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ABSTRACT 

Feature extraction and object recognition from images acquired by various imaging modalities are playing 

the key role in diagnosing the various diseases. These operations will become difficult if the images are 

corrupted with noise. So the need for developing the efficient algorithms for noise removal became an 

important research area today. Developing Image denoising algorithms is a difficult operation because fine 

details in a medical image embedding diagnostic information should not be destroyed during noise 

removal. In this paper the total variational method which had success in computational fluid dynamics is 

adopted to denoise the medical images. We are using split Bregman method from optimisation theory to 

find the solution to this non-linear convex optimisation problem. The present approach will outperform in 

denoising the medical images while compared with the traditional spatial domain filtering methods. The 

performance metrics we used to measure the quality of the denoised images is PSNR (Peak signal to noise 

ratio).The results showed that these methods are removing the noise effectively while preserving the edge 

information in the images. 
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1. INTRODUCTION 

Medical information, composed of clinical data, images and other physiological signals, has 

become an essential part of a patient’s care, during screening, in the diagnostic stage and in the 

treatment phase. Over the past three decades, rapid developments in information technology (IT) 

& Medical Instrumentation has facilitated the development of digital medical imaging. This 

development has mainly concerned Computed Tomography (CT), Magnetic Resonance Imaging 

(MRI), the different digital radiological processes for vascular, cardiovascular and contrast 

imaging, mammography, diagnostic ultrasound imaging, nuclear medical imaging with Single 

Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). 

All these processes are producing ever-increasing quantities of images [17]. These images are 

different from typical photographic images primarily because they reveal internal anatomy as 

opposed to an image of surfaces. 

In Natural monochromatic or colour images, the pixel intensity of the image corresponds to the 

reflection coefficient of natural light. Whereas images acquired for clinical procedures reflect 

very complex physical and physiological phenomena, of many different types, hence the wide 

variety of images. Each medical imaging modality (digital radiology, computerized tomography 

(CT), magnetic resonance imaging (MRI), ultrasound imaging (US)) has its own specific features 

corresponding to the physical and physiological phenomena studied, as shown in “Fig.1”. These 
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medical mages have their own unique set of challenges. Although our focus in this paper will be 

on two-dimensional images, three-dimensional (volume) images, time-varying two-dimensional 

images (movies), and time-varying three-dimensional images are commonly used clinically as 

imaging modalities are becoming more sophisticated [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure1: Sagittal slices of the brain by different imaging modalities: a) magnetic resonance imaging (MRI), b) computed tomography 

(CT), c) positron emission tomography (PET), d) ultrasound (US) 

 

 

1.1 Image Degradation and Restoration Model 

Images are degraded in the process of acquisition and transmission through the communication 

media (Wired or Wireless). Acquisition modality may introduce some blur due to the poor 

dynamic range, poor calibration of instrument and if the object is in motion or the acquisition 

device is not handled by the operator while acquiring the images. During the transmission phase 

and acquisition phase some amount of noise is also added to these images. As a result of blur and 

noise the details of the image is going to be distorted which will create the problems in diagnostic 

stage [17]. So the process of removing blur and noise from the images (Image Restoration) is 

considered as a preprocessing step before going to the image analysis. The image degradation and 

restoration model is given in the “Fig.2”. 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2: Image Degradation and Restoration model 
 

The noise term may be additive, multiplicative or combination of both. In case of medical images 

we have both additive and multiplicative noise depending upon the modalities used for image 

acquisition. In general the noise generated due to the electronic components in an acquisition 

system is modeled with Gaussian noise which is an additive term. In the X-ray imaging the 

quantum noise or photon noise is present due to random generation of X-rays from the source at 

( , )x yη

( , )g x y

ˆ ( , )f x y
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any given time; this noise can be modeled using Poisson distribution [2]. In the case of ultrasound 

imaging images are degraded by the signal dependent noise known as speckle. The pattern of the 

speckle depends on the structure of the imaging tissue and various imaging parameters. The 

speckle noise is a multiplicative noise which can be modeled using Rayleigh distribution. The 

Magnetic resonance imaging (MRI) is suffering from Rician noise which can be modeled using 

Rician distribution [17]. In this paper we are trying to denoise the images corrupted with 

Gaussian noise, Laplacian noise and Poisson noise. 

The mathematical modeling of degradation and restoration process is given as 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

, , ( , ) ,

, , , ,

g x y f x y k x y x y

G u v F u v K u v N u v

η= ∗ +

= +
               (1) 

Where K is the blurring kernel, ( ),g x y is the noisy and blurred observation and ( ),f x y is the 

signal we are recovering. In the case of denoising problem the blurring kernel will be dropped and 

the degradation model will be given as 

 
( ) ( ) ( )

( ) ( ) ( )

, , ,

, , ,

g x y f x y x y

G u v F u v N u v

η= +

= +
                                      (2) 

In the case of multiplicative noise the model is given as 

 
( ) ( ) ( ), , ,g x y f x y x yη= ⋅

                                      (3) 

Spatial filters are traditional means of removing noise from images and signals. Spatial filters 

usually smooth the data to reduce the noise, and also blur the data. Several new techniques have 

been developed in the last few years that improve on spatial filters by removing the noise more 

effectively while preserving the edges in the data [12] [13] [15]. Some of these techniques used 

the ideas from partial differential equations and computational fluid dynamics such as level set 

methods, non-linear isotropic and anisotropic diffusion. A Few techniques combined impulse 

removal filters with local adaptive filtering in the transform domain to remove not only white and 

mixed noise, but also their mixtures. In order to reduce the noise present in medical images many 

techniques are available like digital filters (FIR or IIR), adaptive filtering methods etc. However, 

digital filters and adaptive methods can be applied to signals whose statistical characteristics are 

stationary in many cases [12] [15]. Recently the wavelet transform has been proven to be useful 

tool for non-stationary signal analysis.  Many denoising algorithms were developed on wavelet 

framework effectively but they suffer from four shortcomings such as oscillations, shift variance, 

aliasing, and lack of directionality [16]. In this paper we will present a different class of methods 

which are based on minimising the total variation of the image. These methods are performing 

denoising effectively by preserving the edge information in the images which will minimize the 

artifacts in the denoised data [6]. 

2. DENOISING USING TOTAL VARIATIONAL APPROACH 

2.1 Introduction 

It is observed that the noise will be at high frequencies and the signals and images with excessive 

& spurious detail will have the high total variation i.e. the integral of the absolute gradient of 
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those signals and images is high.  Based on these observations it is proposed to reduce the total 

variation of the signal or image subject to it for getting a close match to the original signal. This is 

the key idea behind the denoising using total variational method [6]. 

The total variational technique has advantages over the traditional denoising methods such as 

linear smoothing, median filtering, Transform domain methods using Fast Fourier transform and 

Discrete Cosine Transform which will reduce the noise in medical images but also introduce 

certain amount of blur in the process of denoising which will damage the texture in the images in 

lesser or greater extent. The Total Variational approach will remove the noise present in flat 

regions by simultaneously preserving the edges in the medical images which are very important 

in diagnostic stage [1] [2] [3]. 

The total variation (TV) of a signal measures how much the signal changes between signal 

values. Specifically, the total variation of an N-point signal ( ) ,1x n n N≤ ≤ is defined as 

 ( ) ( ) ( )
2

1
N

n

TV x x n x n
=

= − −∑                  (4) 

Given an input signal xn, the aim of total variation method is to find an approximation signal call 
it, yn, which is having smaller total variation than xn but is "close" to xn. One of the measures of 
closeness is the sum of square errors: 

 ( ) ( )
21

,
2

n n

n

E x y x y= −∑             (5) 

So the total variation approach achieves the denoising by minimizing the following discrete 
functional over the signal yn: 

 ( ) ( ),E x y V yλ+     (6) 

By differentiating the above functional with respect to yn, in the original approach we will derive 
a corresponding Euler-Lagrange equation which is numerically integrated with xn (the original 
signal) as initial condition. Since this problem is a convex functional, we can use the convex 
optimization techniques to minimize it to find the solution yn. 

2.2 Denoising Algorithm 

The problem of image denoising or noise removal is, given a noisy image :g Ω → R , to estimate 

the clean underlying image f . For Gaussian noise (additive white), the degradation model 

describing the relationship between ( ),g x y and ( ),f x y is 

 ( ) ( ) ( ), , ,g x y f x y x yη= +    (7) 

Where ( ),x yη  is i.i.d zero mean Gaussian distributed. In this paper we are testing the 

proposed denoising method for three types of noises which are very common in medical images. 

They are Gaussian noise, Laplacian Noise and Poisson noise which are normally encountered in 

the process of image acquisition. Getting the good denoising results depend on using a good noise 
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model which will accurately describe the noise in the given image. The following table gives the 

three different noise models which are used in our paper: 

 Table 1: Noise models for Gaussian, Laplacian and Poisson Noise 

Noise Model PDF of Noise Model 

Gaussian 

( ) ( )( )
( ) ( )( )

2

2

, ,1
, | , exp

2

z x y g x y
P g x y z x y

z σ

 −
 = −
 
 

 

Laplacian 

( ) ( )( )
( ) ( )

2

, ,1
, | , exp

2

z x y g x y
P g x y z x y

z σ

 −
=  

 
 

 
Poisson 

( ) ( )( ) ( )( ) ( ) ( ),1
, | , exp , ,

g x y
P g x y z x y z x y z x y

z
= −

 
Where ( ) ( ), ,z x y f x y= for denoising and 

1

z
 is the normalisation such that densities sum to 

one.  

� The Gaussian model is a reasonable approximation for true noise distribution; the original 

Gaussian model was introduced by Rudin, Oscher and Fatemi [3]. 

� The Laplace model is better for salt-and-pepper and dark shot noise which will have fat 

tail noise distributions was developed by chan and Esedoglu [1].   

� The Poisson model will describe the noise introduced due to low-light image acquisition 

and also this model is a rough approximation for multiplicative noise and the Poisson 

model was developed by Le et al. [2]. 

A General model for TV-regularized denoising, Deblurring, and Inpainting is to find an image 

( ),f x y  that minimizes 

 
( )

( ) ( ) ( ) ( )( )min , , , , ,
f BV

f x y dxdy x y F Kf x y g x y dxdyλ
∈ Ω

Ω Ω

∇ +∫ ∫  (8) 

Where ∇  denotes the gradient, 
2∇ denotes Laplacian, and .

p
 denotes the 

pL  norm on Ω . 

Variable ( ),x y  will be used to denote a point in two-dimensional space. ( ),f x y  is an original 

image, ( ),g x y is an observed noisy image. The integrals are over a two-dimensional bounded set 

2Ω ⊂ R and ( ),f x y∇ denotes the gradient magnitude of ( ),f x y at ( ) 2, .x y ∈ R
 
Function 

( ),g x y is the given noise and blur corrupted image, K  is the blur operator, ( ),x yλ  is a 

nonnegative function specifying the regularization strength, BV stands for Bounded variation and 

F determines the type of data fidelity:  
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( ) ( )( )

( ) ( )( )

( ) ( )

( ) ( ) ( )

21
, , Gaussian noise

2

, , , , , Laplace noise

, , log , Poisson

Kf x y g x y

F Kf x y g x y Kf x y g x y

Kf x y g x y Kf x y


−


= −


−


  (9) 

For simplicity, ( ),x yλ  is usually specified as a positive constant, ( )xλ = λ  

Spatially-varying fidelity weight  
 
The parameter lambda ( )λ  is a positive value specifying the fidelity weight which controls the 
amount of denoising. This parameter must be tuned for good results, since choosing a large λ  
removes a limited amount of noise while a small λ  removes more noise but smooths out the 
signal [6]. A spatially-varying fidelity weight can be specified by setting lambda ( )λ as a 
M N×  matrix which is denoted by ( ),x yλ . 

Role of Regularization Parameter λ 

In the denoising process the regularization parameter λ is having a critical role. The denoising is 
zero when λ = 0, therefore the result is same as the input signal. As the regularization parameter λ 
increases the amount of denoising is also increases, when λ → ∞  the total variation term plays 
strong role, which will produce the smaller total variation, at the expense of being less like the 
input (noisy) signal [6]. So the regularization parameter choice is critical for achieving the right 
amount of noise removal. 

In total variational approach, we propose to solve the general problem 

 ( )
( )

( )( )
,

ˆ , arg min ,
f x y

f x y J f x y=     (10) 

With  ( ){ } ( ) ( ){ } ( ){ }
2

2

1
, , , ,

2
regJ f x y g x y K f x y J f x yλ= − +  (11) 

Where K is the blurring kernel, ( ),g x y is the noisy and blurred observation and ( ),f x y is the 

signal we are recovering. The generic regularisation term 
regJ is weighted by λ . In this paper we 

are considering regJ from the class of convex regularisers. 

 
The Total variation approach is to search over all possible functions to find a function 

:f Ω → R that minimizes (8) [4] [5] [6]. In this paper we are using the split Bregman method to 

solve the minimization problem by operator splitting and then solving split problem by applying 

Bregman iteration [10]. For (8), the split problem is 

 
( ) ( ) ( ) ( )( )

, ,
min , , , , ,

subject to ,  

d z f
d x y dxdy x y F z x y g x y dxdy

d f z Kf

λ
Ω Ω

+

= ∇ =

∫ ∫r

r

r
 (12) 
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The split problem is not different from the original (8). The point is that the two terms of the 

objective have been split: The first term d
Ω

∫
r

 only depends on d
r

 and the second term 

( ),F z gλ∫  only on z .  Still d
r

and z are indirectly related through the 

constraints ,  d f z Kf= ∇ =
r

. 

 
Now the Bregman iteration is used to solve the split problem. In every iteration, it calls for the 

solution of the following problem: 

( ) ( ) ( ) ( )( )
2 21 2

1 2 22, ,
min , , , , ,

2 2d z f
d x y dxdy x y F z x y g x y dxdy d f b z Kf b

γ γ
λ

Ω Ω

+ + − ∇ − + − −∫ ∫r

r r r

  

         ………   (13) 

Additional terms in the above expression are quadratic penalties enforcing the constraints and 

1
b ,

2
b are the variables connected to the Bregman iteration algorithm [7] [10][11]. 

The solution of (13), which minimizes jointly over d
r

, z , f is approximated by alternatingly 

minimizing one variable at a time, that is, fixing z  and f   minimising over d
r

 then fixing d
r

 

and f   minimising over z and so on. This method leads to three variable subproblems. 

 

The d
r

 subproblem 

 

Variables z  and f  are fixed and the sub problem is  

 ( )
2

1
1

2
min ,

2d
d x y dxdy d f b

γ

Ω

+ − ∇ −∫r

r r r
     (14) 

Its solution decouples over x  and is known in closed form: 

 ( )
( ) ( )

( ) ( )
( ) ( ){ }1

1 1

1

, ,
, max , , 1 1/ ,0

, ,

f x y b x y
d x y f x y b x y

f x y b x y
γ

∇ +
= ∇ + − −

∇ +

r
r r

r  (15) 

This is the important subproblem which drives the Total Variation minimization. 

The z  Sub problem 

Variables d
r

 and f are fixed and the sub problem is  

 ( )
22

2 2
min ,

2z
F z g dxdy z Kf b

γ
λ

Ω

+ − −∫      (16) 

The solution decouples over x . The optimal z  satisfies 
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 ( ) ( )2 2, 0z F z g z Kf bλ γ∂ + − − =       (17) 

The f  sub problem  

Variables d
r

and z  are fixed and the sub problem is  

 
2 21 2

1 2 22
min

2 2f
d f b z Kf b

γ γ
− ∇ − + − −

r r
     (18) 

For denoising K is identity and the optimal f satisfies  

 ( ) ( )2 2
2 1

1 1

f f z b div d b
γ γ

γ γ
− ∆ = − − −

r r
      (19) 

This is a sparse, symmetric positive definite linear system. The solution f  can be 

efficiently approximated by Gauss-Seidel iteration [5] [6]. 

The full algorithm 
The minimization (8) is solved with the following iteration: 

Initialise 2 1
0, 0f z b d b= = = = =

r r
 

While “not converged" 

Solve the d
r

 subproblem 

Solve the z  Sub problem 

Solve the f  sub problem  

1

2 2

:

:

b b f d

b b Kf z

= + ∇ −

= + −

r r r

 

While solving these subproblems, the x th
 sub problem solution is computed from the 

current values of all other variables and overwrites the previous value of 

variable x .Convergence will be checked by testing the maximum difference from the 

previous iterate: 
2

cur prev
f f Tol− < . 

 

3. RESULTS & DISCUSSIONS 

The performance of this method is evaluated by applying the method on monochrome colon 
image with various λ values for the images corrupted with Gaussian, Laplacian, and Poisson 
noise of various variance levels. From the results we can say that the total variation method will 
preserve the edges effectively compared to the spatial filters. The denoising strength will decrease 
with the increase of regularization parameter. 
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GAUSSIAN: 
 
Table 2: Noise level vs PSNR for Images corrupted with Gaussian Noise 

1λ =  5λ =  

Noise level  
(σ ) 

0.03 0.06 0.09 0.03 0.06 0.09 

PSNR 21.5712 21.5832 21.5575 27.5057 27.4987 27.4811 

10λ =  15λ =  

Noise level  
(σ ) 

0.03 0.06 0.09 0.03 0.06 0.09 

PSNR 30.8364 30.6805 30.9470 32.7724 32.4796 32.1117 

 

 
For sigma=0.03 

Original image       noisy image 

        

 

 

 

 

 

 

Denoisy image 
 for lambda =1      for lambda = 5 
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Figure 3: Denoising of Image with noise variance 0.03 and for different values of λ . 

As the λ value increases the denoising will be effective and it will closely approximate 

the original signal. 

 
LAPLACIAN: 

 
Table 3: Noise level vs PSNR for Images corrupted with Laplacian Noise 

1λ =  5λ =  

Noise level  
(σ ) 

0.03 0.06 0.09 0.03 0.06 0.09 

PSNR 33.1720 30.9347 29.4693 31.3277 26.1588 23.0863 

10λ =  15λ =  

Noise level  
(σ ) 

0.03 0.06 0.09 0.03 0.06 0.09 

PSNR 31.3548 26.3370 23.442 31.2177 26.2236 23.6758 

 
POISSON: 

 
Table 2: Noise level vs PSNR for Images corrupted with Poisson Noise 

1λ =  5λ =  

Noise level  
(σ ) 

0.03 0.06 0.09 0.03 0.06 0.09 

PSNR 23.7205 23.6232 23.4706 23.4706 28.9153 27.3584 

10λ =  15λ =  

Noise level  
(σ ) 

0.03 0.06 0.09 0.03 0.06 0.09 

PSNR 32.4672 29.8744 27.7309 33.5382 29.7888 26.4509 
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Original image    Noisy image (Poisson Noise) 
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Figure 4: Denoising of Image with noise variance 0.09 and for different values of λ . 
 

4. CONCLUSIONS & FUTURE WORK 

TV-based regularization is particularly well-suited to image restoration in certain cases. The 

underlying assumption of TV is that images under consideration belong to the class of piecewise-

constant signals. Hence, the recovered images resulting from the application of this model in the 

presence of noise are subject to the so-called staircase effect. Total variation regularization is well 

capable of preserving edges of uniform, small curvature, it does strongly smooth, and may even 
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destroy, small scale structures with high curvature edges. Therefore, the use of TV may generate 

undesirable artifacts and compromise the quality of the recovered image. This problem can be 

minimised using second (or higher)-order regularization methods.  
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