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ABSTRACT 

 
Biometrics identification using multiple modalities has attracted the attention of many researchers as it 

produces more robust and trustworthy results than single modality biometrics. In this paper, we present a 

novel multimodal recognition system that trains a Deep Learning Network to automatically learn features 

after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing 

different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in 

the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-

redundant features. The automatically learned features are then used to train modality specific sparse 

classifiers to perform the multimodal recognition. Experiments conducted on the constrained facial video 

dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 

97.14% rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the 

superiority and robustness of the proposed approach irrespective of the illumination, non-planar 

movement, and pose variations present in the video clips. 
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1. INTRODUCTION 

 
There are several motivations for building robust multimodal biometric systems that extract 

multiple modalities from a single source of biometrics, i.e., facial video clips. Firstly, acquiring 

video clips of facial data is straight forward using conventional video cameras, which are 

ubiquitous. Secondly, the nature of data collection is non-intrusive and the ear, frontal, and profile 

face can appear in the same video. The proposed system, shown in Figure 1, consists of three 

distinct components to perform the task of efficient multimodal recognition from facial video 

clips. First, the object detection technique proposed by Viola and Jones [1], was adopted for the 

automatic detection of modality specific regions from the video frames. Unconstrained facial 

video clips contain significant head pose variations due to non-planar movements, and sudden 

changes in facial expressions. This results in an uneven number of detected modality specific 

video frames for the same subject in different video clips, and also a different number of modality 

specific images for different subject. From the aspect of building a robust and accurate model, it 

is always preferable to use the entire available training data. However, classification through 

sparse representation (SRC) is vulnerable in the presence of uneven number of modality specific 

training samples for different subjects. Thus, to overcome the vulnerability of SRC whilst using 

all of the detected modality specific regions,  in the model  building  phase we  train supervised  
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Figure 1.  System Block Diagram: Multimodal Biometrics Recognition from Facial Video
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encoder to construct a mapping function. This mapping function is used to 

automatically extract the discriminative features preserving the robustness to the possible 

variances using the uneven number of detected modality specific regions. Therefore, by applying 

work as the second component in the pipeline results in an equal number of

training sample features for the different subjects. Finally, using the modality specific recognition 

results, score level multimodal fusion is performed to obtain the multimodal recognition result.

System Block Diagram: Multimodal Biometrics Recognition from Facial Video
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2. MODALITY SPECIFIC IMAGE FRAME DETECTION 

 
To perform multimodal biometric recognition, we first need to detect the images of the different 

modalities from the facial video. The facial video clips in the constrained dataset are collected in 

a controlled environment, where the camera rotates around the subject's head. The video 

sequences start with the left profile of each subject (0 degrees) and proceed to the right profile 

(180 degrees). Each of these video sequences contains image frames of different modalities, e.g., 

left ear, left profile face, frontal face, right profile face, and right ear, respectively. The video 

sequences in the unconstrained dataset contains uncontrolled and non-uniform head rotations and 

changing facial expressions. Thus, the appearance of a specific modality in a certain frame of the 

unconstrained video clip is random compared with the constrained video clips.  

 

The algorithm was trained to detect the different modalities that appear in the facial video clips. 

To automate the detection process of the modality specific image frames, we adopt the Adaboost 

object detection technique, proposed by Viola and Jones [1]. The algorithm is trained to detect 

frontal and profile faces in the video frames, respectively, using manually cropped frontal face 

images from color FERET database, and profile face images from the University of Notre Dame 

Collection J2 database. Moreover, it is trained using cropped ear images from UND color ear 

database to detect ear images in the video frames. By using these modality specific trained 

detectors, we can detect faces and ears in the video frames. The modality specific trained 

detectors are applied to the entire video sequence to detect the face and the ear regions in the 

video frames. 

 

Before using the detected modality specific regions from the video frames for extracting features, 

some pre-processing steps are performed. The facial video clips recorded in the unconstrained 

environment contain variations in illumination and low contrast. Histogram equalization is 

performed to enhance the contrast of the images. Finally, all detected modality specific regions 

from the facial video clips were resized; ear images were resized to 110 X 70 pixels and faces 

images (frontal and profile) were resized to 128 X 128 pixels. 

 

3. AUTOMATIC FEATURE LEARNING USING DEEP NEURAL NETWORK 

  
Even though the modality specific sparse classifiers result in relatively high recognition accuracy 

on the constrained face video clips, the accuracy suffers in case of unconstrained video because 

the sparse classifier is vulnerable to the bias in the number of training images from different 

subjects. For example, subjects in the HONDA/UCSD dataset [4] randomly change their head 

pose. This results in a non-uniform number of detected modality specific video frames across 

different video clips, which is not ideal to perform classification through sparse representation. 

 

In the subsequent sections we first describe the Gabor feature extraction technique. Then, we 

describe the supervised denoising sparse auto-encoders, which we use to automatically learn 

equal number of feature vectors for each subject from the uneven number of modality specific 

detected regions.  

 

3.1. Feature Extraction 
 

2D Gabor filters [5] are used in broad range of applications to extract scale and rotation invariant 

feature vectors. In our feature extraction step, uniform down-sampled Gabor wavelets are 

computed for the detected regions:  

                                   ��,���� = 	
�,�	


�
 ℯ��	��,�	
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 �,                          (1) 
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where z = (x, y) represents each pixel in the 2D image, �μ,�  is the wave vector, which can be 

defined as �μ,� = ��ℯ��   , �� = 
!"#
$�  , �%&' is the maximum frequency, and f is the spacing 

factor between kernels in the frequency domain, � = (�
)  , and the value of s determines the ratio 

of the Gaussian window width to wavelength. Using equation 1, Gabor kernels can be generated 

from one filter using different scaling and rotation factors. In this paper, we used five scales, 

 � ∈  0, … , 4 and eight orientations μ ∈  0, … , 7.  The other parameter values used are  s = 2π 

, �%&' = (
) , and 2 =  √2. 

Before computing the Gabor features, all detected ear regions are resized to the average size of all 

the ear images, i.e., 110 X 70 pixels, and all face images (frontal and profile) are resized to the 

average size of all the face images, i.e., 128 X 128 pixels. Gabor features are computed by 

convolving each Gabor wavelet with the detected 2D region, as follows: 

                                                   4�,���� = 5��� ∗  ��,����,                                                      (2) 

where T(z) is the detected 2D region, and z = (x, y) represents the pixel location. The feature 

vector is constructed out of 4�,� by concatenating its rows. 

3.2. Supervised Stacked Denoising Auto-encoder 

 
The application of neural networks to supervised learning [6] is well proven in different 

applications including computer vision and speech recognition. An auto-encoder neural network 

is an unsupervised learning algorithm, one of the commonly used building blocks in deep neural 

networks, that applies backpropagation to set the target values to be equal to the inputs. The 

reconstruction error between the input and the output of the network is used to adjust the weights 

of each layer. An auto-encoder tries to learn a function 7� = 789 , where 7� belongs to unlabelled 

training examples set {7�;�, 7�)�, 7�<�, …, 7�=�}, and 7�> ℝ=. In other words, it is trying to learn 

an approximation to the identity function, to produce an output 7@ that is similar to x, in two 

subsequent stages: (i) An encoder that maps the input x to the hidden nodes through some 

deterministic mapping function f : h = f(x), then (ii) A decoder that maps the hidden nodes back 

to the original input space through another deterministic mapping function g : 7@ = A�ℎ�. For real-

valued input, by minimizing the reconstruction error ‖7 − A�2�7��‖), the parameters of encoder 

and decoder can be learned. 

 

To learn features, which are robust to illumination, viewing angle, pose etc., from modality 

specific image regions, we adopted the supervised auto-encoder [7]. The supervised auto-encoder 

is trained using features extracted from image regions (789 ) containing variations in illumination, 

viewing angle and pose whereas the features of selected image regions, (7�), with similar 

illumination and without pose variations are utilized as the target. By minimizing the objective 

criterion given in Equation 3 (subject to, the modality-specific features of the same person are 

similar), the supervised auto-encoders learn to capture the modality specific robust representation. 

                    C�DE,FG,FH
;
I ∑ �‖7� − A�2�789 ��‖)) + L‖2�7�� − 2�789 �‖))�,�                            (3) 

where the output of the hidden layer, h, is defined as ℎ = 2�7� = tanh �Q7 + RS�, A = ℎ�7� =
tanh �QTℎ + RU�, N is the total number of training samples, and is the weight preservation term. 

The first term in Equation 3 minimize the reconstruction error, i.e., after passing through the 

encoder and the decoder, the variations (illumination, viewing angle and pose) of the features 

extracted from the unconstrained images will be repaired. The second term in Equation 3 enforces 

the similarity of modality specific features corresponding to the same person.  

After training a stack of encoders its highest level output representation can be used as input to a 

stand-alone supervised learning algorithm. A logistic regression (LR) layer was added on top of 
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the encoders as the final output layer which enable the deep neural network to perform supervised 

learning. By performing gradient descent on a supervised cost function, the Supervised Stacked 

Denoising Auto-encoder (SDAE) automatically learned fine-tuned network weights. Thus, the 

parameters of the entire SDAE network are fine-tuned to minimize the error in predicting the 

supervised target (e.g., class labels). 

3.3. Training the Deep Learning Network 

We adopt the two stage training of the Deep Learning Network, where we have a better 

initialization to begin with and a fine tuned network weights that lead us to a more accurate high-

level representation of the dataset. The steps of two stage Deep Learning Network training are as 

follows: 

Step1. Stacked Denoising Autoencoders are used to train the initial network weights one layer at a 

time in a greedy fashion using Deep Belief Network (DBN). 

Step2. The initial weights of the Deep learning network are initialized using the learned 

parameters from DBN. 

Step3. Labelled training data are used as input, and their predicted classification labels obtained 

from the Logistic regression layer along with the initial weights are used to apply back 

propagation on the SDAE. 

Step4. Back propagation is applied on the network to optimize the objective function (given in 

equation 5), results in fine tune the weights and bias for the entire network. 

Step5. Finally, the learned network weights and bias are used to extract image features to train the 

sparse classifier. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Supervised Stacked Denoising Auto-encoder 

The network is illustrated in Figure 2, which shows a two-category classification problem (there 

are two output values), where the decoding part of SDAE is removed and the encoding part of 

SDAE is retained to produce the initial features. In addition, the output layer of the whole 

network, which is also called logistic regression layer, is added. The following sigmoid function 

is used as activation function of the logistic regression layer:  
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                                                            ℎ�7� = ;
S�V#�W                                                                 (4) 

where x is the output of the last encoding layer XY, in other words the features are pre-trained by 

the SDAE network. The output of the sigmoid function is between 0 and 1, which denotes the 

classification results in case of two class classification problem. Therefore, we can use the errors 

between the predicted classification results and the true labels associated with the training data 

points to fine-tune the whole network weights. The cost function is defined as the following 

cross-entropy function: 

                4Z[\ = − ;
%  ]∑ ^�%�_; log cℎd7�ef + d1 − ^�e log c1 − ℎd7�efh,                       (5) 

where ^� denotes the label of the sample 7�. By minimizing the cost function, we update the 

network weights. 

 

4. MODALITY SPECIFIC AND MULTIMODAL RECOGNITION 

 
The modality specific sub-dictionaries (ij�) contain feature vectors generated by Deep Learning 

Network using the modality specific training data of each individual subject; where i represents 

the modality, � > 1,2, … ,5; and j stands for the number of training video sequence. 

Later, we concatenate the modality specific learned sub-dictionaries (ij�) of all the subjects in the 

dataset to obtain the modality specific (i.e., left ear, left profile face, frontal face, right profile 

face, and right ear) dictionary l�, as follows. 

                                               l� = mi;� ; i)� ; … ; ij�o; ∀�> 1,2, … , 5                                            (6) 

4.1. Multimodal Recognition 

 
The recognition results from the five modalities -- left ear, left profile face, frontal face, right 

profile face, and right ear are combined using score level fusion. Score level fusion has the 

flexibility of fusing various modalities upon their availability. To prepare for fusion, the matching 

scores obtained from the different matchers are transformed into a common domain using a score 

normalization technique. Later, the weighted sum technique is used to fuse the results at the score 

level. We have adopted the Tanh score normalization technique [8], which is both robust and 

efficient. The normalized match scores are then fused using the weighted sum technique: 

 

                                                         qr = ∑ s� ∗  [�=t�_; ,                                                            (7) 

where s� and  [�= are the weight and normalized match score of the ith modality specific classifier, 

respectively, such that ∑ s� = 1t�_; . In this study, the weights s� , � = 1, 2, 3, 4, 5; correspond for 

the left ear, left profile face, frontal face, right profile face, and right ear modalities, respectively. 

These weights can be obtained by exhaustive search or based on the individual performance of 

the classifiers [8]. Later, the weights for the modality specific classifiers in the score level fusion 

were determined by using a separate training set with the goal of maximizing the fused 

multimodal recognition accuracy. 

5. EXPERIMENTAL RESULTS 

In this section we describe the results of the modality specific and multi-modal recognition 

experiments on both datasets. The feature vectors automatically learned using the trained Deep 

Learning network resulted in length of 9600 for frontal and profile face; 4160 for ear. In order to 

decrease the computational complexity and to find out most effective feature vector length to 
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maximize the recognition accuracy, the dimensionality of the feature vector is reduced to a lower 

dimension using Principal Component Analysis (PCA) [9]. Using PCA, the number of features is 

reduced to 500 and 1000. In Table- 1 the modality specific recognition accuracy obtained for the 

reduced feature vector of 500, 1000 is shown. Feature vectors of length 1000 resulted in best 

recognition accuracy for both modality specific and multimodal recognition. 

 
Table 1.  Modality Specific and Multimodal Rank-1 Recognition Accuracy. 

Gabor 

Feature 

Length 

Frontal 

face 

Left 

profile 

face 

Right 

profile 

face 

Left ear  Right ear  Multimodal 

No feature 

reduction 

91.43% 71.43% 71.43% 85.71% 85.71% 88.57% 

1000 91.43% 71.43% 74.29% 88.57% 88.57% 97.14% 

500 88.57% 68.57% 68.57% 85.71% 82.86% 91.42% 

 

The best rank-1 recognition rates, using ear, frontal and profile face modalities for multimodal 

recognition, compared with the results reported in [10-12] is shown in Table 2. 

 
Table 2.  Comparison of 2D multimodal (frontal face, profile face and ear) rank-1 recognition accuracy 

with the state-of-the-art techniques 

Approaches Modalities Fusion 

Performed In 

Best Reported Rank-1 accuracy 

Kisku et 

al.[11] 

Ear and 

Frontal Face 

Decision Level Ear: 93.53%; Frontal Face: 91.96%; 

Profile Face: NA; Fusion: 95.53% 

Pan et al. [12] Ear and 

Profile Face 

Feature Level Ear: 91.77%; Frontal Face: NA; Profile Face: 

93.46%; Fusion: 96.84% 

Boodoo et 

al.[10] 

Ear and 

Frontal Face 

Decision Level Ear: 90.7%; Frontal Face: 94.7%; Profile 

Face: NA; Fusion: 96% 

This Work Ear, Frontal 

and Profile 

Face 

Score Level Ear: 95.04%; Frontal Face: 97.52%; 

Profile Face: 93.39%; Fusion: 99.17% 

 

5.1. Parameter selection for the Deep Neural Network 

 
We have tested the performance of the proposed multimodal recognition framework against 

different parameters of the Deep Neural Network. We varied the number of hidden layers from 

three to seven. By using five hidden layers we achieved the best performance. The pre-training 

learning rate of the DBN is used as 0.001 and the fine tuning learning rate of the SADE is used as 

0.1 to achieve the optimal performance. The number of nodes in the input layer of the SADE is 

equal to the size of the modality specific detected image, i.e., 7700 nodes for the left and right ear 

(size of ear images: 110 X 70 pixels) and 16384 nodes for the frontal and profile face images 

(size of frontal and profile face images: 128 X 128 pixels). While training the SADE network in a 

Core i7-2600K CPU clocked at 3.40GHz Windows® PC using Theano Library (Python 

Programming Language) pre-training of the DBN takes approximately 600 minutes and the fine-

tuning of the SADE network converged within 48 epochs in 560.2 minutes.  

 

6. CONCLUSIONS 

We proposed a system for multimodal recognition using a single biometrics data source, i.e., 

facial video clips. Using the Adaboost detector, we automatically detect modality specific 

regions. We use Gabor features extracted from the detected regions to automatically learn robust 

and non-redundant features by training a Supervised Stacked Denoising Auto-encoder (Deep 
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Learning) network. Classification through sparse representation is used for each modality. Then, 

the multimodal recognition is obtained through the fusion of the results from the modality 

specific recognition.  
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