ 0.38¢ 0.771 0.24¢ 0.041
30 0.341 0.34¢ 0.16¢ 0.69¢ 0.23¢ 0.041
(F) AE
input SNR noisy BP MBSS WF WPD PM
1 8.47 8.47 14.6¢ 10.32 3.1: 8.51
5 8.47 8.47 12.51] 10.5 3.82 8.51
10 8.47 8.47 9.7¢ 9.4¢€ 4.17 8.51
20 8.47 8.47 9.1Z 8.72 7.12 8.51
30 8.47 8.47 8.6t 8.1¢ 7.44 8.51

From the pattern recognition point of view, diffeteAE values to those of the original
spectrogram, reflect changing in the shape of somal of the sound patterns, which result in
non-accuracy in further pattern recognition resulislike, similar AE values do not ensure the
shape of the sound pattern is similar to its odfshape, but it may changes in a way that its
aspect ratio is constant.

4. Extended applications

The spectrograms obtained by the proposed methdt) ¢isplayed how it is powerful and
consistent to enhance different structure bioadcsistalls. Therefore, these enhanced
spectrograms can be implemented in various posepgeing tasks. In this section, the three most
important implementations of the generated sperody PM will be explored.

4.1. Power and frequency contours

The three variables of the enhanced spectrogram tfime, frequency, and power spectrum) may
be plotted in different orders to obtain its poveerd/or frequency contours, as visible for the
bioacoustics call of Rhinolophus hipposideros lth( expansion factor of 13) in figure (14),
after its spectrogram was enhanced by PM. The pawsatours provides an image of the
instantaneous power contents of the sound pattardscan be used for specific sound power
detection after calculating the areas enclosedhbkge contours. While the frequency contours
provide an image of the instantaneous frequencyeots of the recorded bioacoustics call and
can be used for designing more reliable frequeitiey.
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Figure 14. The enhanced (a) power and (b) frequeantours for Rhinolophus hipposideros bat
call

4.2. The enhanced wave form of the bioacoustics tal

By transforming the enhanced spectrogram variabék to the time domain by Inverse Fast
Fourier Transform (IFFT), the enhanced wave formthaf call is obtained, as given in figure
(15).The phase information obtained through thensrShort Time Fourier Transform (STFT) is
used to reconstruct the enhanced wave form, fotigwhe flowchart of figure (15). The output
waveform can be used for reliable extraction of kf@acoustics temporal features suchlike zero
crossing rate, short time energy, temporal roll-affd temporal spread of the sound patterns [1].

Figure 15. (upper) The 3D enhanced spectrograrthébioacoustics call of Rhinolophus
hipposideros bat(with expansion factor of 13)anevfthart to reconstruct the waveform of its
sound stream. (bottom) the original and the recontd wave form of the sound stream;

respectively.

4.3. Bioacoustics calls classification

From the enhanced spectrogram, simple and redusedber of 1D featuresand/or 2D features
can be extracted for complete pattern recognitioin® bioacoustics sound. The 1D features are
the signal features suchlike the covered frequeayd(s), peak frequency, pulse duration,
interval between sound pulses, etc. while the 2Btufes are the image features suchlike
eccentricity and centroid. As a test case, a dlassif Vanellus vanellus, Parus major, and Sitta
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Canadensis birds has been constructed using tleatecay (a/b) and the vertical coordinate of
the centroid (c) features, as shown in figure ()6@&xtracted from the enhanced spectrogram of
each bird sound, as displayed in figure (16(i)he Elassifier was trained by 26, 30, and 37 sound
patterns of the three birds; respectively, to define rough dividing contours, given in figure
(16(iii)). Afterwards, the classifier was tested dayother 7, 8, and 10 sound patterns of the three
birds; respectively, beside 7 patterns of Barblstelrbastellus bat and 5 patterns of Rhinolophus
Blasii bat, giving 94.59% classification accuratyd sound patterns of Sitta Canadensis wrongly
detected as Vanellus vanellus), as plotted in &gi6(iii)). It may be realized that even simple
classifier can separate out the sound patternsthieta@orrect bioacoustics source, providing that
distinctive features were selected and sufficieihing patterns were used.

0 M

(iii)

Figure 16. (i) Enhanced spectrogram for one ofaSi@anadensis bird contains the
strongestsound patterns, indicating how the edcéigt{a/b) and the vertical coordinate of

the centroid (c) are extracted for one of its sopatierns. The units of a and b are in pixeld,
and c in pixel number. (ii) Simple classifier stwe with input of the two features, which

form the classification space, and the outputsfawe classes for Vanellus vanellus, Parus
major, Sitta Canadensis , and unknown sounds. Thi¢ classification space with three
dividing contours encounters the features of theeethbirds, respectively, at which the
surrounded region is for unknown sound featurese Glassification results also included
with two sound patterns of Sitta Canadensis wrodglgcted as Vanellus vanellus.

5. Conclusion

Spectrogram reading provides a direct method fordgan learning of the characteristics of

bioacoustics calls, therefore, a variety of enharerd techniques have been considered over the
past years to remove the attached noises. In #gsrpa spectrogram enhancement method was
developed based on high accurate edge detectittre @nclosed sound patterns and removing the
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surrounding noise. The crest factor was presensed amoothed version of the spectrogram
image, avoiding the threshold problem of usual dfmiag filters, suchlike Gaussian filter in
Canny edge detector. The proposed method was dpolienhance the limited dynamic range
spectrogram of different structure bioacousticdscah comparison to the four commonly used
enhancement approaches, which are band pass (@), multi-band spectral subtraction
(MBSS), Wiener filter (WF), and wavelet packet degmsition (WPD) approaches. The
comparison was established on one subjective medswean opinion score] and four objective
measures [signal to noise ratio, segmental signabise ratio, log spectral distance, and Itakura
Saito]of the spectrograms obtained by the five mdshat different SNR. The results showed that
the shorter the frequency band of FM pulse, théebéie enhancement with BP and WPD. The
larger the upstream interval before the first putbe better the enhancement with WF. The
longer the CF pulse at high SNR, the better theaeodément with MBSS because it tends to
spread the patterns over time. Meanwhile, the megomethod produced highly efficient
enhanced spectrograms for all of the investigasdld.c

The temporal and spectral resolutions of the spgims produced by the BP approach are of
high accuracy, since it does not operate a postegeing to the full range of the noisy
spectrogram, but only rejects the band which esddth#éo be noise. This was not the case with
(MBSS, WF, and WPD) which post process the spexmg for enhancement, results in
changing the temporal and/or spectral resolutibonghe meantime, the edge detection algorithm
of the proposed method was able to preserve thedspulses into their almost original temporal
and spectral locations while processing the nopgcsogram. This is very important issue for
any further pattern recognition assignment basetthe®nhanced spectrogram.

As a future aspect to this research work, an iimyason will be made to avoid the loss of weak
patterns done through limiting the dynamic rangehef spectrogram. Moreover, improving the
original spectrogram generation by adapting thdie¢ggSTFT settings, this in correspondence
improves the enhanced spectrogram.
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