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ABSTRACT 

 

Ultrasonograms refer to images generated through ultrasonography, a technique that applies ultrasound 

pulses to delineate internal structures of the body. Despite being useful in medicine, ultrasonograms usually 

suffer from multiplicative noises that may limit doctors to analyse and interpret them. Attempts to address the 

challenge have been made from previous works, but denoising ultrasonograms while preserving semantic 

features remains an open-ended problem. In this work, we have proposed a diffusion-steered model that 

gives an effective interplay between total variation and Perona-Malik models. Two parameters have been 

introduced into the framework to convexify our energy functional. Also, to deal with multiplicative noise, we 

have incorporated a log-based prior into the framework. Empirical results show that the proposed method 

generates sharper and detailed images. Even more importantly, our framework can be evolved over a longer 

time without smudging critical image features. 
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1. INTRODUCTION 
 
Over the last 30 years, medical imaging has experienced a dramatic change: from X-rays that 

display internal body organs and tissues as shadows on a photographic film to computed 

tomography, magnetic resonance imaging, positron emission tomography, and ultrasound imaging 

(USI) that show cross-sectional images of human physiology and anatomy. Among these imaging 

modalities, USI is popular and widely applied in medicine because it is non-invasive, fast, 

cost-effective, and safe. In addition, the technique allows investigation of volume information in 

real-time[1]. These advantages have captured the attention of scholars to develop sophisticated 

techniques to enhance ultrasonograms, which are images recorded through USI. 

 

Despite the merits, ultrasound images suffer from speckle noise that degrades their qualities, a 

consequence that may limit their usefulness. Speckle noise occurs when the back scattered echoes 

with spatial resolution less than that of the USI system interfere constructively or destructively, 

hence forming bright and dark spots which appear as granular structures on the reconstructed 

image[2]–[5]. Speckle patterns depict a form of multiplicative noise, and depends on the imaged 

tissue structures and various imaging parameters. This noise type reduces image contrast, limits 

detection of low-contrast lesions, introduces false structures and boundaries on the image, and also 
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degrades speed and accuracy of ultrasound imaging processing tasks such as edge detection, 

segmentation, registration, and volume rendering[6], [7]. One approach to improve quality of 

ultrasound images is to suppress speckle noise without affecting important features and texture of 

the image. Therefore, previous studies have attempted to address the challenges by proposing 

restoration and enhancement methods [1], [8]–[14]. And, the classical noise-suppressing 

frameworks for multilicative noise removal are total variation [15]–[23] wavelet [24]–[31] and 

linear/nonlinear diffusion [9], [32]–[35]. Some scholars have applied statistical theories to establish 

frameworks for noise estimation, and these approaches may promote further understanding on the 

denoising of ultrasonograms [36]–[38]. This work focuses on two frameworks, namely total 

variation (TV) and nonlinear diffusion, which have demonstrated higher performances in 

recovering critical image features. For the nonlinear diffusion framework, we have modified the 

Perona-Malik model [35] that has received considerable attention by scholars for its ability to 

restore high quality images. Contrary to several other approaches, we want to perform two tasks 

simultaneously: noise removal and preservation of useful image features (edges, contours, and 

lines). To this end, we have established a parametrized hybrid model that links TV and nonlinear 

diffusion frameworks to generate superior denoising results. 

 

TV, pioneered by Rudin-Osher-Fatemi and hence the name ROF model[22] is based on the 

principle that the total variation of signals with excessive and possibly spurious details is high. 

Equivalently, TV formulation states that the integral of the absolute gradient of a noisy signal is 

high. Thus, minimizing the integral translates to reducing noise in the image. Rudin et al. used a 

constrained iterative optimization algorithm with Lagrange multipliers that impose the constraints 

on the total variation of the image. The authors applied gradient projection methods to obtain the 

solution. The TV minimization problem is defined by  

 

 argmin�∈	
� �‖�	
‖ + �
2 ‖� − �‖������ � (1) 

where u  and f  are the original and noisy images, )(BV Ω  denotes the bounded-variation 

space of functions, BVu  is the BV  semi-norm, also known as total variation (TV) of u  given 

by uu ∇∫Ω=BV , and λ  is the regularization parameter.  

 

The Perona-Malik nonlinear diffusion model, originally conceived by Perona and Malik in 1990 

and hence the name PM model, ensures that the diffusion process is conducted depending upon the 

local properties of an image. More specifically, the PM model encourages stronger denoising in 

homogeneous regions, which perceptually contain higher levels of noise, and weaker denoising 

near edges. This discriminatory behavior of the PM model helps to simultaneously suppress noise 

and to protect important image structures. To achieve their goal, Perona and Malik proposed a 

nonlinear partial diffusion equation that uses an inhomogeneous diffusivity coefficient. The idea 

behind the PM model is to modify the classical diffusion equation by adding the diffusivity 

coefficient that depends on space activity in a given part of an image, measured by the norm of the 

local image gradient. The Perona-Malik problem formulation with a Neumann boundary condition 

is given by 
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 where x  and t  represent space and time, respectively, T  is the total time, and g  defines the 

diffusivity coefficient. The authors proposed two definitions of g , namely  
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with K  denoting the shape-defining constant. The Perona-Malik model, however, suffers from 

staircasing problems and tends to add speckles into the evolving solutions [39], [40]. 

 

Our goal is to address the problems inherent in the TV and PM models. The proposed hybrid model 

gives a proper compromise between the models by ensuring that the regularization process 

produces results that are free from staircasing and speckle noise issues. Combination of TV and PM 

models has been achieved through parametrization that are designed to eliminate problematic 

portions of the corresponding energy functionals. Also, because we are dealing with multiplicative 

noise in ultrasonograms, we have added a log-based regularization prior into our framework. 

Extensive range of experiments have been conducted to demonstrate that our framework produces 

satisfactory results that are better than those of the classical models. Probably the most intriguing 

characteristic of our model is stability: results show that even at larger number of iterations the 

hybrid framework generates appealing results, an observation that eliminates a concern on setting 

the iteration limits or establishing the convergence criteria. 

 

2. HYBRID DIFFUSION-STEERED MODEL 

2.1. Problem formulation 

Noting weaknesses of the classical PM model, we have established a hybrid diffusion framework 

that integrates two energy functionals, namely PM [35]and TV[22]. The framework is carefully 

designed to ensure that only convex portion of the PM potential is preferred. Therefore, additional 

parameters,  
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and αβ = , with H  denoting the shape-defining constant of the PM model, have been 

encapsulated into the framework to provide an automatic interplay between the two models. The 

values of [0,1], ∈βα  assume only two states and are updated automatically within the iterative 

system to maintain stability and convexity of the framework.Hence, the proposed hybrid energy 

functional is given by 

 

 min� ���� = |∇�|� =  !� + "#�
2 log &1 + (�#)

�* − � &log � + �
�*+    (5) 

 

where G  is the gradient thresholding parameter for the TV model, λ  defines the regularization 

constant that refines a trade-off between u  and the noisy image, f . Equation 5 takes advantages 

from both TV and PM–the PM poor-behaving portions ( Hs >  and Hs < ) are complimented by 

the TV well-behaving portions, a setting that may guarantee promising solutions. The last term of 5 

defines a prior potential to suppress multiplicative noise[21]. 
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Solving (5) using the Euler-Lagrange method, and integrating the result into the time-dependent 

system, we get the evolution equation 
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where u  and f  are defined on Ω , x  represents space or spatial coordinate, and 0>T  is the 

time consumed by the whole iteration process. The first and second terms on the right side of (6) 

represent TV and PM diffusion functions, respectively, and the last part of the equation represents 

the regularization term. During execution of (6), the formulation is adjusted accordingly to reject 

undesirable solutions. 

 

2.2. Numerical Implementation 

Our model was implemented using the four-point explicit numerical scheme because of its 

simplicity, reliability, and accuracy[41]. Let W∇ , N∇ , S∇ , and 
E∇  represent image gradients in 

the West(W), North(N), South(S), and East(E) directions of the scheme. Then, the discrete image 

gradients can be defined as  

 ,,=  ,,= ,1,,1, jijijiNjijijiW uuuuuu −∇−∇ −−  
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for Ii ≤≤0  and Jj ≤≤0 ; I  and J  are the numbers of rows and columns, respectively; and 

i  and j  are row and column positions, respectively. The corresponding discrete conduction 

coefficients are 
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 Therefore, the discretized divergence term can be defined as  
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 and the steepest descent equation is  
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h  is the grid step size, τ  is the time step, λ  is the regularization constant, and 0>ε  defines a 

small stabilizing constant. Figure 1 shows the flow chart that we used to implement our 

formulation.   

 
Figure 1: Flow diagram of the proposed framework. 

 

3. EXPERIMENTS AND EVALUATION METRICS 

3.1. Experimental settings 

We conducted several experiments to test the performance of our model against other denoising 

methods, namely PM [35] Guo[39], Total variation [22]and Charbonnier [24]. In the first 

experiment, speckle (multiplicative) noise of density 0.04 was added into two different synthetic 

images, each 300300×  in size, namely “Geometry” and “Squares”. Then, the methods were 
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applied on the noisy images to recover their original versions. Afterwards, we computed the 

corresponding error maps for each method. Next, objective quality metrics, namely PSNR and 

SSIM, were used to evaluate the restoration results for each method. The aspect of edge recovery 

was tested through image profiles: for each restored image, a line graph through intensity values 

along a specific row (arbitrarily taken half way on the vertical dimension) was drawn. These 

profiles were compared against those of the original and noisy images. 

 

The second experiment involved real images of common carotic arteries (CCAs) corrupted by 

multiplicative noises. These CCAs were imaged from different patients. Then, the noise removal 

methods were applied to the images in an attempt to restore their (unknown) original versions. 

Because of a lack of the ground-truth images, comparisons on the results generated from various 

methods were done subjectively through visual assessments: an appealing image contains more 

details and holds semantically important features (edges, contours, and lines). 

 

In all experiments, parameters of the proposed model were fixed: 0.05=λ , 0.15=dt , 

1.3=G , 1=H , and 
5101= −×ε .  Simulation was done using MATLAB R2016b. 

Implementation codes of our framework have been shared in the MatlabCentralpublic repository1. 

 

3.2. Performance metrics 

Principally, two different approaches, namely subjective and objective, exist to assess quality of an 

image. The former approach can be achieved through questionnaires, in which case users apply 

their cognitive abilities to rate the visual attractiveness of the images. The approach, despite its 

wide acceptance by the ordinary community, is non-standard and tends to be expensive, 

inconvenient, and time consuming[42]. Objective image quality assessment involves development 

of quantitative measures that can automate the process of determining an image quality. The 

present work quantifies image qualities using PSNR (peak signal to noise ratio)[42] and SSIM 

(structural similarity) [43]. 

 

PSNR computes signal strength in the image relative to noise, and is defined by the equation  
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where fMAX  is the maximum signal value in f  and MSE  is the mean squared error. 

Stronger signals contain higher values of PSNR, and vice versa. The metric has, however, been 

criticized by scholars that it fails to mimic the human visual system [Wang et~al.(2004)Wang, 

Bovik, Sheikh, and Simoncelli]. Consequently, Wang et al. proposed SSIM to address the problem. 

This quality index is defined as  
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where uµ  and fµ  are the averages of u  and f , respectively; ufσ  is the covariance of u  

and f ; uσ  and fσ  are the standard deviations of u  and f , respectively; and 
1C  and 

2C  

are stabilizing constants. SSIM, which ranges between 0 and 1, is higher for a visually high-quality 

image, and vice versa.  

 

                                                
1

https://de.mathworks.com/matlabcentral/fileexchange/63681-hybrid-diffusion-steered-model-for-suppressi

ng-multiplicative-noise-in-ultrasonograms 
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4. RESULTS AND DISCUSSION 

 
Visual results from synthetic images demonstrate that the proposed method suppresses noise more 

effectively without affecting image features (Figures 2 and 3). Compared with the classical 

methods, our approach produces images with lower visible errors. Investigating profile maps, the 

proposed method shows that it generates sharper curves that are closer to the original ones (Figure 

4). Hence, we infer that our approach can produce plausible edges. Applying the denoising methods 

on real ultrasound images (CCA images), we can observe that our method outperforms, as depicted 

by (Figures 7 and 8). The classical methods, on the contrary, generate unwanted artifacts. The 

restored CCA images by our method are more detailed, an observation that can assist doctors to 

provide more accurate and appropriate treatments to patients. 

 

Quantitative results show that, in several cases, the proposed approach achieves higher values of 

PSNR and MSSIM (Table 1). Additionally, the approach generates PSNR and MSSIM curves that 

remain fairly uniform after attaining the peak values, which are higher than those obtained from the 

traditional methods (Figures 5 and 6). This observation indicates that our framework guarantees 

stability and may be applied with little restrictions on the number of iterations. Compelling results 

produced by our framework can be attributed to the well-designed energy functional. Also, our 

hybrid model is superior because it integrates the features of both total variation and Perona-Malik 

diffusion models, which complement one another to give enhanced mathematical properties.  

 
Table 1: PSNR (peak-signal-to-noise-ratio) and SSIM (structural similarity) of images generated by different 

methods. 

 

Method 
PSNR  SSIM 

Geometry Squares Geometry Squares 

Guo 27.45 26.86 0.8752 0.9298 

Charbonnier  29.82 29.95 0.9415 0.9781 

TV  30.28 30.37 0.9720 0.9880 

PM  31.43 30.41 0.9599 0.9646 

Proposed model  31.61 30.64 0.9805 0.9919 

 

 
   (a) Original        (b) Noisy        (c) Guo            (d) PM         (e) TV           (f) Ours 

 
Figure 2: Different denoising methods applied on the noisy “Geometry” synthetic image: first row, denoising 

results; and second row, corresponding error maps. PM, Perona-Malik; and TV, Total variation. 
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             (a) Original                         (b) Noisy                         (c) Guo 

 
              (d) PM                              (e) TV                           (f) Ours 

Figure 3: Different denoising methods applied on the noisy “Squares” synthetic images 

 

 
                   (a) Charbonnier                                       (b) Perona-Malik 

 
           (c) Total variation                                    (d) Ours 

 

Figure 4: Intensity image profiles of different denoising methods. 

 

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.8, No.4, August 2017 

9 

 
Figure 5: Peak-signal-to-noise-ratio (PSNR) and structural similarity (SSIM) of a “Geometry” image versus 

number of iterations. 

 

 
Figure 6: Peak-signal-to-noise-ratio(PSNR) and structural similarity (SSIM) of a “Squares”image versus 

number of iterations. 

 

 

 
            (a) Noisy                          (b) Guo                             (c) PM 

 
             (d) TV                          (e) Charbonneir                       (f) Ours 

 

Figure 7: Different denoising methods applied on a noisy common carotid artery (CCA) of patient #1 . 
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            (a) Noisy                         (b) Guo                              (c) PM 

 
            (d) TV                            (e) Chabonneir                       (f) Ours 

                    
Figure 8: Different denoising methods applied on a noisy common carotid artery (CCA) of patient #2  

5. CONCLUSIONS 
 

The current work has proposed a hybrid diffusion-steered framework to suppress noise in 

ultrasound images. Our method combines denoising properties of TV and PM models. We have 

replaced the non-convex portion of the PM energy functional by the TV potential, a strategy that 

guarantees favorable solutions. Quantitative and subjective results demonstrate that our denoising 

framework outperforms, producing higher PSNR and MSSIM values compared with those from 

some classical methods. Also, our approach shows satisfactory results when applied to actual 

ultrasonograms, an evidence that the framework may suit clinical settings. In future, we intend to 

embed the proposed algorithm into real devices and deploy the system into hospitals to assist 

doctors in analysis and interpretation of ultrasound images.  
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