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ABSTRACT 

 
An efficient, and intuitive algorithm is presented for the identification of speakers from a long dataset (like 

YouTube long discussion, Cocktail party recorded audio or video).The goal of automatic speaker 

identification is to identify the number of different speakers and prepare a model for that speaker by 

extraction, characterization and speaker-specific information contained in the speech signal. It has many 

diverse application specially in the field of Surveillance , Immigrations at Airport , cyber security , 

transcription in multi-source of similar sound source, where it is difficult to assign transcription arbitrary. 

The most commonly speech parameterization used in speaker verification, K-mean, cepstral analysis, is 

detailed. Gaussian mixture modeling, which is the speaker modeling technique is then explained. Gaussian 

mixture models (GMM), perhaps the most robust machine learning algorithm has been introduced to 

examine and judge carefully speaker identification in text independent. The application or employment of 

Gaussian mixture models for monitoring & Analysing speaker identity is encouraged by the familiarity, 

awareness, or understanding gained through experience that Gaussian spectrum  depict the characteristics 

of speaker's spectral conformational pattern and remarkable ability  of GMM to construct capricious 

densities after that we illustrate 'Expectation maximization' an iterative algorithm which takes some 

arbitrary value in initial estimation and carry on the iterative process until the convergence of value is 

observed We have tried to obtained 85 ~ 95% of accuracy using speaker modeling of vector quantization 

and Gaussian Mixture model ,so by doing various number of experiments we are able to obtain 79 ~ 82% 

of identification rate using Vector quantization and 85 ~ 92.6% of identification rate using GMM modeling 

by Expectation maximization parameter estimation depending on variation of parameter. 
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1. INTRODUCTION 

Speaker identification have two categories: text-dependent and text-independent. Essentially, we 

are more interested and involved in the research of text independent speaker identification / 

verification with the reason that it doesn't impose as a necessity and demands regarding the 

utterances obtained from speaker that means there is no restriction over the words , it can be 

anything in any order, so the first basic steps involve the feature extraction from speech sample in 

the enrolment process of a speaker , extracted feature are collected in the database as a training 

data utterances. For the better accuracy, every time we are updating our training dataset while 

preparing training dataset for new utterances with previous stored data in our database, in this 

way model of each speaker is trained. Now in identification process with the help of probabilistic 

model a measurement of identification has to be done, the feature vectors of testing utterances is 

measured with feature vectors of training dataset and decision has to be made whether it belongs 

to a group of dataset or not. 
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2. FEATURE EXTRACTION FROM VOCAL TRACT 

 
Human's vocal tract, the airway used in the production of speech is the organs above the vocal 

folds, especially the passage above the larynx, including the pharynx, mouth, and nasal cavities. 

which is formed of the oral part (pharynx, tongue, lips, and jaw) , olfactory nerves, and the nasal 

tract. When the glottal pulses signal generated by the vibration of the vocal folds passes through 

the vocal tract, it is modified. Human’s vocal tract is performing like a filter, and its frequency 

characteristics is dependent upon the resonance peak from the vocal tract and vocal tract 

configuration can be obtained from the spectral shape such as formant position and spectral 

inclination of the speech signal. These features can be obtained from the spectrogram of the 

speech signal and we are using Mel-Frequency Cepstral Coefficients (MFCC) features in speaker 

identification as it combines the advantages of the cepstrum analysis with a perceptual frequency 

scale based on critical bands. Although the speech signal is non-stationary, but can be assumed as 

stationary for a short duration of time, so analysis is done by framing the speech signal; the frame 

width is about 20−30 milliseconds, and the frames are shifted by about 10 milliseconds. 

 

 

The number of feature vector that we get from utterances is usually large so for computation and 

the number of feature vectors can diminished without lose by K-means clustering method. This 

results in a small set of vectors called as codebook vector and a codebook is obtained for each 

speaker utterances using K-means. A codebook consist of many different vectors, which depict 

the important characteristics of each speaker. Each codebook is obtained as follows: Given a set 

of training set of MFCC feature vectors of 16-point vector for each frame of the utterance, which 

represent the speaker, find a decomposition of the feature vector space. Each decoposed region 

contains a cluster of vectors, which depict the same kind of basic sound. This region is 

represented by the centroid vector, which is the vector, which causes the minimum distortion 

when vectors in the region are mapped to it. Thus, each speaker has a codebook with a number of 

centroids which is prepared with the help of K-mean Clustering. 

 

3. MODELING USING VECTOR QUANTIZATION AND IDENTIFICATION 

Vector quantization (VQ) is one of the simplest text-independent speaker models. VQ is often 

used for computational speed-up techniques and lightweight practical implementations. Vector 
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quantization (VQ) is a ancient well-known quantization skills from signal processing which 

allows the modeling of probability density functions by the classification of prototype vectors. 

VQ is generally used by classifying a large se of (MFCC)feature vector dataset in small groups 

vectors having same number of points closet to the denser value i.e. means of codebook of 

training dataset 

For Identification average quantization distortion is computed for the test utterance feature 

vectors by X = {x1,x2....xT}and the reference vectors by Ɍ={r1,r2….rk} . 

 

Where d(.,.) is a distance measure such as the Euclidean distance ||xt-rk||. A smaller value DQ 

indicates higher likelihood for X and R originating from the same speaker. 

 

Above Diagram1 shows speaker identification using Vector quantization modeling, the upper 

region is enrolment process while in lower region feature has been extracted from test utterance. 

Diagram2 shows the Vector quantization distortion measurements plot when the speaker 

identification’s test has been performed for 8 speakers. For K = 16 variations of distortion 

measurement from speaker i to speaker i utterances lies between (3.4561 to 7.0723) and from 

speaker i to speaker j lies between (13.1892 to 29.9038), where i, j ϵ (1 to 8). 
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Diagram 4 

Table1. Performance of Vector quantization modeling with MFCC feature extraction 

 
Training Utterances No. of Clustering (K mean) Identification rate (%) 

8 Speaker utterances K = 32 82 

8 Speaker utterances K = 16 82 

8 Speaker utterances K = 8 80 

 

Total Number of speaker’s utterances = 75 

 

4. MODELING USING GAUSSIAN MIXTURE MODEL 
 

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a 

weighted sum of Gaussian component densities. It is generally used as a parametric model of the 

probability distribution of continuous spectrum. GMM parameters are computed by 'Expectation 

maximization' an iterative algorithm which takes some arbitrary value in initial estimation and carry on the 

iterative process until the convergence of value is observed and the whole Gaussian mixture model is 

defined by these parameters namely mean vectors (µi), covariance matrices(σi) and mixture 

weights(pi) from all different components, and the weighted sum of M Component density is 

given by 

 
 

where χ is a D-dimensional continuous-valued feature vector (in our case 16 dimensional), pi ,   

i = 1, . . . ,M, are the mixture weights, and g(χ/µi,σi) are component densities. Each component 

density is a D-dimensional Gaussian function of the form, 
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GMM based speaker identification model is shown below, the upper region is extraction of 

features from training dataset and preparing a mixture model using expectation maximization 

while in lower region feature has been extracted from test utterance, and finally with GMM 

parameter and extracted features from test utterances identification measurement has been done 

by using probability generation function 

 
One of the powerful attributes of the GMM is its ability to form smooth approximations to 

arbitrarily shaped densities. There are several techniques available for estimating the parameters 

of a GMM i.e (µ, σ, p) and most popular and well-established method is maximum likelihood 

(ML) estimation. Since the equation of joint probability is nonlinear function of parameter λ so 

we can’t solve it easily because number of unknown variables are more than number of equations 

, so the parameter of ML is estimated iteratively by expectation maximization . The basic idea of 

the EM algorithm is, beginning with an initial model λi to estimate a new model λj such that p(χ/ 

λj) ≥ p(χ/ λi), where j > i . The new model then becomes the initial model for the next iteration and 

the process is repeated until some convergence threshold is reached, so by using number of 

utterances = 10 can give you a good approximated parameters (µ, σ, p) of GMM. 

 
Table2. Performance of GMM with MFCC feature based identification 

 

Training data 

in seconds 

Testing data in 

seconds 

No. of component No. of Iterations 

for EM   

Rate of correct 

identification (%) 

6 6 2 6 78.8342 

6 6 4 6 76.6654 

12 6 4 8 83.6723 

20 6 4 10 84.4348 

30 4 to 10 4 12 87.4382 

30 4 to 10 5 12 89.5630 

60 4 to 10 6 12      92.6643 

120 4 to 10 7 14 92.1273 

Total Number of speaker’s utterances = 75 
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5. CONCLUSION 
 

In this paper, we have introduced a text-dependent speaker identification system, we have 

investigated that Gaussian mixture models (GMMs) have proven extremely successful for text-

independent speaker identification for long dataset of different speakers. Identification 

performance of the Gaussian mixture speaker model is insensitive to the method of model 

initialization however we have estimated the parameter using expectation maximization and 

Identification rate is very sensitive to number of cluster and number of iteration of expectation 

maximization we have performed the experiments in Matlab R2014a (The Language of Technical 

Computing), this model is currently being evaluated on a 75 speaker's utterances and the results 

indicate that Gaussian mixture models provide a robust speaker representation for the difficult 

task of speaker identification using corrupted, unconstrained speech of cocktail party or YouTube 

dataset The models are computationally inexpensive and easily implemented on a real-time 

platform. 
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