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ABSTRACT 

 
The present paper, proposes an efficient denoising algorithm which works well for images corrupted with 

Gaussian and speckle noise. The denoising algorithm utilizes the alexander fractional integral filter which 

works by the construction of fractional masks window computed using alexander polynomial. Prior to the 

application of the designed filter, the corrupted image is decomposed using symlet wavelet from which only 

the horizontal, vertical and diagonal components are denoised using the alexander integral filter. 

Significant increase in the reconstruction quality was noticed when the approach was applied on the 

wavelet decomposed image rather than applying it directly on the noisy image. Quantitatively the results 

are evaluated using the peak signal to noise ratio (PSNR) which was 30.8059 on an average for images 

corrupted with Gaussian noise and 36.52 for images corrupted with speckle noise, which clearly 

outperforms the existing methods. 
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1. INTRODUCTION 

 
One of the fundamental challenges in image processing and computer vision is image denoising. 

Noise is a random signal which corrupts an image at the time of image acquisition.  Efficient 

methods for the recovery of original image from there noisy version is extensively explored in 

literature [1]. There are two types of model for image denoising namely linear and non-linear. 

The linear model works well reducing the noise present in flat regions of image but is incapable 

to preserve the texture and edges examples include Gaussian filter and wiener filter etc. The 

above limitation is removed using the non-linear models which have better edge preserving 

capability than linear models. The fractional calculus has been applied by numerous researchers 

in various fields [2], [3] related to image texture enhancement [4], [5] and [6] and image 

denoising [7], [8], [9] , [10].The results which were corrupted using these operators showed high 

robustness against different types of noise. Hu et al. [7],[11] implemented a fractional integral 
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filter using fractional integral mask windows on eight directions based on Riemann–Liouville 

definition of fractional calculus. The efficiency of the method is showed by computing the 

PSNR=27.35 at Gaussian noise with standard deviation σ=25 for boat image. Guo et al. [12] 

proposed an image denoising algorithm based on the Grünwald–Letnikov definition of fractional 

calculus using fractional integral mask windows. Grünwald and Letnikov achieved fine-tuning, 

by setting a smaller fractional order and controlled the effect of image denoising by iteration. G. 

Andria [13] proposed a technique for ultrasound medical image denoising using the Linear 

filtering of 2-D wavelet coefficients. In this technique the image was decomposed into the 

approximate and details components and then detail components was denoised using Gaussian 

filter. 

 

Rest of the paper is organized as follows Section 2 describes the background pertaining to 

concepts of wavelets and the alexander polynomial. Section 3 outlines the proposed method; the 

experimental results and discussions, including comparison with other existing approaches are 

given in Section 4. Finally conclusion is presented in the last section. 

 

2. MATHMATICAL BACKGROUND 
 

2.1. Wavelet Foundation 

 
The word wavelet has been used for decades in digital signal processing [14]. Our focus is on 

wavelet decomposition which is useful for the applications such as detecting features, image 

denoising and image compression etc. A wavelet series expansion is defined as a function in 

terms of the set of orthogonal basic function. For example in Fourier expansion basis consists of 

sine and cosine function of different frequencies. Many types of functions that are encountered in 

practice can be sparsely and uniquely represented in terms of the wavelet series. One such 

example is L�(R) set of all square integrable function on real numbers R. It can be shown 

daubechies, 1992, that it is possible to construct a function �(x) so that any function  � ∈ L�(�)  

can be represented by 

 

�(	) = � �
,��∈�
ϕ
,�(	) + � � ��,��∈����

ψ�,�(	) 

 

where �
,� = ∫�  �(	)ϕ
,�(	)dx, ��,� = ∫��(	)ψ�,�(	)�	 , j controls the maximum resolution. 

The function ψ�,� =   2�ψ(2�	 − �) is obtained from the mother wavelet ψ(	) by dilation and the 

translation. The function ϕ
,�(	)  is obtained from a function ϕ(x) known as father wavelet or 

scaling function by using dilation and translation formula, ϕ
,� = ϕ(x − k). For two dimensions, 

the scaling function and the wavelets are defined as follows 

 

ɸ�,�,!(x, y) =  ��,�(x)��,!(y) = 2� ɸ#2�	 − �, 2�$ − %&. 

 

'�,�,!(x, y) = 2�'((2�	 − � ,2�$ − %). 

 

Here s = h; v; d are all dimensional details characterized as 
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'�,�,!) (	, $) =��,�(	)ψ�,!($), 

 

'�,�,!* (	, $) =��,!($)ψ�,�(	), 

 

'�,�,!* (	, $) =ψ�,!($)ψ�,�(	). 

 

The set { ɸ�,�,!(	, $)} U {'�,�,!) (	, $), '�,�,!* (	, $) , '�;�,!* (	, $); j, k, l ∈ Z} is an orthonormal 

basis for function space L�(��). Therefore any function � ∈ L�(��) can be expressed as 

 

�(	, $) = ∑ ��
,�,!�,!∈� ɸ�
,�,-(	, $) + ∑ ∑ ∑ ��,�,!. '�,�,!. (	, $) �,!∈��/�
. . 

 

where  ��
,�,! is scaling coefficient and ��,�,!.  for i=h; v; d are wavelet coefficients called the sub-

band coefficients. 

 

The wavelets are widely used in image denoising. In [13] G. Andria, proposed the method to 

denoise the ultrasonic image, in this method firstly they decompose the image using the Symlet 5 

wavelet and then applied the Gaussian filter on the detailed components of images and then after 

reconstruct the image to computed the PSNR, which is better as compared to directly applying 

the Gaussian filter on the images. Hence it is clear that, with the use of the wavelets in image 

denoising, that is very much capable to remove the noise as compared to direct one. In our 

algorithm, the wavelet decomposition of the image is obtained using Symlet 5 wavelet because 

this function, indeed, are filters with linear phase [15], and therefore the wavelet coefficients are 

not affected by linear distortion. 

2.2. Alexander Polynomial 

The Alexander polynomial was proposed by J.W. Alexander in 1923 is a knot invariant in which 

integer coefficients corresponding to each knot type. Until the Jones polynomial was derived in 

1984, the Alexander polynomial was the only best known knot polynomial. It is a fundamental 

tool which explains the pair of curves known as a Zariski pair. A set of two curves C 1  and C 2  of 

equal degree is employed to depict a Zariski pair. If region exist, then Q(C i)⊂P
2
 (projective 

plane) of 1., 2 = 1,2 such that (Q(C 1 ,C 1 ) )   and (Q(C 2 ,C 2 ) )  are diffeomorphic , while the set 

of two (P
2
,C 1 )  and (P

2
,C 2 )  are not homeomorphic. Our main objective is to construct mask 

windows using of the Alexander polynomial and its generalized form. 

 

Definition 1 

 

The Alexander polynomial is formulate as [16] 

 

∆(t) = 6 ∆7(t)-8
9:;

7<;
, m = 1, … . . , d − 1 

 

Where ℓm  is positive integer and 

 

∆7(@) = At − exp A�7πD
9 EE At − exp A:�7πD

9 EE                                                                              (1)                                    
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The details of the parameters setting used in the equations can be found in the work by E. Artal-

Bartolo [16]. 

 

2.3. Fractional Calculus 

 
The fractional calculus was proposed by Abel over 300 years ago. Afterwards, physical problems 

as well as potential theory problems are solved using this technique. Now a days many 

researchers work to use this technique in all areas of sciences [3]. This subsection deals with 

some definitions regarding fractional calculus. 

 

Definition 2 

 

The fractional (arbitrary) order integral of the function s  of order β>0 is defined by 

 

IG
βs(t) =    ∫ (I:τ)βJK

Γ(β)
I

G s(τ)dτ                                                                                                            (2)    

                                                                                                                              

If a=0, then we write I

βs(t) = s(t) ∗ γ(t), where (*) denoted the convolution product, 

 

γ(t) = (I:τ)βJK
Γ(β) , t > 0 and  γ(t) = 0, t ≤ 0    & γ(t)→δ(t) as β→0  and γ(t)→δ(t) as β→0    

 

where δ(t) is the delta function. 

 

In our algorithm, the mask is created using the fractional calculus with utilizing alexander 

polynomial.  After judging the equations for the mask pixels describe in next section we select 

the two parameters β and t by fine tuning on the basis of PSNR. 

3. PROPOSED METHOD 

3.1 Procedure for Decomposition 

In this section, according to our studies the wavelet transform is a tool to decompose [17] an 

image in sub-sampled images, generally consisting of one low-pass filtered approximation, and 

details corresponding to a high pass filtering in each direction [18] and [19]. In addition, the 

second level 2-D discrete wavelet decomposition produces seven sub-images A2, H2, V2, D2, 

H1, V1 and D1, where A2 is obtained by low pass filtering and twofold decimation along the row 

and column direction and H1, H2, V1, V2 and D1, D2 shows the horizontal, vertical and diagonal 

details respectively, for the second level decomposition of a Noisy image. The approximation A2 

are the high-scale, low-frequency components of the image and the details H2, V2, D2, H1, V1 

and D1 are the low-scale, high-frequency components. Generally the noise is present in high 

frequency components because noise is the high frequency signal. Our aim is to denoise these 

components only rather than complete denoise the noisy image. The decomposition of the Noisy 

image, PQ into second-level using symlet-5 mother functions of wavelet families. The size of the 

mask window should be minimum (3X3) for reducing the computational time, Therefore, the 

total filtering time for denoising one detail coefficient is RS = RTU RV=8W� RV. Then, overall 

complexity measure for all detail coefficients images is denoted by R�,R� = 3 X L X RS where L is 

no. of decomposition level and here we use L=2 to achieve desired results. 
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3.2 Procedure for Filter Design 

The procedure of our filter construction uses the definition 2 which explained in section 2 

If a=0, we have 

 

Iβtµ = Γ(µ+ 1)
Γ(µ+ 1 + β) tµZβ,µ > −1; [ > 0 

 

Further, we generalize the Alexander polynomial as explained in definition 1, utilizing the 

Mittag–Leffler function as 

 

Eβ(t) = � t7

Γ(βm + 1)
∞

7<

 

 

We obtained, 

 

∆β(t) = 6 ∆7
β (t)!8

9:;

7<;
, m = 1, … … … d − 1 

 

Where %7 is the positive integer and 

 

∆7
β (t) =  (t − Eβ(�7πD

9 )) (t − Eβ(:�7πD
9 )                                                                                       (3)        

                                                                                                    

By using (3) we make set of fractional coefficients of Alexander fractional integral sets as 

 

∆];
^= ∆];;

^ = 2
Γ(3 + β) @(�Z^)  − √3

Γ(2 + β) t(;Zβ) + @^

Γ(1 + β)   
 

∆]�
^= ∆];


^ =  2
Γ(3 + β) @(�Z^)  − 1

Γ(2 + β) t(;Zβ)  + @^

Γ(1 + β)   
 

∆]`
^= ∆]a

^=  2
Γ(3 + β) @(�Z^)  + @^

Γ(1 + β)  
 

∆]b
^= ∆]c

^= 2
Γ(3 + β) @(�Z^) + 1

Γ(2 + β) t(;Zβ)  + @^

Γ(1 + β)  
 

∆]d
^= ∆]e

^=  2
Γ(3 + β) @(�Z^)  + √3

Γ(2 + β) t(;Zβ)  + @^

Γ(1 + β)    
 

∆];
^= ∆];;

^ =  �
Γ(`Zβ) @(�Z^)  + �

Γ(�Zβ) t(;Zβ)  + fg
Γ(;Zβ)                                                                        (4)                                                                              

 

In above fractional sets we choose value of m is from 1 to 11 because the fact that it is a cyclic 

index. 
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For the implementation of mask windows we uses the integral set based on (4) and taking the 

values of the fractional powers in the range of 0<β≤0.7 and t>0, after this we move the 

constructed mask on noisy image by performing convolution on eight directions because the 

directions of fractional mask windows are invariant to rotation, which are 180°, 0°, 90°, 270°, 

135°, 315°, 45° and 225° and these are labelled as s180(m), s0(m) ,  s90(m) ,  s270(m) ,   s135(m) ,   

s315(m), s45(m) and s225(m). Each pixels of the details i.e., horizontal details, vertical details and 

diagonal details are convolved with the mask windows on eight directions. The magnitude for 

each filter for each individual image   hi(i, j) can be obtained as follows: 

 

j∅(i, j) = ∑  hi(i, j) ∗ai<; n∅(m)                                                                                                    (5)  

 

where, m=1,2,…,9 represents the location of pixel inside each mask window and ∅ =180°, 0°, 

90°, 270°, 135°, 315°, 45°, and 225° are represents mask windows on eight directions. 

 

The final new filtered image based on alexander fractional integral filter (AFI) can be obtained by 

the summation of all eight convolution results of the magnitudes for each filter (5). This process 

is apply for all the details of wavelet transformed image and then the resultant of AFI filter of all 

the details are combined with the approximation to get the resultant denoised image. 

The Steps of Proposed Method for Image Denoising are as follows: 

 
Step 1: Resize the original image to 512x512 pixels. 

Step 2: Add artificial noise to the original image (Gaussian and Speckle noise). 

Step 3: Decompose the image into sub-bands. 

Step 4: Obtained the coefficients for second level decomposition. 

Step 5: Denoise each sub-band, except for the low pass residual band using AFI filter. 

Step 6: Combined and obtain the denoised image. 

Step 7: Calculate the PSNR between the original image and the denoise image. 

Design Steps for AFI Filter 

 
Step 1: Initialize fractional integral windows of 3x3 sizes. 

Step 2: Define the values of the fractional powers of the mask window with the range of  

               0 ≤ [ < 0.7and t >0. 

Step 3: By setting the optimal value for [= 0.52 shown in Fig.8 and the value of t=0.54 can be   

selected to get the maximum PSNR. 

4. EXPERIMENTAL RESULTS AND EXPLANATION 

4.1 Database 

The experiments are performed on MATLAB 7.12.0 (R2011a) and windows platform. The 

proposed algorithm is tested on the standard images taken from [20], [21]  include grayscale 

images, color images and ultrasonic image. The AFI filter is considered to operate using 3×3 

processing mask window. 

4.2 Performance Measure 

The performance of the proposed filtering method was evaluated by computing the PSNR. The 

PSNR is characterized through the mean squared error (MSE) for two images, namely, I and K, 
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where one of the images is considered the Original image (or corrupted) and the other is the 

denoised image respectively. 

MSE = 1
st � �[I(2, v) − K(2, v)]�

y

�<;

z

.<;
 

PSNR = 10log;
(7G� (�,�)�
z�� ) 

 

where, M, N is the sizes of the images in the rows and columns. They must have same size to 

obtain the PSNR. 

4.3 Choice of Fractional Power Parameter 

The fractional power parameter used in our method is β, from the selected value of β we decide 

the pixels of masks. We analyze the behaviour of PSNR for the values of β, taken from 0.1 to 0.7, 

because of the trade-off between PSNR and β shown in Fig.1. The maximum PSNR value was 

obtained by our proposed method using the optimal values of β i.e., 0.52. In our method of image 

denoising, smaller value of parameter [ leads to a small value of the PSNR of the denoised 

image. While an expansive [ quality prompts sensational reduction of the PSNR. We apply the 

filter in detailed component of the corrupted image and approximation component is kept 

untouched because it consists of the low frequency components discussed earlier in section 2.1. 

 

 
 

Fig 1: PSNR versus Order plot for grayscale images corrupted by Gaussian noise with standard deviation 

 σ = 25 

 

The better denoising is obtained for [ = 0.52 at which selected value of t = 0.54 as compared to 

previous methods. 

 

4.4 For Visual Perception 

For the human visual perception, we perform the two sets of experiments by adding different 

noises to the original images which are: 
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4.4.1 Addition of Gaussian Noise 

We perform the experiments to add artificial Gaussian noise with different standard deviations 

(15, 20 and 25) to the original standard images. For the standard deviation, σ=15  we add the 

Gaussian noise to the Lena and pepper images. The corrupted decomposed detail components of 

image is passed through the AFI filter and after filtering finally, reconstruct the decomposed 

image to get the final image. In Fig 2 and Fig 3 we shows the comparison of proposed method 

with Gaussian filter, AFI and AFD filter visually by passing corrupted image directly to the filter. 

 

 

                (a)                      (b)                         (c)                        (d)                       (e)                        (f) 

Fig 2 Results of Grayscale image Lena for visual perception (a) Original Image, (b) Image with Gaussian 

noise, σ=15, (c) Gaussian smoothing filter, (d) AFD filter (e) AFI filter (f) Proposed filtering method. 

 

 

                (a)                      (b)                         (c)                        (d)                       (e)                        (f) 

Fig 3 Results of Color image Peppers  for visual perception. (a) Original Image, (b) Image with Gaussian 

noise,  σ=15. (c) Gaussian smoothing filter, (d) AFD filter, (e) AFI filter, (f) Proposed filtering method. 

 

For the standard deviation, σ = 20  we add the Gaussian noise to the boat and baboon images. The 

corrupted decomposed detail components of image are passed through AFI filter and then 

reconstruct the decomposed image to get the final image. In Fig 4 and Fig5 we shows the 

comparison of proposed method with Gaussian filter, AFI and AFD filter visually by passing 

corrupted image directly to the filter. 

 

 
             

              (a)                         (b)                         (c)                        (d)                       (e)                        (f) 

Fig 4 Results of Grayscale image Boat for visual perception (a) Original Image, (b) Image with Gaussian 

noise σ=20. (c) Gaussian smoothing filter, (d) AFD filter, (e) AFI filter, (f) Proposed filtering method. 
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              (a)                         (b)                         (c)                        (d)                       (e)                        (f) 

Fig 5 Results of Color image Baboon for visual perception (a) Original Image, (b) Image with Gaussian 

noise σ=20, (c) Gaussian smoothing filter, (d) AFD filter, (e) AFI filter, (f) Proposed filtering method. 

For the standard deviation, � = 25  we add the Gaussian noise to the Cameraman and House 

images. The corrupted decomposed detail components of image are passed through the AFI filter 

for denoise and then reconstruct the decomposed image to get the final image. In Fig 6 and Fig 7 

we shows the comparison of proposed method with Gaussian filter, AFI and AFD filter visually 

by passing corrupted image directly to the filter. 
 

 

              (a)                         (b)                         (c)                        (d)                       (e)                        (f) 

Fig 6 Results of Grayscale image Cameraman for visual perception (a) Original Image, (b) Image with 

Gaussian noise σ=25. (c) Gaussian smoothing filter, (d) AFD filter. (e) AFI filter, (f) Proposed filtering 

method. 

 

              (a)                         (b)                         (c)                        (d)                       (e)                        (f) 

Fig 7 Results of Color image House for visual perception (a) Original Image, (b) Image with Gaussian 

noise � = 25, (c) Gaussian smoothing filter, (d) AFD filter, (e) AFI filter, (f) Proposed filtering method 

 

4.4.2 Addition of Speckle Noise 

 
We perform the experiments to add speckle noise with variance=0.04 to the ultrasonic images. 

When the corrupted decomposed detail components of image is passed through the AFI filter to 

denoise and then reconstruct the decomposed image to get the final image. In Fig 8 we shows the 

comparison of proposed method with Kuan filter, AFI and AFD filter visually by passing 

corrupted image directly to the filter. 
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              (a)                         (b)                         (c)                        (d)                       (e)                        (f) 

Fig 8 Results of Ultrasonic image Liver for visual perception (a) Original Image, (b) Image with speckle 

noise variance=0.04, (c) Gaussian smoothing filter, (d) AFD filter, (e) AFI filter, (f) Proposed filtering 

method. 

 

4.5 Quantitative Comparison with other Methods 
 

For the quantitative comparison purpose we measure the PSNR between the Original and 

denoised images for the standard images corrupted by the gaussian noise. The Table1 tells the 

PSNR value of our proposed filtering method is higher than the previous method and shows 

better results than Gaussian, AFD and AFI filters. 

 

TABLE 1 Comparison of PSNRs obtained by different image denoising methods 

Images 

(512X512) 

Gaussian 

Noise � 

PSNR(dB) 

Gaussian 

Filter 

[20] 

AFD 

[20] 

AFI 

[20] 

Proposed Filtering 

Method 

Lena 15 28.23 29.06 29.53 36.10 

Pepper 15 28.14 29.67 29.05 30.05 

Boat 20 25.73 28.66 28.97 32.72 

Baboon 20 24.87 25.74 25.66 27.54 

Cameraman 25 24.24 26.47 27.01 31.35 

House 25 24.03 26.61 27.00 27.08 

 

Table 2 shows the result of PSNR obtained for the ultrasonic image corrupted by the artificial 

speckle noise is much better as compared to the Kuan, AFD and AFI filters. The reason for 

higher PSNR achieve, is that when using the concept of wavelet with AFI filter,  which only 

affects the pixel values that are changing sharply (high frequency of image), while no significant 

changes happen in low frequency of image [17] 

 

TABLE 2 Comparison of PSNRs obtained by different image denoising methods 

for ultrasonic image. 

Image 
Speckle 

Variance 

PSNR(dB) 

Kuan 

Filter 

[20] 

AFD 

[20] 

AFI 

[20] 

Proposed 

Filtering 

  Method 

Ultrasonic 

 
0.04 32.02 33.28 33.40 36.52 

 

For the Tables 3 we compute the PSNR between the corrupted and denoised image because of the 

comparison of our proposed method with the Fractional integral method [8] in which PSNR is 
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obtained between the corrupted and denoised image. In this table we show the results of Lena and 

Boat image when these are corrupted by different artificial Gaussian noise standard deviation 

(σ=15, 20 and 25). It can be seen from the table for boat and Lena image, the values of PSNR for 

our proposed filtering method are slightly larger than the methods in  [8],[22] corrupted by noise 

standard deviation  σ  values of 15 and 20. The proposed method for the image denoising gives 

attractive results when the image is highly corrupted by Gaussian noise. The Higher PSNR of our 

proposed algorithm acts as one of the important parameters in judging its performance. 

TABLE 3 Comparison of the experimental results for grayscale Boat and Lena 

image with other methods. 

Image 

 (512 X 

512) 

Gaussian 

Noise 

σ 

PSNR(dB) 

Fractional 

Integral 

Filter 

[8] 

AFD 

[20] 

AFI 

[20] 

Proposed 

Filtering 

Method 

Boat 

15 29.20 29.97 29.54 30.12 

20 27.91 28.66 28.97 29.23 

25 26.97 27.39 27.90 28.12 

Lena 

15 29.93 29.20 29.54 30.15 

20 28.01 28.27 28.97 30.08 

25 27.35 27.28 27.90 28.02 

 

5. CONCLUSION 

In this paper, an image denoising algorithm based on wavelet decomposition with fractional 

integral is proposed. The denoising performance is measured by performing experiment based on 

visual perception and PSNR values. The experiments shows that the improvements achieved are 

compatible with the standard Gaussian smoothing, AFI and AFD filters. An additional interesting 

property of our proposed method is characteristic of the denoised method that can be adjusted 

easily by changing the numbers of levels of decomposition and two values of fractional powers of 

proposed mask windows may be changed. In future studies proposed filter method can be 

modified for texture enhancement of digital image. 
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